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absorption effect. Thus, it appears as though the parts
of the spectrum that absorb, scan the light profile as
a function of the magnetic Geld. When Lurio' en-
countered this effect, he applied a magnetic field to his
lamp to Batten and broaden the incident light profile,
and thus decrease this kind of effect.

It is easily seen that correction terms to the Hanle
scattering rate must depend on an even power of the
magnetic 6eld, and that the dominant term is most
likely proportional to B'. The curves of Figs. 4(a) and
4(b) indicate that a 8' correction term whose coefhcient
is temperature (optical depth) dependent gives a good

first-order correction. The optical-depth dependence of
the coefficient of the 8' term as well as the dependence
of the coefFicients for the Hanle term and the back-
ground are to be explained in a separate paper. ' The
form of Eq. (7) fits the experimental data well.
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The excitation of triplet He states is a pure rearrangement collision provided that spin-dependent po-
tentials are neglected. The high-energy behavior of this rearrangement cross section is proportional to E '.
If relativistic spin-other-orbit terms are admitted, they produce contributions to the cross section which go to
a constant at moderately high energies. These new terms are incoherent with the old ones and have a relative
coefBcient of A+4, where nz is the fine-structure constant. They become significant at an incident energy of
about 8 keV and so are not presently observable. Part of the result obtained here also applies to the case
where the incident particle is a proton.

I. INTRODUCTION

HE theory of rearrangement collisions is not
completely understood even at high energies. To

further this understanding various erst Born approxi-
mations to the cross section for the excitation of triplet
states of helium by electrons have been calculated and
compared with experiment with somewhat inconclusive
results. ' These reactions are pure rearrangement
collisions in the approximation where spin-dependent
interactions are neglected. In that case, the singlet-
triplet reaction can only come about through the proc-
ess of the incident electron colliding with and ejecting
a bound electron and then becoming bound itself.
In the references cited, ' eight different forms of the
transition matrix element were tested. They gave
different results but for high enough energy it can be
shown that they all converge to the same results. This
cross section at high energies behaves as E '.

When spin-dependent potentials are admitted, the
reaction can proceed via spin Rip and not by rearrange-
ment. Spin-dependent potentials are small, but be-
cause the reaction is a direct one and not a rearrange-
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ment reaction, we may expect that this part of the cross
section will not fall off as rapidly at high energies and
may well be important. Indeed, we shall see that the
spin-Qip cross section goes to a constant at moderately
high energies. This comes about from the interaction
of the spin of a bound electron with the orbital motion
of the projectile electron. This force is proportional to
the incident velocity so that the impulse which causes
the transition is energy-independent at high energies
and consequently the cross section is also. There are
other spin-dependent potentials (besides the spin-other
orbit one) but these give contributions to the cross
section which fall off with energy more rapidly than the
one considered here, and so they will be neglected.

II. CALCULATION

As an example, we deal with the excitation of He
(2'S). Our starting point is the expression for the Born
approximation for the T matrix for this reaction

f (f(1)Vj(1)'A oh, (0)), (1)

where the notation is that of Ref. |.. The potential
may be decomposed into a spin-independent part
Vt& &(1) and a spin-dependent part Vts(1). The con-
tribution from Vtw&(1) is just that obtained in Ref.
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1 which we call T& &. It has various forms but at high

energy the term I, which occurs in all of them, domin-
ates, yielding an E ' contribution to the cross section. '
The other terms h.; all give E ' or smaller and are
dropped. We shall not be concerned with highly rela-
tivistic electrons here so that the Dirac matrices
describing the electrons may be reduced to Pauli
matrices in the usual way. ' The result for the spin-
other-orbit potential is

squared is

where
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~10

We are interested only in the high-energy limit of
(4) and (5) in which case a method for evaluating I
due to Ochkur4 is applicable. The result is

Sm
d'rtd'rse ass(rl rs)/is(r1, rs)+0(p-') (6)

where eo is the usual Pauli matrix vector. The last
expression is written in rydberg units, where n~ is the
6ne-structure constant. This potential may enter in
two ways. The first is the way we shall treat in some
detail here. It just couples the initial singlet to the
6nal-triplet state in lowest-order perturbation theory.
The spin-dependent potential will also enter by modi-

fying the initial and final states. That is, the intial
(final) singlet (triplet) state will have a small admixture
of triplet (singlet) component introduced by Ve and
the other spin-dependent potentials. These small
admixtures will then be coupled by Vy") which will
cause the transition. However, this process will have
the energy dependence of any allowed transition
(E-'lnE) and will also be proportional to the small
relativistic coefficient so we will neglect it here.

The antisymmetrization operator occurring in (1) is

~o= 1—Poz —Po2= 2—Poi

where P exchanges spin and space coordinates. The
last step comes about from the symmetry of the Anal
state and the interaction. The factor two in Ao com-
bined with Vfe(1) gives an exchange reaction (electron
zero is free in the initial state, electron one is free in
the final state). This is a rearrangement collision brought
about by a spin-dependent force. It has the small
coefficient of the relativistic potential and the rapid-
energy decay characteristic of a rearrangement collision
so it is neglected here. The term —P~o in Ao combined
with V~ gives the spin-Qip term described in the Intro-
duction. The processes described by T&'~ and the re-
maining part of T( ) are incoherent. This is most
easily seen from the fact that the Anal-spin state of
the electron is different in the two processes. Thus, the
cross sections for the two processes may be added. The
rearrangement cross section has been obtained pre-
viously. The high-energy part in units of Bohr radii

~ The term I arises from a direct Coulomb interaction between
the two electrons which exchange places.
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= (8or/Ps)Z (x),

where d is the momentum transfer and x=LV. Note
that Z is the generalized oscillator strength and that it
vanishes when its argument is zero.

The spin-Qip part of the cross section is obtained
from the T matrix

T&s& = —2()b.r(1)V&8& (1,0));(1)),

where the factor of two arises from the fact that the two
terms in Eq. (2) contribute identically. Upon performing
the spin algebra and some simple integration, the
result is

o.&el = 16rr&r p4P dv(1 —~')(1/*')I &(*)]' (8)

Combining Eqs. (4) and. (8), the total cross section is

dl ((3/p')+2 '(p'/*') (1—~')) L&(*)l' (9)

The integration in (9) is facilitated by using x, the
momentum transferred squared, instead of p, the cosine
of the scattering angle. When this is done and higher-
order terms in p-' are dropped, the result for p in
units of squared Bohr radii and 8 in units of rydbergs is

o = 12or dh{1/E'+ snr41/x) l Z (x) l'. (10)

At this point, an explicit evaluation of Z becomes
necessary. In order to do this, we use the simple expres-
sions for the wave functions which were used in Ref. 1.

mrs(fr)rs) = (u'/or)e ~&»+"'& (11a)
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where

a = 27/16, P = 2.01, y = 1.53.

The result is

such a low energy is surprising. Before concluding that
this really is an asymptotic result, the experiments
should be extended to higher energies. The second term
in Eq. (13) is certainly not observable at these energies.
indeed, it is only a 10'Po correction at about 8 keV.
Note that the total cross section depends upon two
numbers involving the function Z(x) in different ways
so that an explicit representation for the wave functions
is necessary in order to construct Z. However, at any
given angle Z' enters only as a factor so that the ratio
of the two parts of the cross section in simply obtained

The remaining integral in (10) could be evaluated
analytically but the result is cumbersome. Instead,
numerical integration results in

3.02
a = —(1+0.49X10 '7").
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Ochkur and Brattsev"" give values for the 2'5 ex-
citation cross section up to 500 eV. Their cross section
is proportional to E ' at the upper end of their energy
range with a coefficient of 4.68 which compares with
our value of 3.02. They use Hartree-Pock wave functions
for their calculations so that their value is expected to
be somewhat better than the result obtained here from
the crude wave functions of Eq. (11).The magnitude of
the change is, however, somewhat surprising. It is
reasonable to suppose that the ratio of the two in-

tegrals in Eq. (10) is not as critically dependent upon
the wave functions as are the individual integrals, so
that the coefFicient of Es in the bracket of Eq. (13),
which is the Inain result of this paper, is probably
accurately obtained here.

This cross section has recently been measured' in the
energy range 100—225 ev, where within experimental
error it behaves as L& '. The experimental results fall
well below Eq. (13).The fact that the cross section has
attained its (nonrelativistic) asymptotic behavior at

5 V. I. Ochkur and V. F. Srattsev, Opt. i Spektroskopiya 19,
490 (1965) LEnglish trsnsl. :Opt. Spectry. (USSR) 19,274 (1965)g.

6 The experiment is by C. E. Kuyatt gI, g$. I am indebted. to Dr.
Kuyatt for sending me their results prior to publication.
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1+8'/8E' 8F'
(15)

that is, almost in the forward direction where the value
is given by

do. i~& tio'si 2 (nsE) 4

(/0 dQ, . 3
(16)

This is about 3%%u~ for 1-keV incident electrons and rises
rapidly for higher energies. Thus, the relativistic effect
may be more readily observRble Rs a nallow RnoIDolous

bump in the angular distribution at an angle given
by Eq. (15).

At the energies in question here protons and electrons
give the same cross section when they are incident
at the same center-of-mass velocity except of course
that exchange effects are absent in the proton case.
Therefore, we may obtain the excitation cross section
for protons by simply dropping the first term of Kq.
(13).The result is

o/as'=1. 5X10 '.

gg 2

6 (1—@+hs/8E'j'

where h=1.457 the excitation energy of the 2'5 state
in rydbergs.

This ratio maximizes at Rn angle given by


