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The theory of a gaseous optical maser in a magnetic field, as derived by Sargent, Lamb, and Fork, was
compared with experiment for the case of a single-spatial-mode, internal-mirror maser in an axial magnetic
field. Under these circumstances the twofold polarization degeneracy of the cavity mode is broken down,
and the maser tends to oscillate in the two oppositely circularly polarized components of the mode. The
intensities and frequency difference of these two components were measured as functions of cavity length
and magnetic field for J=1-J=0 and J=1—J=2 transitions in He-Ne optical masers. It was found that
all of the qualitative features of the results were correctly predicted by the theory, and in many cases
excellent quantitative agreement was found between theory and experiment. Two areas of disagreement
were found. (1) The coupling between the two polarizations is somewhat stronger than that predicted by
theory. This is very clear for a J =1—J =0 transition, and may be present in the J=1—J =2 transition. No
completely satisfactory explanation of this effect has been given. (2) The calculated frequency difference
for the J=1—J=2 transition appears to be smaller than that found in the experiment, although theory
and experiment are in good agreement forthe J =1—J =0 transition. The effects, of small anisotropies in the
cavity, on both the intensities and frequency difference were studied, and it was found that the theoretical
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results are in excellent agreement with experiment.

I. INTRODUCTION

COMPREHENSIVE theory of optical masers in

magnetic fields has recently been published by
Sargent, Lamb, and Fork.! The purpose of this paper
is to examine some of the detailed predictions of this
theory and to compare these predictions with experi-
ment. Although the theory is able to handle, among
other things, an arbitrary number of cavity modes,
arbitrary orientations of the magnetic field, and rather
general cavity anisotropies, the present experiments
have been restricted to a single spatial mode of the
cavity, to magnetic fields along the axis of the maser,
and to internal-mirror cavities with relatively small
polarization bias. Other field orientations and large
cavity-anisotropies, such as Brewster-angle windows,
will be the subject of subsequent experiments.

The primary concern in this work has been the
qualitative comparison of theory and experiment, al-
though these comparisons are more quantitative than
previous work. A certain amount of parameter variation
was carried out to improve the quantitative agreement
and to determine if the required values of the param-
eters were consistent with those obtained by other
methods. However, no extensive “curve fitting” was
attempted. Since the available theory only includes
terms through third order in the electric field ampli-
tudes, and the experiments were usually done at com-
paratively high values of the relative excitation (typi-
cally 91~1.2), one expects small quantitative differences
between the theory and experiment.? A more serious

1 M. Sargent ITII, W. E. Lamb, Jr., and R. L. Fork, first
preceding paper, Phys. Rev. 164, 436 (1967); second preceding
paper, Phys. Rev. 164, 450 (1967) ; referred to as Papers I and II.
When referring to these papers we will indicate the relevant
paper and section or equation. For example, (II-V) refers to

Paper IT, Sec. V, and (I-57) refers to Paper I, Eq. (57).
2K. Uehara and K. Shimoda, Japan. J. Appl. Phys. 4, 921

(1965).
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problem is that the present theory does not include the
effects of atomic collisions. Although some of these
effectscan be accounted for by relatively simple phenom-
enological additions to the theory,?* there appear to
be other effects which cannot be so handled.>¢ At such
time as a theory is available which includes a more
basic treatment of collision effects, a curve-fitting pro-
gram will be much more attractive.’

In the next section we summarize the relevant theo-
retical expressions from Papers I and II and discuss
the procedures used in the calculations. Because of the
complexity of the phenomena, and the close relationship
between the experimental and theoretical investiga-
tions, the major portion of the paper is subdivided by
phenomena, rather than into the traditional theory,
experiment, and discussion sections. Sections III and
IV cover, respectively, the mode intensities, and the
beat frequency between the modes. In both cases the
effects of cavity anisotropies are neglected. In Sec. V
we consider the effects of such anisotropies. To keep
the main text to readable length, the details of the
experimental techniques have been placed in an Ap-
pendix. Since a rather complete annotated bibliography
can be found in (I-IX), we only refer to those papers
which illustrate particular points.

II. BASIC THEORY

The basic result of the theory derived in Paper I
is a set of coupled, nonlinear, first-order differential

3R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).

4 A. Szoke and A. Javan, Phys. Rev. 145, 137 (1966).

5R. L. Fork, W. J. Tomlinson, and L. J. Heilos, Appl. Phys.
Letters 8, 162 (1966).

8 R. L. Fork and W. J. Tomlinson, IEEE J. Quantum Electron.
QE-2, 23 (1966).

7 A theory of the optical maser with pressure effects has been
derived by B. L. Gyorffy and W. E. Lamb, Jr. (to be published),
but it does not include the effects of a magnetic field.
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equations which describe the time behavior of the
electric field amplitudes, frequencies, and phases. The
theory is an extension of the well-known Lamb theory
of the optical maser® except that instead of a two-
level system one must consider (27,41)+(27:+1)
levels where J, and J, are the angular momenta of the
atomic states involved in the maser transitions, and
since the twofold polarization degeneracy of the cavity
modes is removed by the magnetic field, for each cavity
mode above threshold one must consider two polariza-
tion modes. Magnetic field effects on the dynamics of
the discharge are assumed to be negligible, and for the
field strengths we have used this is a very good
assumption.

For particular orientations of the magnetic field the
theory is comparatively simple, provided we use the
appropriate representation for the electric field, and
the cavity anisotropy is sufficiently small. We consider
here the simplest case: a magnetic field parallel to the
axis of the maser, with the electric field in terms of
opposite circular polarizations. More than one spatial
mode of the cavity could have been included, but it
appeared that this would only have complicated both
the calculations and the experiments without adding
significantly to our understanding of the maser. Since
we will be primarily concerned with a single spatial
mode of the maser cavity we will use the words ‘“modes”
or “polarizations” to indicate the two circularly polar-
ized components of the same spatial mode. When more
than one spatial mode of the cavity is intended this will
be specifically stated.

The basic equations describing a single-cavity-mode
maser in an axial magnetic field are!

E'+ =By~ E3—0, E\E?
— (Quy cOSY—ry sing) E_, (1)
B =oa E_—B_E3*—6_,E_E.
— (Quy cOSY+ry sinY) By, (2)
vyt =0+oi+p By 7y E?
+ (Quy Sing vz, cosy) E_/E,, (3)
vto_=Q+o +p E *H7_LE?
— (Qay siny —vay cosy) E4/E_,  (4)
Y=ritop—v_—¢.. (3)

In these equations E; and E_ are the amplitudes of
the electric fields in the two polarization modes, », and
v_ are their frequencies, and ¢4 and ¢_ are their phases.
The plus subscript refers to the polarization which has
its angular momentum in the same direction as a posi-
tive magnetic field. The terms involving Q., and vy,
represent, respectively, linearly polarized loss anisot-
ropy, and linear birefringence. These quantities can
be written in the forms Q.= (l,—1,)A/2, and v,,=

8 W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
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(oz—¢y) A/2, where I, and [, are the cavity losses for
light linearly polarized along the x and y axes, ¢, and
¢, are the corresponding phase shifts, and A=c¢/2L is
the cavity mode spacing. (The cavity length is L, and
¢ is the velocity of light.) The unperturbed cavity
resonance frequency @ is assumed to be the same for the
opposite circular polarizations. The o’s, 8’s, 0’s, ¢’s, p’s,
and 7’s are complicated functions of the atomic level
parameters, magnetic field, excitation conditions and
cavity tuning, and can be found in (II-13)-(II-26).
These coefficients also depend on the frequency dif-
ference of the modes, but the dependence is so weak
that it is usually neglected. The quantity (l,41,)A/2
appears as a scale factor in all the coefficients, but this
is of importance only when we consider absolute fre-
quency measurements, and will be discussed in Sec. IV.

Numerical evaluations of these equations were done
using the computer programs described in (I-VIII).
Although some changes were made in the programs to
facilitate the particular calculations of interest, the
mathematics were left unchanged. The reader is referred
to Papers I and IT for a more complete discussion of the
programs. We will here simply summarize the param-
eters which must be specified before the program can
provide numerical results. The parameters of the atomic
levels which must be specified are: J,, the total angular
momentum of the upper state; g,, the g value of the
upper state; v,, the reciprocal radiative lifetime of the
upper state; similarly J5, g, and v, for the lower state;
Yab, the natural linewidth of the transition (v is used
as an independent parameter to allow for collision
effects) ;* and Ku, the Doppler-width constant.® The
parameters of the maser which must be specified are:
N, the relative excitation® (91 =1 at threshold); A, the
cavity longitudinal mode spacing; /, the single-pass
cavity loss; Q@—uwy, the difference between the cavity
resonance frequency and the atomic line center; and
H, the magnetic field. For an anisotropic cavity we
must also specify /;—/,, and ¢,—¢, as described above.
In addition, the program has several other options. An
asymmetry in the atomic interaction curve of the type
used in Ref. 3 can be included. The relative excitations
of the magnetic sublevels can be specified individually
to account for unequal pumping of the sublevels, and
different losses can be used for the two polarizations.
The integrals involved in the third-order terms can be
evaluated using a §-function approximation or Doppler
limit,? or, at the expense of additional computing time,
they can be evaluated exactly.! For the cases presented
in this paper the error resulting from use of the §-func-
tion approximation is rather small, but as indicated in
the figure captions most of the data which are presented
were calculated with the exact expression for the in-
tegrals. Finally, the dependence of the coefficients on
the frequency difference of the modes can be handled
by an iterative calculation, but it has been found that
this is such a small correction (~1 part in 10%) that it
was usually neglected,
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Fic. 1. Experimental and theoretical curves of polarization mode intensities as functions of cavity detuning for a J=1—-J=2
transition for several values of axial magnetic field. The experimental curves are from an internal-mirror He3—Ne® maser operating
on the 3s,—2p4 (J=1—J=2) transition of Ne at 0.6328 u. The discharge was dc-excited, and the total gas pressure was 2.1 Torr with
He3:Ne®="7:1. The bumps in the 3.8-G experimental curves at 42200 MHz are a consequence of cavity anisotropy effects which were
not included in these calculations (see Sec. V for a discussion of this phenomena). For the theoretical calculations Jo=1, J4=2, ga=g =
1.3, va/2m =18 MHz, v3/27 =40 MHz, va/2r =120 MHz, Ku=1010 MHz. To improve the agreement with the experiment the popula-
tions of the magnetic sublevels were adjusted so that for the transitions for which ma—mp=+1 the relative excitation was 9, =1.178,
while for m,—my= —1 the relative excitation was 9{_=1.172. The third-order integrals were evaluated exactly. For all cases the dashed
curve is E,2 and the solid curve is E_2, All intensities are in arbitrary units. The same intensity scale factor was used for all the theoreti-
cal curves so one can compare their intensities for different field values, but small variations in the relative excitation during the course
of the experiment make such comparisons invalid for the experimental curves.

As they are written, Egs. (1) to (5) are rather for-
midable, even if we ignore the fact that the coefficients
in the equations are themselves complicated functions
of the basic maser parameters. To make it easier to
understand the implications of these equations we
assume, in Secs. ITI and IV, that the cavity anisotropies
are sufficiently small that we can neglect termsinvolving
Q.y and v,y. In this case there are stationary solutions
for the mode amplitudes and frequencies which we will
examine in some detail and compare with experimental
results. We will then, in Sec. V, include the effects of the
cavity anisotropy (Qzy and/or v,,70).

III. MODE AMPLITUDES FOR Q.y=v,,=0

If we consider only mode amplitudes and assume
Qzy=vzy=0, we have a somewhat simpler set of equa-
tions to deal with

Ey=Ei(a,—B4E2—0, _E?), (6)
E_=FE_ (a_—B_E.2—0_,E?). (N

In these equations it is easy to see that the a terms
represent the net unsaturated gains for the two modes,
the 8 terms represent the saturation of each mode by
itself, and the 6 terms represent the saturation of each

mode by the other mode or mode coupling. (An inter-
pretation of these coefficients in terms of various
physical processes can be found in Ref. 9.) Equations
(6) and (7) describe the time evolution of the maser
intensities, but since for most initial conditions the
intensities rapidly (in times of the order of 100 usec or
less) approach equilibrium values, in this section we
need only concern ourselves with these equilibrium
solutions. In (II-III) an algorithm is given for deter-
mining the equilibrium solutions from the values of the
coefficients in the equations. If the coupling between
the modes is weak (8, _0_,<B;8_) the maser can
exhibit either one- or two-mode operation. If the cou-
pling is strong (8. 0 .>pB,8_) the maser can only
exhibit one-mode operation, but in some cases it will
be bistable so that either mode can oscillate and the
oscillating mode is determined by the past history of
the maser.

As a simple example of the effects of the magnetic
field on the mode intensities let us consider a J=%1—

=1 transition for which 6, _=60_,=0 so there is no

9R. L. Fork and M. Sargent III, in Proceedings of the Inter-
national Conference on the Physics of Quantum Electronics, edited
by P. L. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill
Book Company, Inc., New York, 1966), pp. 611-619.
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Fic. 2. Experimental and theoretical curves of polarization mode intensities as functions of cavity detuning for a J=1—-J=0
transition for several values of axial magnetic field. The experimental curves are from an internal-mirror He3— Ne20 maser operating
on the 2s;—2p, transition of Ne at 1.52 u. The discharge was dc-excited, and the total gas pressure was 2.2 Torr with He?:Ne20=10:1.
The maser was bistable, with respect to oscillating mode, over portions of the 1.6-G curves and over the zero-field curves (see text for
further details). The bumps in the experimental curves, such as those at —180 MHz in the 2.4-G curves, are a consequence of cavity
anisotropy effects discussed in Sec. V. For the theoretical calculations J,=1, J4=0, g,=1.3, va/2r =24 MHz, vs/27 =62 MHz, ya/27=
81 MHz, Ku=460 MHz, 9% =1.2. The third-order integrals were evaluated using the 5-function approximation. For all cases the dashed
curve is E;2? and the solid curve is E_2, in arbitrary units. (See Fig. 1 caption for a discussion of the intensity scale factors.)

coupling between the modes. For zero magnetic field
both modes would oscillate with equal intensities, and
the tuning curve (curve of intensity as a function of
cavity detuning) would show the familiar Doppler-
broadened profile with a Lamb dip at the atomic line
center.® For a nonzero magnetic field the tuning curve
would be split into two identical curves, one for each
polarization, displaced symmetrically about the line
center by an amount proportional to the magnetic
field. For transitions with other J values the 6’s are
nonzero so there is mode coupling or competition. The
extent of the departures from the simple behavior of
the $—3% case depends on the strength of the coupling
between the modes.

For transitions of the type J—J+1 or J4+1—J for
J2>% (we use the notation: upper state J—lower state
J) the coupling is quite weak (§<%B) so that the be-
havior of masers operating on such transitions is similar
to that described above for a 3—% transition. A good
example of this is the 3s,—2p, transition in Ne (J=1—
J=2) at 0.6328 1 as shown in Fig. 1. This figure shows
the experimental and theoretical intensities of the two
circular polarizations as functions of cavity tuning for
several values of the magnetic field. (Details of the
experimental procedure can be found in the Appendix.
The bumps in the 3.8-G experimental curves at =200
MHz are a consequence of frequency-locking phe-
nomena caused by cavity anisotropy which was not
included in these calculations, but which will be dis-
cussed in Sec. V.) It is easy to see that the major effect
of the magnetic field is to split the tuning curve into
two curves which move apart as a function of magnetic
field.

For the initial theoretical calculations we used the
values of the effective decay constants, appropriate to
our operating pressure, as obtained by Fork and Pol-
lack,® and assumed equal excitations for the magnetic

sublevels of each state. These calculations gave the
general shapes of the experimental curves but did not
reproduce the asymmetries of the experimental results.
Further calculations were made assuming small differ-
ences in the populations of the magnetic sublevels. The
lower half of Fig. 1 shows these results for population
differences such that the plus polarization has a relative
excitation of 91;=1.178, and the minus polarization
has 91_=1.172. This difference in gains has the effect of
increasing the intensity of the plus polarization relative
to the minus polarization, and the coupling between the
modes then gives a further asymmetry. We see from
the figure that these calculations qualitatively repro-
duce the asymmetries observed in the experimental
results. Population differences of this type are not
implausible since the dc discharge current defines a
direction. Furthermore, any differences in cavity losses
for the two circular polarizations would effect the maser
in the same manner. Evidence for these effects was
presented in a preliminary letter.? It is also possible that
some of the asymmetry is a result of cavity anisotropy
(see Sec. V). The experimental curves still imply
somewhat more coupling than the theoretical curves;
however, much more definite evidence for such an
effect has been found in other transitions and will be
discussed below. We could undoubtedly have obtained
a better quantitative fit between theory and experiment
by adjusting the atomic constants used in the calcula-
tions, and by using a different set of sublevel popula-
tions for each magnetic field value. Nevertheless, except
for the cavity anisotropy effects which will be discussed
in Sec. V, all of the qualitative features of the experi-
mental results are predicted by the theory, and for
reasonable values of the constants even the quantitative
fit is quite good.

Transitions of the type J=1-J=0, J=0—-J=1,
and J=1—-J=1 form a unique set in that for zero
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F16. 3. Experimental and theoretical curves of polarization mode intensities as functions of cavity detuning showing a transition
from strong to weak coupling. As the experimental curves were recorded the magnetic field direction was reversed about every 5 MHz.
This produces a switchover in mode intensities when the modes are weak-coupled, but not when the maser is in a bistable region. These
switchovers have been indicated schematically in the figures by vertical lines. In the 0.8-G curves we have tried to indicate the type
of asymmetry which was observed in this case, although it has been necessary to exaggerate the effect by about a factor of 2 to make
it clear in the figure. The experimental curves are from the same maser used for Fig. 2 except that for these curves the total gas pressure
was 1.9 Torr. The theoretical curves are intended to show the type of behavior predicted by the theory for a strong-coupled transition.
The curves have been plotted for a cavity scan in the direction of increasing frequency, and bistable regions are indicated by the

horizontal bars marked “B.” For these calculations J,=Jp=2, go=g=1.3, v4/27=30 MHz, vs/27=60 MHz, va/27=100 MHz,
Ku=420 MHz, 9=1.2. The third-order integrals were evaluated using the §-function approximation.

magnetic field the theory predicts 64 _=60_ ,=8,=0_,
or neutral coupling. For all nonzero fields the coupling
is predicted to be weak, and to decrease in strength with
increasing magnetic field [see (II-1)7]. Therefore, for
sufficiently high values of the magnetic field we expect
the same type of behavior as we have just seen for a
J=1—J=2 transition, but as the field decreases we
expect to see increasing coupling between the modes
such that one mode gains intensity at the expense of
the other mode.

Figure 2 shows experimental and theoretical results
on the mode intensities as a function of cavity tuning
for the 2s,—2p;(J =1—J =0) transition of Ne at 1.52 p.
Considering the theoretical curves in order of decreasing
field we see that for a field of 16 G the tuning curves
are very similar to those considered above, but for a
field of 2.4 G the results of the increased coupling are
readily apparent. At 1.6 G the coupling is strong enough
that on either side of line center the dominant mode
quenches the other mode. This leads to three “crossover
regions” where the modes interchange intensities over
relatively small tuning ranges. For further reductions
in the magnetic field the calculated curves are very
similar to the 1.6-G curves except that the crossover
regions become narrower and approach zero width for
zero field. For sufficiently small fields the widths of the
crossover regions appear to be directly proportional to
the magnetic field, and the constants of proportionality
are functions of the various parameters used in the

calculations. For zero field the theory predicts a neutral
equilibrium with an infinity of acceptable solutions,
sometimes referred to as polarization “indifference” [see
(II-33) . In the figure we have shown the solution with
only one mode oscillating. All zero-field solutions have
the same total intensity.

The experimental curves for 16 G show reasonably
good agreement with the theoretical calculation, and the
2.4-G curves show the expected increased coupling, but
the experiment implies a coupling somewhat stronger
than that predicted by the theory. (The bumps at
—180 MHz and the asymmetry in the 2.4-G experi-
mental curves are a consequence of cavity anisotropy
and will be discussed in detail in Sec. V). In the experi-
mental curves for 1.6 G we find an unexpected phe-
nomenon. The crossover regions have gone to zero
width, and been replaced by regions of bistable opera-
tion 6.1 thus implying that the coupling has increased
to the point of strong coupling (64 _6_ > B.8-). In the
figure, which is for a tuning scan in the direction of
increasing cavity frequency, the central crossover region
is essentially a point and occurs about 25 MHz to the
high-frequency side of line center. For a tuning scan in
the opposite direction this crossover appeared about
25 MHz below line center, so for this field value we have
a bistable region about 50 MHz wide at line center.

10 Strong coupling of this transition at zero field was observed
independently by H. De Lang and G. Bouwhuis (Ref. 12), but
they have not reported results for other field values.
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Similar regions exist at the outer crossovers as will be
demonstrated below. For zero magnetic field the cou-
pling is strong across the entire tuning curve and we
obtain essentially single-mode, bistable operation. (The
observed finite intensity of the mode which is “out”
is another consequence of cavity anisotropy to be
covered in Sec. V.)

Because this strong coupling was not predicted by
theory, a number of measurements were made to deter-
mine its properties. To show the approach to strong
coupling, measurements were made of the widths of the
crossover regions as a function of magnetic field. These
showed a linear dependence on magnetic field as pre-
dicted by theory, and had about the same slope as the
theoretical curves, but the experimental widths went
to zero at a field of about 2 G, rather than at zero field
as predicted by the theory. To show the bistable regions
more clearly, tuning curves were recorded while the
direction of the magnetic field was being rapidly re-
versed. In weak-coupled regions this produced a series
of vertical lines as the modes interchanged intensities. In
bistable regions the same mode can oscillate for either
direction of the magnetic field and there is no such inter-
change of intensities. This is shown in the top line of
Fig. 3 where we see that bistable regions (light areas)
develop about all three crossover points, and as the
magnetic field is decreased the bistable regions expand
until they join and fill the entire tuning curve. Although
the present theory cannot account for strong coupling
for a J=1—-J=0 transition, it does predict strong
coupling for other transitions. The bottom line of Fig. 3
shows theoretical tuning curves for a J=2—J=2
transition for field values which bracket the change
from strong to weak coupling. The curves are calculated
for a tuning scan from low to high frequencies, and the
bistable regions are indicated by the horizontal bars
marked “B.” The figures show the same qualitative
behavior as we have observed experimentally for the
J=1—J =0 transition. One should not try to draw too
many conclusions from this comparison, but it appears
safe to say that the primary disagreement between
theory and experiment is simply the strength of the
coupling between the two polarizations.

In a search for possible mechanisms for this increased
coupling, we have attempted to restate, in more physical
terms, the theoretical result that the zero-field coupling
depends only on the J values of the transition [see
(I1-34) (I1-35)]. If one examines the relative values
of the angular matrix elements for the various sublevel
transitions for different J values, one finds that for
AJ =1 the largest matrix element is always for a
Am==-1 transition while for AJ=0 the largest matrix
element is for a Am =0 transition (the only exception is
J=31—J=1%). The sum of the squares of the Am=0
matrix elements is always equal to the sum of the
squares of the Am=-1 or Am=—1 matrix elements,
giving equal unsaturated gains for either case. However,
the saturation depends on the fourth and higher powers

GASEOUS OPTICAL MASERS

471
3.0
2.5
8
88
2.0 °
[e]
0
0
2
S s
(8]
T
1.0
0.5}~
0 1 | 1 1
0 1 2 3 4 5
P (TORR)

F16. 4. Critical axial magnetic field H, as a function of pressure.
The critical magnetic field is the field necessary to break down
the strong coupling of the two polarization modes. The data are
from an internal-mirror He3-Ne? maser operating on the 2sp-2;
transition of Ne at 1.52 . The discharge was dc-excited and the
gas partial pressures were in the ratio He?: Ne®=10:1. The pres-
sure indicated on the figure is the total pressure. All the data are
for relative excitation 9%1=~1.2, but no strong dependence of H. on
I was observed.

of the matrix elements, thus for AJ=-41 the Am=0
transitions (linear polarization) will have the greatest
saturated output power, while for AJ=0 the Am=+1
transitions (circular polarization) will have the greatest
saturated output power. For the neutral coupled transi-
tions, J=1J=0 and J=1<J=1, all the matrix
elements are identical, so the saturated output power
is independent of polarization. We can postulate, there-
fore, that the coupling strength is a manifestation of a
maximum power principle, since the maser always
chooses the polarization state which maximizes the
total output power.

Collisions are expected to cause transitions between
magnetic sublevels tending to equalize the sublevel
populations, so in general they would have the effect of
driving the coupling closer to neutral (as observed for
the J=1—J=2 transition). A possible explanation of
the extra coupling observed for the J=1—J=0 transi-
tion is that the collisions may be more effective in
causing | Az | =2 transitions (electric quadrupole) than
| Am|=1 transitions (magnetic dipole), since both
transitions assist the circular polarization, but only the
latter is important for linear polarization. It appears
plausible that | Am |=2 collisions are important, since
it has been shown® that the saturation induces an
electric quadrupole moment in the atom, as well as a
magnetic dipole moment.
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F16. 5. Experimental and theoretical curves of polarization mode intensities and total intensity as functions of the axial magnetic
field strength for a J=1—J=0 transition with the cavity tuned 75 MHz above the atomic-line center. The experimental curves are
from the same maser used for Fig. 2 except that the total gas pressuse was 2.1 Torr. For the mode intensities the dashed curve is E,2,
the solid curve is E_2, and the dotted curve is the theoretical total intensity (all in arbitrary units). The constants used in the theoretical
calculations were: J,=1, Jp=0, go,=1.3, va/27=30 MHz, /27 =60 MHz, va/2r =100 MHz, Ku=420 MHz, =1.15. The third-

order integrals were evaluated exactly.

To investigate this suggestion for the origin of the
additional coupling for the J=1—J=0 transition, we
measured the critical magnetic field for which the cross-
over regions just disappear, as a function of the total
gas pressure in the maser. These measurements tell us
how much magnetic field is necessary to reduce the
coupling from strong to neutral, and in Fig. 4 we see
that there is a definite pressure dependence. These
results suggest that collision processes in the gas play
a role in increasing the coupling. It is possible, however,
that the observed pressure dependence is simply the
result of the pressure effects on the atomic-level widths.
This question could probably be resolved by a series of
careful measurements of the pressure dependence of
these widths.

For a sufficiently large magnetic field the Zeeman
splitting can be made of the order of the cavity mode
spacing so the two polarizations oscillate on adjacent
longitudinal modes. (We assume that the relative
excitation is low enough that each polarization can
oscillate on one and only one cavity mode.) The theory
predicts that the polarization intensities should essen-
tially behave as if they were on the same mode with a
field (H—H,,), where H is the actual field and H,, is the
field which produces a splitting equal to the mode
spacing. The only difference is that since the electric
fields in the two modes are out of phase over the central
region of the cavity, where the discharge tends to be
concentrated, they partially cancel some of the terms
in the 6 and 7 coefficients, thus decreasing the coupling
between the modes. Kannelaud and Culshaw® have
done experiments on the J=1—J=0 Xe transition at
2.65 u which they find to be strong-coupled for zero
field and weak-coupled for a field of H,, but since they
do not give the distribution of the discharge in their
cavity it has not been possible to determine from their

1 J. Kannelaud and W. Culshaw, Appl. Phys. Letters 9, 120
(1966). This paper contains references to previous work by
these authors.

data if the high-field coupling is stronger than that
predicted by the theory.

Although Fig. 2 shows a considerable disparity be-
tween experiment and theory, a small additional cou-
pling in the theory would bring it into qualitative
agreement with experiment. We did not attempt to
make such a correction on a phenomenological basis
since we did not have any sound theoretical guidance
as to the form that such a correction should take.
Therefore, there was no point in attempting to vary
the parameters in the calculations to improve the fit
with experiment.

The theory predicts that all transitions of the type
J—J for J>$% are strong-coupled at zero magnetic
field, but become weak-coupled for a Zeeman splitting
of the order of the smaller of the natural-level widths.
Although we have not carried out experiments on any
transition of this type, we have observed strong cou-
pling in our experiments on the J=1—J =0 transition.
De Lang and Bouwhuis® have examined the 2s5—2ps
transition in Ne (J =2—J=2) at 1.207 s and found the
expected strong coupling at zero field, but they have
not reported any results for other field values.

Thus far we have considered mode amplitudes as
functions of cavity tuning for fixed values of the mag-
netic field, although we could equally well have plotted
the intensities as functions of magnetic field with the
cavity tuning held constant. In principle these two
procedures give us the same information, but in practice
they have different uses. We have seen that the tuning
scan is very useful for demonstrating the coupling
between the modes, and it is particularly convenient
experimentally since the magnetic field is easily held
at a constant and reproducible value. Magnetic field
scans are useful for the determination of the atomic-
level parameters, as discussed in (II-VIII),® but are

12 H. De Lang and G. Bouwhuis, Phys. Letters 20, 383 (1960).
13 H, R. Schlossberg and A. Javan, Phys. Rev. Letters 17,
1242 (1966).
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somewhat less convenient experimentally because of the
difficulty of holding the cavity frequency at a constant
and reproducible value. Because of this difficulty, and
because our purpose in these experiments was a com-
parison of theory with experiment rather than detailed
measurements of atomic constants, we will consider
here only one particular case of a magnetic field scan.

Figure 5 shows experimental and theoretical curves
of mode intensities and total intensity as functions of
magnetic field for a J=1—J=0 transition with the
cavity tuned approximately 75 MHz above the atomic
line center. As is shown in (II-VIII), this detuning
is sufficient to virtually eliminate the effects of the
standing waves in the maser, so the observed dip in the
intensity is a pure magnetic tuning dip, or “magnetic
Lamb dip.” The basic features of the experimental
curves are predicted by the theory, but in this case
there are rather severe perturbations from -cavity
anisotropy effects which were not included in the
theoretical calculations. These perturbations lead to
the rapid variations in mode intensities at =9 G, and
to the gradual change-over of mode intensities about
zero field rather than the abrupt change predicted by
the theory. These effects tend to cancel in the total
intensity so that there the agreement between experi-
ment and theory is much better. (For the higher-field
experiments suggested in (II-VIII) the mode fre-
quencies would be sufficiently far apart that the ef-
fects of the cavity anisotropy would be considerably
reduced.) It is shown in (II-VIII) that the width
of the dip in the total intensity is closely related to
Ye- From the data in the figure we obtain the result
Yo/2mr=274+5 MHz at a total pressure of 2.1 Torr
(Ne 25, level, He:Ne partial pressures=10:1).

Our results on the mode intensities show that the
principal discrepancy between theory and experiment
is the observation of strong coupling in the J=1—-J=0
case where the theory predicts neutral coupling, and
that there is evidence of increased coupling in transi-
tions for which the theory predicts weak coupling. There
is no definite evidence, but it appears possible that this
coupling effect is a result of atomic collisions in the
maser medium. In general the theory has been most
successful in predicting the many varied and complex
details of the experimental results. Not only are the
qualitative features predicted correctly, but except for
situations where the extra coupling has a large effect,
the quantitative agreement has been very good. Al-
though in this section we have neglected the effects of
cavity anisotropy, we will consider them in Sec. V
where the theory is shown to be equally successful in
predicting these effects.

IV. MODE FREQUENCIES FOR Q,,= v,,=0

For an isotropic cavity (Q.y=vz,=0), the equations
for the oscillation frequencies of the two modes are

vit+eor=Qto1+p By 1y _E 2, (8
v—+to_=Q+to +p E 247 L E=> 9
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Fic. 6. Experimental curves of the frequency difference be-
tween the oppositely circularly polarized modes, as functions of
cavity detuning, for several values of axial magnetic field. The
data are from the same maser used to obtain the data for Fig. 1
(He-Ne, 0.6328 u, J=1—J=2), except that the total gas
pressure was 2.1 Torr. The method used to determine the absolute
sign of the frequency difference is described in the Appendix.
The breaks in the curves as they pass through zero frequency
are the result of frequency-locking caused by cavity anisotropy.

For later convenience we define

Av=(04—0_)+ (py—7- 4) E2— (p-—7+ ) E2 (10)

In the previous section it was pointed out that for
Qzy=v5y=0 the mode intensities rapidly approach a
stationary equilibrium, so in this case y—s A« 4y, [see
Eq. (5)].

Before proceeding with a comparison of experiment
and theory it is instructive to consider exactly what it is
that one measures in an experiment. We write the two
circularly polarized components of the electric field in
terms of a rectangular coordinate system:

E,(8) =Ei[# cos(vittoy) +7 sin(vitt¢,) ], (11)
E_({) =E_[Z cos(v_t+o_) =4 sin(v_y+o_)]. (12)

In this form it is easy to show the well-known result
that the output of a polarization-insensitive detector,
which measures (| E,+E_ [?) (the average is taken over
an optical period), does not contain any components at
the difference frequency of the two modes. The simplest
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F1c. 7. Theoretical curves
of the frequency difference
between the oppositely cir-
cularly-polarized modes, as
functions of cavity detun-
ing, for several values of
— axial magnetic field. These
curves are fora J=1—-J=
0 transition. The other con-
stants used in the calcula-
tions were: go=1.3, vo/27=
- 20 MHz, vs/2w=30 MHz,
Yab/2wr=100 MHz, Ku=

420 MHz, 31=1.375, A=
577 MHz, [=0.007. The
third-order integrals were
evaluated using the é-func-
tion approximation. Cavity
— anisotropy was not in-
cluded in these calculations.

(= Wy )MHzZ

way to observe this difference frequency is to mix the
modes with a linear polarizer, which we will assume
has its axis at an angle 8 with respect to the « axis. The
component of the electric field along the 6 direction is
given by

E5(t) =[Ey () +E_(£)]+%
=E, cos(vytto—0)+E_ cos(v_t-+o_+86). (13)

If the beam falls on a detector, the output will be
proportional to 75 where

Iy=(E#(t))
—E2/24E 22+ E B cos(ryl+oy—v_i—o_—26).

(14)
Using Eq. (5) we obtain the final result:

Iy=(E2+E2) /24+E.E_cos(y—20).  (15)

This tells us that for the case we are considering in this
section (Yy—Av-i+yy) the output of such a detector will
consist of a dc component and a sinusoidal component
at a frequency A, with the polarizer angle entering only
as a phase factor.

In more physical terms, the opposite circular polariza-
tions add to give elliptical polarization. The electric
vector of this ellipse rotates in the direction of that of
the more intense circular component, and the ellipse
rotates in the same direction as the electric vector of the
higher-frequency component, with an angular frequency
of half the difference of the angular frequencies of the
electric vectors of the two components. When viewed
through a linear polarizer this rotating ellipse gives a
signal at the difference or beat frequency of the two
circular components.

300

As a zeroth approximation, one expects the two
polarizations to oscillate with the same frequency since
they are on the same resonator mode. The first-order
correction to this is the term (¢,—o_) in Eq. (10),
which results from the splitting of the zero-field disper-
sion curve into two separate curves, one for each polar-
ization. Except for very large detunings this always
leads to a positive Av. (The polarization ellipse spins
in the direction given by the direction of the magnetic
field and a right-hand rule.) The p and 7 terms in the
frequencies are the third-order corrections, and for
sufficiently small fields and detunings they may over-
come the effect of the o terms so as to drive the beat
frequency negative.

Typical behavior of the beat frequency as a function
of cavity tuning and magnetic field is shown in Figs. 6
and 7. Figure 6 shows experimental curves for a J=1—
J =2 transition, and Fig. 7 shows theoretical curves for
a J=1-J=0 transition. Other investigators have
published similar data except that in our experiments
we made use of the 6 dependence of Eq. (15) to deter-
mine the absolute sign of the beat frequency rather
than just its magnitude. (This is described in greater
detail in the Appendix.) Both figures display the basic
features described above.

To compare theory and experiment in more detail it
is most convenient to consider the beat frequency as a
function of magnetic field with the cavity tuned to line
center. Experimental and theoretical curves of this type
are given in Figs. 8 and 9 for J=1—J/=0 and J=1—
J=2 transitions, respectively. [We do not observe a
beat note until the field is large enough to overcome
frequency-locking effects (see Sec. V), and to eliminate
any strong coupling (for the J=1—J=0 transition).]
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These curves differ from the mode intensity curves in
that they are considerably simpler and in that absolute
calibrations are available for both axes. Because of
these two facts we ran a number of calculations for
different sets of parameters to see how closely we could
fit the data without resorting to complicated curve-
fitting techniques. We see from Figs. 8 and 9 that the
experimental curves can be fairly well described by
three parameters: the magnetic field for which the beat
frequency is zero, Hy; the maximum negative frequency,
F_; and the slope of the curve in the positive-frequency
region, (dF/0H),. Since the cavity loss enters the
theoretical expressions for the frequencies as a scale
factor, and we do not have an independent measure of
this loss, we have a certain amount of freedom to adjust
the frequency scale on the theoretical calculations to
reproduce the experimental values for F_ or (9F/0H) .
However, the known mirror transmissions and the
approximately known maximum gains for the transi-
tions, place definite limits on the range of cavity losses
that we can use for this purpose.

Let us first consider the J=1—J=0 case shown in
Fig. 8. From a curve of total output power as a function
of cavity tuning we determined the relative excitation
(91=1.375), and an approximate value for va(va/2m =
100 MHz). We then ran calculations for various values
of v, and ;. The best fit with experiment was for
Yo/ 2w =20 MHz, v,/2r =30 MHz, and is shown in the
figure. The theoretical curve is plotted for a single pass
cavity loss of 0.7%, which was chosen to fit the experi-
mental F_. If we assume a loss of 0.85%, we can fit
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Fic. 8. Experimental and theoretical curves of the frequency
difference between the polarization modes as functions of axial
magnetic field strength for a J=1—J=0 transition with the
cavity tuned to atomic-line center. The experimental curve is
for the same maser used for Fig. 2 except that the total pressure
was 1.9 Torr. The constants used in the theoretical calculation
were: Jo=1, J3=0, ga=1.3, va/2r=20 MHz, vs/27r=30 MHz,
~va/2m=100 MHz, Ku=420 MHz, 91=1.375, A=577 MHz. The
third-order integrals were evaluated using the é-function approx-
imation. A single-pass cavity loss / of 0.79, was chosen to fit the
experimental curve in the negative-frequency region.

“W. R. Bennett, Jr., Appl. Opt. Suppl. 1, 38 (1962).
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F1c. 9. Experimental and theoretical curves of the frequency
difference between the polarization modes as functions of axial
magnetic field strength for a J=1—J=2 transition with the
cavity tuned to atomic-line center. The experimental curve is
from the same maser used for Fig. 1 except that the total pres-
sure was 2.1 Torr. The constants used in the theoretical calcula-
tion were: Jo=1, Jp=2, go=g=1.3, va/2wr=18 MHz, v3/2r=
40 MHz, vya/2mr=120 MHz, Ku=1010 MHz, 91=1.16, A= 1000
MHz, 1=0.04. The third-order integrals were evaluated using
the é-function approximation. Cavity anisotropy, which causes
the frequency-locking shown in the experimental curve, was not
included in the theoretical calculations.

(8F /0H) + much more closely, but then the theoretical
value for F_ is —87 kHz.

For our mirrors and discharge configuration, losses
in the range of 0.7-0.85%, appear to be quite reasonable.
The value assumed for v, is somewhat smaller than that
obtained from the magnetic tuning dip, but when we
correct for the different pressures used in the two experi-
ments the discrepancy is only about 209, and does not
appear to be particularly significant. (Arbitrarily in-
creasing the coupling strength to that observed in the
results on the mode intensities did not appreciably
change the calculated frequencies.) At this high excita-
tion one expects some disagreement between experiment
and theory because of the neglect of higher-order terms
in the theory, but on the whole the agreement seems
quite satisfactory.

The situation is rather different when we consider
the case of the J=1-J=2 transition shown in Fig. 9.
For the theoretical curve we used the pressure-broad-
ened level widths from Ref. 3, and to fit the observed
F_ we needed to assume a single-pass cavity loss of
4.0%. This value for the loss is sufficiently high as to
strain credibility, although not so high as to be clearly
impossible. However, we were unable to find any set of
parameters for which the theoretical curves were in
significantly better agreement with experiment than
that shown in Fig. 9. For a much smaller v, and/or
larger va the theoretical value for H, is closer to the
experimental value, but then it is not possible to fit
F_ without assuming an impossibly large loss (>10%),
and the ratio (0F/9H)./F_ is much larger than that
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found in the experiment. Population differences be-
tween the magnetic sublevels, such as were used in the
mode-intensity calculations shown in Fig. 1, did not
have a significant effect on the frequency calculation.
We also ran some calculations in which we arbitrarily
increased the coupling coefficients [6’s and 7’s in Egs.
(1)-(4)], in an attempt to include the additional
coupling found in the mode-intensity results, but the
effects on the frequencies were very small.

It is not clear at the present time whether the dif-
ferences between the experimental and theoretical
curves for the J=1—J=2 transition are the result of a
basic inadequacy in the theory, or simply the result of a
number of small effects plus our failure to find the
“correct” combination of parameters. Since the theory
appears to fit the experiment so well for the J=1—
J =0 transition, the disagreement for the J=1—J=2
transition is all the more puzzling. It appears that this
is an area where a detailed curve-fitting approach could
be of significant value. Despite this small disagreement,
we feel that in general the agreement between theory
and experiment is very good.

V. EFFECTS OF CAVITY ANISOTROPY

To include the effects of cavity anisotropy one needs
to consider the full set of Egs. (1) to (5) with Q., and/or
vz,#0. In general ¥ is a periodic function of time so
there are no stationary solutions, and in principle one
should integrate the three differential equations to
determine the equilibrium solutions. This approach has
been used, but we find that many of the phenomena can
be obtained without numerical integrations if we assume
the anisotropy is sufficiently small that the mode ampli-
tudes are essentially constant. (In (II-V) this is re-
ferred to as the “decoupled approximation.”) In this
case we can deal with the single equation

Y= 2v+Quy sing (Ey/E_+E_/Ey)

—vay cosy(Ey/E_—E_/Ey), (16)
which we will write in the simplified form
¢=A+B sm(‘P+l//a)- (17)

In the limit of small B (i.e., Qz—v+,—0) this equation
has the simple solution ¥ =Av-t+y¥ and gives us a
constant sinusoidal beat note when the two modes are
mixed with a linear polarizer, as described in Sec. IV.
Lamb? has pointed out that an expression of the form
of Eq. (17) predicts a frequency locking for | 4 |<
| B|. In this case ¢ will asymptotically approach
Y= —sin1(4/B) —,. These limits have been observed
previously. In this paper we are concerned with both
the limits and with the region between them.

An exact solution of Eq. (17) will be given below,
but before doing that let us consider qualitatively the
behavior predicted by the differential equation. As was
pointed out in Sec. IV, ¥ is twice the angular velocity
of the rotating polarization ellipse, so this equation
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tells us that the angular velocity will vary or “pulse”
as a function of the polarization orientation. For 4
and B of the same sign the minimum velocity will come
at y+y,=3r/2 and the maximum velocity at ¢+, =
7/2. For A and B of opposite signs the orientations of
maximum and minimum velocity are interchanged. As
4 approaches B the minimum velocity approaches zero
and the maximum velocity approaches B. From this
we see that as we approach a locking region (4—2B), the
spinning polarization ellipse, which has been spinning
at a uniform angular velocity of A/2, will begin to spin
nonuniformly in such a way that it slows to a minimum
angular velocity as it passes the orientation at which
it will eventually lock (the locking axis). When | 4 |=
| B| the polarization ellipse will asymptotically ap-
proach a constant orientation. If 4 continues to change
in the same direction, this constant orientation will
move in the opposite direction to that in which the
polarization was spinning until | 4 |=| B| again, at
which point the polarization orientation has moved
through about 7/2 (¢ changes by about 7). For a
further change in 4 the modes will unlock, and the
polarization ellipse will start to spin again with the same
characteristics as before, except that it will spin in the
opposite direction, and the orientations of maximum
and minimum angular velocity will be approximately
interchanged. Since 4, B, and ¢, are all functions of the
intensities, the orientations of maximum and minimum
angular velocity will be somewhat dependent on the
mode intensities even when the intensities are not
modulated. Hence, as the maser operating point is
moved through a locking region the polarization will
rotate by about, but not exactly, 90°, and the locking
regions on opposite sides of line center will have dif-
ferent locking axes. However, in many cases these
effects are sufficiently small that it is still useful to
think in terms of the decoupled approximation.’®

The nonuniform rotation of the polarization ellipse
can be seen quite clearly in a rather simple experiment
in which one observes the beat note through a polarizer
rotating with a period long compared to the period of
the beat note, and displays the result on an oscilloscope
with a sweep time of the order of the period of the
polarizer rotation. Before looking at the experimental
results let us consider what we expect to see on the
basis of the above qualitative description. To simplify
the discussion we will assume that the polarization
ellipse is a line, in other words, the light is linearly
polarized. We define ¢ as the angle between the locking
axis and the plane of polarization (¢=v/2—¢0), and
6 as the angle between the locking axis and the axis of
the polarizer. The angle between the plane of polariza-
tion and the axis of the polarizer is then (p—8), so

15 This complicated time dependence of the polarization can
be seen quite clearly in a computer produced movie of the polar-
ization ellipse as a function of time. This movie was shown at the
January 1967 meeting of the American Physical Society; see

M. Sargent III, W. E. Lamb, Jr., W. J. Tomlinson, and R. L.
Fork, Bull. Am. Phys. Soc. 12, 90 (1967).
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Fic. 10. Experimental results for
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the maser intensity as a function
of time, as observed through a
slowly rotating linear polarizer.
These results are for the same
maser used to obtain the data for
Fig. 1 (He-Ne, 0.6328 p, J=1—
J=2). The maser was tuned about
300 MHz above line center, and
was in an axial magnetic field of
about 4 G. The upper trace shows
the intensified central portion of
the lower trace, with a faster
sweep rate.
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the intensity observed through the polarizer is I=
Iy cos?’(p—8). This function is almost periodic with a
frequency equal to the beat frequency plus or minus
twice the polarizer rotation frequency, so to a first
approximation we expect to see a sinusoidal-like varia-
tion of the intensity at essentially the beat frequency.
When the polarization passes the locking axis (¢ =nw),
deo/dt will be a minimum so (d/df) (¢—0) will also be
a minimum. (In some cases it will even be negative.) If
the oscilloscope sweep time is many times the period
of the beat note, these minimum slope points will be
observed mainly as intensified portions of the oscil-
loscope trace because of the reduced writing rate of the
beam. These points will occur when the observed in-
tensity is I,, =1 cos?(nmw—0) =1, cos?d so we expect the
oscilloscope record to be intensified along the line
I cos™.

This intensification is clearly visible in the lower part
of Fig. 10 which shows the output intensity as a func-
tion of time for a He-Ne maser at 0.6328 u, as observed
through a polarizer rotating at about 30 revolutions
per second. (The upper part of the figure shows the
central portion of the record with a faster sweep rate
to display the wave shape.) As the operating conditions
were adjusted to bring the maser closer to single-fre-
quency operation, the intensification along the line
I, cos®, as shown in Fig. 10, became more and more
distinct as the polarization spent more and more time
near the locking axis. When the two frequencies finally
locked, the pattern on the oscilloscope changed abruptly
to the single line /o cos®. Since the oscilloscope sweep

6 ) 10 12 14 16
TIME (MSEC)

was synchronized with the polarizer rotation, when we
continued to vary the operating conditions in the same
direction we observed the rotation of the plane of
polarization as a phase shift of the oscilloscope trace.
When this phase shift corresponded to a total rotation
of the polarization by about 90° the modes unlocked
and we again observed a pattern similar to Fig. 10,
except that then the intensification was very nearly
along the line Iy cos?(§+m/2). Thus this simple experi-
ment readily confirms all the qualitative features
predicted from Eq. (17). Figure 10 also provides a test
of our assumption that the mode intensities are un-
modulated, since any such modulation would show up
as variations in the envelope of the beat note. Close
examination of the figure reveals that such variations
are no more than about 5%, hence our assumption is
valid.

For a more quantitative test of the theory we con-
sider the detailed wave shape of the beat note as a
function of the polarizer angle. To obtain theoretical
curves to compare with experiment we solve Eq. (17).
This equation can be integrated analytically, giving, for
|A|>|B]:

. (—B+Asin®
V(t) +¢a=sin"1 (M)’ (18)
where
&=A[1—(B/A)?]M%+4sin"1(B/A4), (19)

and we have chosen the origin of time such that
Y(1=0) =—y,. (Since the inverse sine function is
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F1c. 11. Plot of the quantity 4 [1— (B/A)?]"2 as a function
of A for two values of B. This figure shows the approximate
behavior of the beat frequency near a region of zero beat with
(B50) and without (B=0) anisotropy in the cavity.

multiple-valued we must be careful to choose the proper
value so that ¢ is continuous, and ¥ has the same sign
as A.) Substituting Egs. (18) and (19) into Eq. (15)
gives the desired equation for the wave form of the
beat note as a function of polarizer angle. Although
the wave form is a fairly complicated function of the
parameters, we can see at once from Eq. (19) that it is
periodic with a frequency of A[1—(B/4)%]"?, so the
anisotropy has the effect of reducing the frequency by
a factor of [1— (B/A)¥]¥2. In Sec. IV (Figs. 7 to 9) we
saw that in the vicinity of locking regions Av, or 4, is
usually a fairly linear function of either the cavity
tuning or the magnetic field, so that near such regions
experimental measurements of the beat frequency as a
function of these variables essentially have the form
A[1—(B/A)¥]2 as a function of 4. This function is
plotted in Fig. 11. From the figure we see that the
effect on the frequency is relatively small until we are
quite close to the locking region and then the frequency
drops very rapidly for small variations in 4. This can
be seen quite clearly in the experimental curves in
Figs. 6 and 9. The experiments are often described by
saying that the frequency suddenly “‘jumps” from some
finite value to zero, but in light of the above discussion
we can understand the entire phenomenon in terms of
continuous processes.

The upper part of Fig. 12 shows experimental results
for the beat-note wave shape for five different polarizer
orientations. Other investigators have published experi-
mental results for similar wave shapes but, since their
data were recorded on oscilloscopes which were trig-
gered by the signals themselves, information was lost
as to the relative phases of the wave forms for different
polarizer orientations. As shown in Fig. 16 we made use
of two detectors, one for observing the wave shape
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through an adjustable polarizer, and the other for
producing a trigger signal for the oscilloscope (see
Appendix). The wave-form detector was dc coupled
so the zero of intensity is correctly placed, and the fact
that the curves have minimum intensities of zero
indicated that in Eq. (15) we should set E;=E,. (The
small differences in peak intensities and periods be-
tween the various curves are primarily the results of
fluctuations in the maser operating conditions over the
time required for the measurements.) Since we do not
know the actual orientation of the cavity axes, or the
ratio »,,/Q.y, in the theoretical calculations we arbi-
trarily set ¥,=0, and the empirically determined
polarization orientation for minimum ¢ was labeled
6=225°.

In addition to scale constants, the remaining quan-
tity which is required for the theoretical calculations
is the ratio 4/B, which indicates the closeness to the
locking region. We determined this from the ratio of the
half-intensity width of the peak of the §=135° curve
to the period of the same curve, and obtained a value
A/B=2. [From Eq. (18) it can be shown that A/B=
sec(mAt/T) where At is the half-intensity width and
T is the period.] Theoretical results using these con-
stants are shown in the lower part of Fig. 12, and are in

EXPERIMENT (He-Ne,0.6328u)
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F1c. 12. Experimental and theoretical curves of the beat-
frequency wave shape for several orientations of the linear polar-
izer used to mix the modes. The experimental curves were re-
corded from the same maser used for the data in Fig. 1 (He-Ne,
0.6328 p, J=1-J=2). The detector was dc-coupled, and the
oscilloscope was triggered at a constant phase value (see Appen-
dix). The theoretical curves are from Eqs. (15), (18), and (19),
with E,=E_=1, A=—11.55 kHz, B=5.77 kHz, ¢«=0. The 8
origin for the experimental curves was chosen such that the
polarization orientation for minimum angular velocity was along
the line §=225°.
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Fic. 13. Theoretical curves of mode intensities and relative phase as functions of time for three different cavity detunings. The
constants used in the calculations were: Jo=1, J4=0, go=1.3, va/2m=30 MHz, v3/2r=60 MHz, va/27 =100 MHz, Ku=420 MHz,
H=2 G, =12, A=577 MHz, (l,+1,)/2=10"2 (l,—1,)/2=2X1075, (¢,—¢,)/2=0. The third-order integrals were done exactly.
These curves are the results of numerical integrations of Egs. (1)-(5).

excellent agreement with the experimental results. This
agreement between the two families of curves indicates
that for this case Eq. (17) accurately describes the
time dependence of the polarization. Near a locking
region the beat frequency is very sensitive to small
variations in the cavity length, as seen in Fig. 10,
particularly in the region between 11 and 14 msec. This
may explain the reported observations of nonharmoni-
cally related components in the frequency spectrum of
the beat note (i.e., a nonperiodic wave form).1

The final phenomena which we consider are the effects
of cavity anisotropy on the mode intensities. To obtain
theoretical predictions of these effects from Egs.
(1)-(5), we must resort to numerical integration.
While this is a fairly straightforward problem, it can
easily use large amounts of computer time. Since this
calculation makes use of the theory in greater general-
ity, it provides a very sensitive test of the theory, but
by the same token, it is also sensitive to errors in the
input parameters, and has two more unknown param-
eters (Q., and »,,) than were involved in the previous
calculations. Because of this, and the fact that we have
already discovered small discrepancies between theory
and experiment, we did not attempt a detailed com-
parison of theory and experiment for these phenomena.
We have, however, integrated the theoretical expres-
sions for several cases, and find results which are in
surprisingly good agreement with both experiment and
the conclusions of the previous section.

Most of the integrations were run for a J=1—-J=0

16' W, Culshaw and J. Kannelaud, Phys. Rev. 145, 257 (1966).

transition in an axial magnetic field of 2 G. Figure 13
shows the calculated time behavior of the mode in-
tensities and phase difference for three different cavity
detunings for (¢.—¢,)/2=0 and (l,—1I,)/2=2X107".
This value for the magnitude of the anisotropy was
chosen on the basis of the results shown in Fig. 12 and
is consistent with that predicted by the Fresnel equa-
tions for an angle of the order of the mirror tilt necessary
to give the desired cavity loss. The curves for a detuning
of —124 MHz show the features we expect on the basis
of the previous discussion, but the differences are worth
emphasizing. The intensity variations of the two modes
are essentially negatives of each other, but they are not
quite in phase and have slightly different amplitudes
so their sum, the total intensity, is modulated at the
beat frequency. This is a result of the nonlinearity of
the maser medium and indicates that the two modes
are not orthogonal. The relatively small modulation
of the output indicates that the results could probably
be more compactly represented in terms of elliptically
polarized almost-orthogonal modes; but we have found
it most convenient, both experimentally and computa-
tionally, to adhere to the circularly polarized represen-
tation. The other difference we would like to point out
is that, although y,=0, the minimum slope point for
¥ comes at about Y =85° rather than ¥=90° as pre-
dicted in the decoupled approximation. For a detuning
of —160 MHz the anisotropy is sufficiently strong to
lock the two modes to a single frequency, and the figure
shows a roughly exponential decay to a stationary
equilibrium. The third case shown in Fig. 13, for a
detuning of —100 MHz, is a rather interesting com-
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Fic. 14. Theoretical curves of mode intensities as functions of cavity detuning with Q,y=w,,70. The calculations are for a J=1—
J =0 transition in an axial magnetic field of 2 G, using the same constants as were used for Fig. 13 except that (I,—1,) /2= (¢z—¢y) /2=
Vv2X 1075, and the é-function approximation was used for the third-order integrals. The circles indicate calculated equilibrium values
of the intensities for those cases where the modes are locked to a common frequency. For those cases where the modes are not locked
the vertical bars show the ranges of the modulation of the intensities and the circles show their mean values. The heavy curves have
been drawn through the equilibrium or mean values to indicate the pattern which would be observed by a detector with a time constant
many times the period of the beat frequency, and should be compared to the 2.4-G experimental results shown in Fig. 2. The light-weight
curves are the calculated intensities for an isotropic cavity (Q.y=vz,=0). The calculations shown in this figure required about 10 min

time on an IBM 7094 computer.

bination of the two previous cases. Notice that the
phase undergoes a stable oscillation but does not rotate.
For the first 40 psec or so dy//di is negative and the time
behavior of the mode intensities is similar to the un-
locked case, with the exception that the ratio of the
mode intensities is larger. Equation (16) shows that a
large intensity ratio has the same effect as a large
anisotropy. At about 48 usec this intensity ratio be-
comes large enough to cause locking, as we can see from
the fact that dy/df changes sign. At this point the time
behavior begins to resemble the locked case until about
70 psec, when the intensity ratio becomes small enough
to unlock the modes again as evidenced by the further
change in sign of dy/dt. The computer results indicate
that this oscillation is stable.

The experimental results on mode intensities as
functions of cavity detuning given in Sec. IIT do not
show any modulation because the time constant of the
detection system was much longer than the period of
the modulation. To compare the theoretical results with
such experiments we must average over the time varia-
tions of the theoretical curves. Figure 14 shows the
result of such calculations for (¢,—¢,) /2= (I,—1,) /2=
V23X 1075, (Since we have no independent measure of the
phase anisotropy we have simply set the loss and phase
effects equal, and kept the magnitude of the total

effect the same as for the previous figure.) For those
points where the modes are locked we have indicated
the equilibrium intensities by circles. In regions where
the modes are unlocked we have indicated the ranges
of the intensity variations by vertical bars, with circles
to mark the mean values. For this particular set of
calculations we did not find any of the oscillating-phase
solutions discussed above. The heavy curves drawn
through the equilibrium or mean value points are the
theoretical predictions to be compared with experiment,
and the lightweight curves are theoretical results for
the case of an isotropic cavity. From the figure we see
that the anisotropy has several effects on the inten-
sities. The most noticeable effects are the marked
asymmetry about atomic line center, and the rapid
variations in the intensities from —130 to —175 MHz
as the maser goes into single-frequency operation. The
asymmetry comes from the fact that the loss and phase
anisotropy terms have opposite signs on opposite sides
of line center [ see Eq. (16) ]. We also see that the maser
goes into single-frequency operation in the regions
around ==75"MHz where"the ratio of the mode inten-
sities is very large; however, the resultant state is
elliptically polarized rather than circularly polarized
as predicted for the isotropic cavity. The point of equal
intensities has been shifted from line center to a point
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about 2 MHz lower; however, the anisotropy does not
change the slopes of the intensities in the central cross-
over region, which implies that it cannot account for
the additional coupling discussed in Sec. III.

Comparing Fig. 14 with the experimental results for
a J=1—J =0 transition in a field of 2.4 G shown in
Fig. 2, we find that the experimental curves display all
the predicted features. To verify that the modes lock
to a common frequency at the points where the inten-
sities show the rapid changes, we used a fast-response
detector to observe the beat frequency at the same time
as we recorded the intensities with slower-response
detectors. In all cases we found that the breaks in the
intensities occurred at the edges of locking regions. This
was true for either cavity tuning or magnetic field
scans, for either of the two transitions investigated.
Although no attempt was made to vary parameters to
being the theoretical results shown in Fig. 14 into
better quantitative agreement with experiment, com-
parison with Fig. 2 shows that the qualitative agreement
is excellent.

Calculations similar to those shown in Fig. 14 but
for a J=1—-J=2 transition showed that the theory
predicts bumps in the intensities at the edges of the
frequency-locking regions, but that these bumps are
less pronounced than those in the experimental 3.8-G
curve of Fig. 1. For a larger anisotropy the bumps are
larger, but the frequency-locking regions are much
wider than those observed in the experiments. This
would agree with the results of the previous section
which indicated that perhaps the theoretical values for
the beat frequency are too small for a J=1-J=2
transition. The reservations stated at that time also
apply to this case, but these results reinforce the need
for a further careful study of this discrepancy. We wish
to emphasize, however, that this discrepancy is a
quantitative disagreement; the qualitative features of
the experiment are all predicted by the theory.

From our results on the effects of cavity anisotropy,
it appears that Egs. (1)—(5) are of the correct form to
predict all the qualitative features of the experiments,
and if we adjust the coefficients in the equations, as in
Fig. 12, we can usually obtain excellent quantitative
agreement with experiment. If we use the theoretical
expressions for these coefficients in terms of the basic
parameters of the system, we find that foraJ=1-J=0
transition the disagreement between theory and ex-
periment is sufficiently small that it seems reasonable
to ascribe it to errors in the parameters used for the
calculation. For a J=1—J=2 transition the disagree-
ment between theory and experiment is sufficiently
large that it is difficult to believe that it could be caused
solely by such errors. It appears from these results, and
from the data on the beat frequency as a function of
magnetic field, that for a J=1—J=2 transition the
theoretical expressions underestimate the quantity
Av [Eq. (10)7], and that if this quantity were increased
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Fic. 15. Block diagram of the equipment used for measurements
of mode intensities as functions of cavity tuning or magnetic field.

the effects of cavity anisotropy could be predicted by
the theory.V”

VI. CONCLUSIONS

The principal conclusion of this paper is that the basic
agreement between theory and experiment is very good.
Thus, we expect the theory to be quite useful for pre-
dicting the behavior of various optical masers in mag-
netic fields and for obtaining atomic-level parameters
from experimental data. The most significant dis-
crepancy, as pointed out in an earlier publication,® is
the inability of the theory to precisely predict the
strength of the coupling between the two polarization
modes, particularly as observed in J=1—J=0 transi-
tions. The other major discrepancy is in the fit to
experiment of the calculated frequency difference for
the J=1—J =2 transition. The most dramatic success
is the match of the cavity anisotropy effects with those
predicted theoretically. This latter success, together
with the fact that the very general anisotropy term
appears to be unable to account for the coupling dis-
crepancy, suggests that, while the cavity has been well
described, the atoms and electric fields have not yet
been adequately handled. Since consideration of quan-

171t has come to our attention that the thesis of H. de Lang
[University of Utrecht, 1966 (unpublished)] contains a very
readable treatment of anisotropy phenomena, both in the absence
of a magnetic field, and in an axial magnetic field, for weak-
coupled transitions. He discusses more general anisotropies than
we have considered, but in all his work he uses the decoupled
approximation (constant mode intensities), so he is not able to
handle the intensity modulation effects shown in Figs. 13 and 14.
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tum noise phenomena indicates that noise effects are
unlikely to alter the coupling strength,’® collision
phenomena appear, by the process of elimination, to be
the most likely source of the additional coupling. Thus,
there is a need for additional experimental and theo-
retical effort directed toward identifying and explaining
the effects of atomic collisions in optical masers in
magnetic fields.!
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APPENDIX: DESCRIPTION OF THE EXPERI-
MENTAL APPARATUS AND PROCEDURES

Masers

Two masers were used in the experiments described
in this paper. For the experiments on the 0.6328 u line
we used a dc-excited internal-mirror maser with a
mirror spacing of 15 cm, and a 1-mm-diam. capillary
discharge region 10 cm long. The mirrors had radii of
curvature of 1 m, and multilayer dielectric coatings
with transmissions of about 0.4, at the operating wave-
length. To prevent undesirable reflections from the
back surfaces of the mirrors these were inclined at about
1° to the front surfaces. An annular electrostrictive
ceramic (PZT-5) was used to vary the mirror spacing
to scan the cavity frequency across the atomic line. The
axial magnetic field was provided by a solenoid wound
on the capillary section of the discharge tube. Small
correction coils were used to improve the field uniform-
ity so that over the entire discharge region the field did
not vary by more than 4+-39%, and most of the variation
was in the relatively small regions at the ends of the

18 J, P. Gordon (private communication).

19 Note added in proof: We have recently succeeded in demon-
strating that collision-induced transitions between magnetic
sublevels are, as proposed above and in our earlier letter [Ref. 57,
the origin of the strong coupling in J=1—7=0 transitions. We
have incorporated such collisions in the theory in terms of differ-
ent decay rates for the various multipole moments of the J=1
state, and obtain very good agreement with experiment. Our
observations are in agreement with Hanle effect experiments on
other atomic systems by W. Happer and E. B. Saloman [Phys.
Rev. 160, 23 (1967)]. The relationship between the work of
Happer and Saloman and the laser problem has also been
noted by D. Polder and W. Van Haeringen [Phys. Letters 254,
337 (1967)].
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discharge. The solenoid was parallel to the axis of the
maser within less than 20.1° and a Mu-metal box was
used to shield out external magnetic fields. The maser
was permanently connected to a vacuum and gas-
handling system so that the pressure and ratio of He
to Ne were readily adjustable, and each day’s experi-
ments could be done with a clean fill. All the experiments
were done with isotopically pure gases (99.999, Ne¥,
99.75% He?). A capacitance manometer was used to
measure the gas pressures, and provided a constant
monitor on the pressure during the course of an
experiment.

The maser used for the experiments on the 1.52 u
line was essentially the same as that used at 0.6328 u
except for its basic dimensions and a few details of the
mechanical construction. The mirror spacing was 26
cm, and the capillary region of the discharge tube had a
diameter of 2 mm, and was about 20 cm long. The
mirror radii of curvature were 2 m. All other details
described above were the same for the two masers.

Equipment and Procedures for Polarization Intensity
Measurements

The basic equipment used for measurements of the
intensities of the circularly polarized modes is shown in
Fig. 15. After passing through a mechanical chopper
(~500 Hz), the maser beam was divided into two
approximately identical beams by a beam splitter. The
beam splitter was used with its normal at an angle of
only about 2° from the incident beam so as to minimize
its polarizing effects. The two beams then passed
through circular polarizers consisting of mica \/4 plates
followed by linear polarizers (Polaroid-type HR), and
were detected in PbS detectors. Interference filters were
used to isolate the maser radiation. The signals from
the detectors were demodulated in standard commercial
“lock-in” amplifiers (P.A.R. Model JB-5) and used to
drive the two inputs of a dual-channel preamp in the
vertical section of a Tektronix-type RMS564 storage
oscilloscope. To calibrate the relative sensitivities of
the two detection channels one of the polarizers was
rotated 90° so that both channels were sensitive to the
same circular polarization, and the gains of the channels
were adjusted to give equal outputs. With the polarizer
rotated back to its original position the channels then
had equal sensitivities for their preferred polarizations.

The ceramic transducer used to vary the cavity
length was connected across the output of a high-
voltage dc-amplifier, which was driven by a standard
function generator and/or a manually adjustable bias
circuit. A resistive voltage divider across the ceramic
provided a low-voltage signal which was a roughly
linear function of the cavity frequency. This signal was
used to drive the horizontal section of the storage
oscilloscope for displays of mode intensities as functions
of cavity tuning.
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Equipment and Procedures for Beat-Frequency
Measurements

For most measurements of the beat frequency the
setup was as shown in Fig. 15 except that a fast-re-
sponse detector (Type 7102 photomultiplier for 0.6328 u,
InSb detector for 1.52 ) was used to observe, through
a linear polarizer, the beam from the other end of the
maser. The output from the fast detector was displayed
on an oscilloscope, and its frequency counted by a
Hewlett-Packard Model 5245L frequency counter. A
digital-to-analog converter was used to convert the
output of the counter into a voltage proportional to
frequency which was then plotted on an X-Y recorder
as a function of either magnetic field or cavity tuning.

The above equipment measures the absolute value
of the frequency difference, | ¢ |, but does not tell us
which mode has the higher frequency. To determine the
sign of the beat note we used the arrangement shown in
Fig. 16. The detector and polarizer (#1) on the left
are the same as were used to measure the magnitude
of the beat note. The detector and polarizer on the right
(#2) provide a reference signal to trigger the oscilloscope
at a constant phase angle. This setup provides records
such as those shown in Fig. 12. Notice that in Fig. 12
in addition to the change in wave form as a function
of the angle of polarizer #1 there is also a phase shift
such that for increasing 6 the peak of the wave form
appears at earlier times. This indicates that the polari-
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F16. 16. Block diagram of the equipment used to measure the
absolute sign of the beat frequency.

zation ellipse, and hence the electric vector of the
higher-frequency mode, were rotating in the opposite
direction to that in which the polarizer was being
rotated. In this way we obtain a simple and direct
measurement of the senses of rotation of the modes. We
merely find the direction of rotation of polarizer #1
which causes the oscilloscope display to move to the
right. This is then the direction of rotation of the elec-
tric vector of the higher-frequency mode.

For the results shown in Fig. 10 polarizer #1 was
rotated by a synchronous motor, and the oscilloscope
was triggered by the input wave form to the motor. In
this way the oscilloscope is triggered at a constant
polarizer orientation.



F16. 10. Experimental results for
the maser intensity as a function
of time, as observed through a
slowly rotating linear polarizer.
These results are for the same
maser used to obtain the data for
Fig. 1 (He-Ne, 0.6328 p, J=1—
J=2). The maser was tuned about
300 MHz above line center, and
was in an axial magnetic field of
about 4 G. The upper trace shows
the intensified central portion of
the lower trace, with a faster
sweep rate.
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