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The general theory of a Zeeman laser given in part I is used to analyze laser operation in axial and trans-
verse magnetic fields. The analysis is illustrated by graphs of intensities and beat frequencies versus cavity
detuning and magnetic field strength. Among the topics discussed are frequency-locking effects due to
cavity anisotropy, the dependence of competition between polarization modes on magnetic field strength
for various atomic angular momenta, and the measurement of atomic decay rates and g values using a

laser in a magnetic field.

I. INTRODUCTION

N paper I,! a theory of a laser subject to a uniform
dc magnetic field at any angle to the maser axis was
given in extension of a non-Zeeman treatment by
Lamb.? The theory resulted in amplitude- and fre-
quency-determining equations for multimode oper-
ation of the laser with possibly anisotropic cavity loss
and resonance and an active medium consisting of
atoms which may have arbitrary angular momenta,
isotopic abundance, and hyperfine structure. Computer
programs were described which can be used to analyze
these equations in their fullest generality, yielding
among other things graphs of intensities and fre-
quencies of oscillation versus time, cavity detuning
and anisotropy, magnetic field strength, or any other
laser parameter.

In this paper, we give and illustrate graphically some
simple examples of that theory. In general it is con-
venient to discuss the results for zero magnetic field
operation before discussing those for nonzero magnetic
field operation. This approach should make the theory
useful to those interested in the zero-field limit alone.
Steady-state solutions of the equations are found either
algebraically or by integrating the differential equa-
tions. The latter method is sometimes preferred when
more than one steady state is stable and is required in
the analysis of time-varying configurations typically
created by cavity anisotropy. The competition between
polarization modes can be expressed in terms of a
“coupling” parameter C. This depends markedly on
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the atomic angular momenta but decreases sharply as
a function of magnetic fields in all cases. A graphical
representation of these relationships is given in Secs.
IIT and VI.

Marked variations of the optical-field intensity with
magnetic field and cavity tuning appear in the theo-
retical curves. These can be related to the satisfaction
of certain resonance conditions, such as the matching
of the Zeeman splitting to the resonator mode spacing.
These resonances lend themselves naturally to the
measurement of atomic parameters, for example level
widths and g values; however, careful consideration
must be given to complicating factors of laser operation
such as Q anisotropies and population differences
between magnetic sublevels. The handling of the
complex influence of these factors is included to
demonstrate the versatility of the theory.

II. AXIAL MAGNETIC FIELD IN 4 BASIS

Although the basis e, given by? (1.18) is somewhat
more complicated than the x-y basis (I1.17) for off-axis
magnetic fields, it is particularly suited to the axial
magnetic field case for which the laser z axis k coincides
with the atomic z axis k’. Then j=j’ as well (see Fig.
1, paper I), and transitions for which ¢’=4'+1 con-
tribute to E,. In fact from (1.34), one has ‘“‘direction
cosines”

far(£)=V2,  fu(F)=f(x)=0. (1

The amplitude- and frequency-determining equations
are (I.81) and (1.82) with (I.83) and

Cy = —5gny 4 tv(ehK) !
XZ_ (a;/u;) Z bZ Sar pra1(Qarr)?
J al 4
XN av Z[ Yoo+ (@arvr —vng) ], (2)

Qg = —FWns F- (3)

References to equation numbers defining the variables
in (2) and (3) are given following (1.83).

3 A reference (I1.10) refers to Eq. (10) of Paper I.
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Furthermore, no terms occur in these equations with
nonzero third-order relative phase angles except when
they would occur in the scalar theory (3 or more
oscillating spatial modes). To see this, we note that
the 6 functions in (I.83) require that

g—r+s==1. (4)

From (1) only terms with ¢, 7, s=z=1 contribute to the
polarization. Hence (4) implies

r=q or r=s. (5)

By definition [see Eq. (1.33)], ¢, 7, and s are the
changes in magnetic quantum numbers corresponding
to E,, E, and E,, respectively. Thus, because of
(1) and (5), the polarization of E, must equal that of
E, or that of E,. Our assertion follows by definition
of the relative phase angle (1.72). In particular there
are no terms with nonzero, slowly varying relative
phase angles in one or two spatial mode oscillation for
this field orientation.

III. SINGLE-MODE OPERATION, AXIAL FIELD

For single-mode operation, the electric field (I.7)
may be written

E(z, 1) =3{Eie, exp[ —i(vittey) ]

+E_e_exp[ —i(v-i+¢-) )} U(z)Fc.c., (6)

where ey are given by (1.18). Using the relative phase
angle

=(p—v)t+(or—e-), (7)

J

6:{: = (P,/Yu'yh) Z (aj/u]') Z, bZ’ 5a’,b':b1(g‘)a'b')4[:1+7ab2£ (wu'b’ _V:h) ];
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this becomes
E(z, t) =3V2{ (E4+E-) cos(vit+er—3¢)[1 cos(3¢)

—j sin(3¥) I+ (Ei— E-) sin(vpld-er—3¢)
X[—isin(3¢) —jcos(z¥) BU(2). (8)

In the course of time the vector E(z, ¢) (for fixed z) de-
scribes an ellipse with major axis | (E;+E-)U(2) |/V2
and minor axis | (E.—E_)U(z) |/V2. The principal
axes are rotated an angle 3y from the x and y axes.
Thus, in general, the electric field describes an ellipse
rotating counterclockwise with angular velocity %y,
where from (7)

Y= (=) +(er—¢-). %)
The beat frequency Ay is

Av= [ / " \p"ld\p]~1.
0

If § is constant, Av=(¥/27).

The mode indices u, p, o, and # are all equal and the
sums in (1.83) reduce to sums over the polarizations
alone. We now assume the anisotropy matrix G,
(1.10) is diagonal in the % representation. The result-
ing amplitude- and frequency-determining equations
have the same form as those for two-mode operation in
the scalar theory.* Writing them explicitly in the
a, B, 0, o, p, and 7 notation and taking Yarar ="a, Yororr =
Yoy Varb' =Yaby Narb'a—nryda w21=N for all @, o', a"’, ",
and the é-function approximation (I.79), one has

(10)

0y +=3T" D (a;/u;) Z Zﬁa' w1 Pan) 2(Parranr) 2 (Vevas) [V L (ware — (8a) —v ) +var2€(8.) ]

J

+£a(26a) [('Ya'Yab - 25112) £ (6a) + ['Ya'Yab_ (:}:250,) (wa’b’ - V:{:) :|£ (wa'b’ _V:t) ]}

o =T Z (aj/u;) Z’ bz’ 8ar pr1(§av) 2Ze[Vart1 (wary —v) ],

Ey=FEy(ay—BsE2—0, E52), (11)
vator=Quto o B2 7y B4 (12)
where
=T 2 (a5/u5) 22 3 b wraa(@aw) Zilvarti(www —v2) 1=4/20s, (13)
(14)
+same with (v, 8% and Q. p—@e pa2). (15)
(1/Q1) =Re(gs &), (16)
Q=043 Im(gs 1), 17
(18)
(19)

Pr=— (F’/’Ya'Yb) Z (aj/%j) Z’ %: 5a',Mﬂ(@a'w)"%b(warbf —vy)L (warbr—ui) R
7 a

4 Reference 2, pp. A1441-1442,
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rew= =0 20 (a5/15) 20 3 burarsa (D) Qo) (vivan) "L (00) Y (80)

7

+’Yub(wa’b' - (:taa) _V:i:)£(wa'b'_ (:!:Ba) —V:t)]—l‘oea(zaa)[(:!:aa) (2'Yab+7a)£ (6a)

+[(2£6a) 2Yas+Ya(warnr —v1) 1€ (warnr —v) 1} +same with (v.>vs, 8—0, and Qorgos—ar pras),

I'=»N (eiK),

La(Aw) =[7a*+ (Aw) 2],
£(Aw) =[va’+ (Aw) 2],
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(20)
v =5 (nFr-), (21)
I =%r'25T, (22)
a=a,b,
(23)
waryr =wot (up/fi) H(ga'—gb'), (24)
b= (us/h) Hgat3 (v-—r), (25)

where wy is the zero magnetic field frequency of the jth isotope at its line center. Here for typographical simplicity
we have suppressed the subscript 7 on the w’s and g’s. In writing (24) and (25) we have assumed the magnetic

field splitting is a linear function of field strength.

In terms of the relative excitation 9 defined by (1.67), the I' of (22) is replaced by

=% Re(ghh)i)‘c[z (a;/u;) kgl | fu(w) |? 2; %: Ba',brik(@a/b')ﬁlZl-[y,,ﬁ—i(wo—uht)]]

Here vy is chosen so that the expression in brackets is a
maximum and the subscript h indicates the mode with
polarization p, which oscillates at threshold.

The conditions for steady-state oscillation are

E.=0. (27)

The stable steady-state solutions are as given?* in the
scalar two-mode theory. If o, <0 and «-<0, E,=
E_=0. If 0. <0 and a3>0, the intensity

I,=E" (28)

equals 0 and I¢=ay/B+. If both &’s>0 and the ef-
fective o,

ay' =ay—0; 5 (az/B%), (29)

is less than 0, I.=0 and I+=az/B¢. I )/, />0,
the behavior depends on the value of the ‘“coupling”
parameter

C=6, b ./B:B—. (30)

If 0<C<1 (weak coupling), both polarizations oscillate
with the intensities

I = (aBr—0s zog) /(BiB-—04 0-1).  (31)

If C>1 (strong coupling), either polarization oscillates
alone (which depends on past history) with the in-
tensity

Ii=ay/Bs. (32)
If C=1 (neutral coupling), any solution satisfying

o =By L4060, 1 (33)

may be stable.
Having determined E, and E_, one may use (12)
to find v, +¢4 and »_+¢_. The electric field as given by
(8) is then completely determined apart from phase

—1

(26)

factors. The steady-state calculation may be iterated
in a self-consistent fashion by using in Eqgs. (13)-(26)
the values of v, +¢, given by (12). Computer analysis
has shown that this process converges almost invariably
in two steps to sufficient accuracy.

In zero field (14) and (15) become

B=2(T"/vavs) 22 (a3/u) [147ar (wo—r1) ]
X z’: bZ’ dar pra1(@an)?,  (34)
0 +=2(I"/vavs) Z (ai/u) [1+va L (wo—ry) ]

X 2 2w raa( @) | (Qarrop )+ (P wa2)?}, (35)
so that the magnitude of C is determined totally by the
relative size of the sum of matrix elements for 83 and
that for 6, . Heer and Graft® gave a table of the ratio
of these sums [=+/C by combining (30), (34), and
(35) ] for a number of common transitions. For J = 1>
J=1 or 01, C=1, ie., neutral coupling. For 12,
C=(22/46)2=0.228, ie., weak coupling, but for
22, C=(42/26)?=2.6, which gives strong coupling.
In general they found that transitions for which
Jo=Jpt1 were weak coupled and those for which
Jo=Jy were strong coupled except for the special
cases 01, 1<>1, which were neutral coupled. Similar
conclusions concerning stability were given by Polder
and Van Haeringen,® who derived a zero-field
expression for €1 ¢ where the eccentricity e=
(Ey—E.)/(E,+E_). Neither group mentioned 3<%,

5 C. V. Heer and R. D. Graft, Phys. Rev. 140, A1088 (1965).

¢D, Polder and W. Van Haeringen, Phys. Letters 19, 380

(1965); W. Van Haeringen, #bid. 24A, 65 (1967); Phys. Rev.
158, 236 (1967).
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which has no coupling at all (the 8 terms are identically
zero). Any observed coupling must be due to effects
neglected in our analysis, such as pressure or radiative
decay’ from level a to b.

To the extent that (ugs/fi) H(g.—g») can be neglected,
one can see by comparing (14) and (34) that the
effect of a magnetic field on the B’s is to introduce a
frequency translation equal to the field splitting. The
height of the peak is not changed. Comparing (15) and
(35), however, one sees that in the 8’s a magnetic field
not only introduces a displacement but also decreases
the height of the peak, for the factor of 1 in (35) is
replaced in (15) by dimensionless Lorentzians of the
field splitting. These Lorentzians result from the fact
that as the Zeeman splitting is increased two waves of

3.0 T I T

2.5

2.0

0.5

0
-20 -10 ) 10 20
H (cAuss)

Fic. 1. The coupling parameter C given by (30) is plotted
versus axial magnetic field in gauss under central tuning for
(in order of decreasing coupling) J=2«J=2, 0«1, 1<2. The
other laser parameters are v,=18 MHz, vs=40 MHz, vu5=29
MHz, Ku=1010.0 MHz, 9,=1.20, g,=g=1.295; there is only
one isotope, no nuclear spin, 2. =Q_ and Q. =(Q_. The dashed line
for C=1 represents neutral coupling and divides the graph into
a(,cstroilg-coupling region (C>1) and a weak-coupling region

<1).

opposite polarization travelling in the same direction
cease to interact with atoms in the same velocity range.
The result is that the coupling decreases in a somewhat
Lorentzian fashion as the magnetic field is increased.
This is illustrated in Fig. 1, where the coupling param-
eter C is plotted versus magnetic field for central
tuning and a number of J values. Note that the transi-
tion 22 goes out of the strong-coupling region for a
field of about 5 G.

Figures 2-4 show graphs of the actual intensities
versus cavity detuning for the transitions 0«1, 12
and 22, respectively. For the 01 transition (Fig. 2)
there are two regions placed symmetrically about line

"M. I. D’Yakonov and V. E. Perel, Opt. i Spektroskopiya
’.E(l)b 64;;2] (1966) [English transl.: Opt. Spectry. (USSR) 20, 257
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FiG. 2. Intensities I, (dashed line), 7_ (solid line) versus cavity
detuning in MHz for a 0«1 transition, and axial field of 1 G
and other parameters the same as in Fig. 1. The intensities are
given in arbitrary units.

center in which one polarization “inhibits” the other.
In these regions the effective o for one mode is negative,
and it cannot oscillate. This dependence on detuning
was given earlier by Fork and Sargent®? and some dis-
cussion of this case has been given by Culshaw and
Kannelaud.® Experimentally, this transition (He-Ne,
1.52u) is strong-coupled for fields of less than 1.5 G,
probably because of pressure effects neglected in our

150
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Fic. 3. Intensities I, I versus cavity detuning in MHz for
a 12 transition, a field of 1 G and other parameters the same
as in Fig. 2.

8R. L. Fork and M. Sargent III, Phys. Rev. 139, A617 (1965).

?R. L. Fork and M. Sargent III, in Pkysics of Quantum Elec-
tronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
él\/{c(grgw-Hill Book Company, Inc.,, New York, 1966), pp.

11-619.

1'W. Culshaw and J. Kannelaud, Phys. Rev. 145, 257 (1966).
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Fic. 4. Intensities 7, I versus cavity detuning in MHz for

a 2«2 transition, an axial field of 5 G and other parameters as

in Fig. 2. The long dashes are for 7_ and indicate strong coupling,

%).e.,( on)ly one polarization may oscillate with the intensity given
y (32).

analysis!™™® The 12 transition (Fig. 3) shows
relatively little coupling between the modes and the
central-tuning dip characteristic of a Brewster window
laser appears in both polarizations. For 1 G, the 22
transition is strong-coupled over the entire detuning
range. The intensity of the polarization mode which
happens to oscillate exhibits a dip similar to the output
of the zero-field Brewster window laser, but at a de-
tuning equal to the field splitting. Increasing the field
to 5 G reduces the coupling greatly in all three transi-
tions, and Fig. 4 shows how the 22 laser is bistable
only in the certain regions (bistability is indicated by
use of a dashed line for I_ instead of a solid line as in
Figs. 2 and 3).

Figure 5 shows a graph of the intensities versus
magnetic field for a 0«1 transition and central tuning.
The magnetic field tuning dip in the intensities can be
significantly different from the conventional central
tuning dip.** This can be understood by noting that
with central tuning and an axially symmetric cavity,
one may drop the = subscripts on «, 8, and 6 so that

Ii=I_=I=(a/B)[1—(6/8)1/[1—(6/8)*]
=(a/8)/[14+VC].

The factor /B exhibits a dip similar to that met in the
zero-field Brewster window laser,”* the principal dif-
ference being that the standing wave saturation is

(36)

1 R, L. Fork and W. J. Tomlinson, IEEE J. Quantum Electron.
QE-2, 23 (1966).

12W. J. Tomlinson and R. L. Fork, following paper, Phys.
Rev. 164, 466 (1967).

BH, deLang and G. Bouwhis, Phys. Letters 20, 383 (1966);
H. deLang, thesis, State University of Utrecht, 1966, especially
pp- 57-75 (unpublished).

14 Reference 2, p. A1438.
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reduced by magnetically shifting the gain curves
relative to the mode frequency rather than by detuning
the cavity. The factor (14+/C)~ dips because C has
a maximum for zero magnetic field as explained above.
It is interesting to note that while the dip in «/B
results from the nonlinear interaction of atoms within
a given velocity range with waves having the same
polarization and traveling in opposite directions (a
standing wave dip), the dip in (14+/C)? results from
waves having orthogonal polarizations and traveling
in the same direction (traveling wave dip).

In (14) and (15) the standing wave terms are those
having arguments of the form (wa»—»y), that is, those
terms containing Lorentzian functions with arguments
that depend on the relative position of an atomic
resonance and the oscillation frequency. The traveling
wave terms contain Lorentzians having the arguments
6, or &, ie., they are independent of the relative
positions of the atomic resonance and the oscillation
frequency, but do show a dependence on the magnetic
field splitting and possibly on the frequency difference
between two oscillating modes. These dips may be
resolved and used in the measurement of atomic
constants (see Sec. VIII).

Combining (9), (10), and (12) one has the beat
frequency

2rdv=4y=Q, —Q_+o,—0_+p, E2—p_ E2
+T+ ..E__Q—T_ +E+2. (37)

For small signal oscillation and @, =Q_ this is given by
the difference o, —o_, which increases approximately
linearly with magnetic field. For higher levels of ex-
citation, the third-order differences p FE 2—p E_?
and 7, _E_*—7_ . E.? may in low magnetic fields be of
larger magnitude and opposite sign and push the beat
frequency negative as shown in Fig. 6. Such a de-

28
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F16. 5. Mode intensities versus axial magnetic field for zero
detuning and operation on a single resonator mode. The solid
line represents total intensity and the dash-dot curve the equal
intensities of the 4+ and — polarizations as given by Eq. (36).
We have chosen parameters Jo=1, J,=0, g,=1.295, 91, =1.20,
¥.=18.0 MHz, 7;=40.0 MHz, v»=29.0 MHz, and Ku=
1010.0 MHz. In this figure, Figs. 15-20, 22, and 23, the in-
tensities are given in arbitrary units equal to 1.64 times those
in Figs. 2-4, 7, 8, 13, and 14.
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pendence was observed first by Culshaw and Kan-
nelaud® (without, however, noting the change in sign
of ¥) and was discussed theoretically for J=0-J=1
by Fork and Sargent,® Rozanov and Tulub,'® Culshaw
and Kannelaud, and for any J values by D’Yakonov.!”

From (19) and (20), one sees that in zero field, the
ratio of 7 to p=+/C and consequently ¢ will depend on
the angular-momentum values J, and J;. In particular
if other parameters are held constant, the minimum in
beat frequency is much deeper for a 0«1 transition
where the 7’s are larger than the p’s than for a 12
transition.

IV. OPERATION INVOLVING TWO SPATIAL
MODES—AXIAL MAGNETIC FIELD

There are no terms involving relative phase angles in
the third-order amplitude- and frequency-determining
equations for the oscillation on two spatial modes (see
Sec. II). Assuming the anisotropy matrix G,, (1.10)
is diagonal in the & representation and using (28), the
laser equations (1.81) and (I1.82) reduce to

jn=21n[an_ Z onmlm], (38)

Vn+¢n=9n+a'n+ Z Tnmlm, (39)
where n and m each index the two polarizations for the
spatial modes » and m, respectively, and thus have the
explicit values 1—, 14, 2— and 2. The coefficients
O,y Oum, on, and m,, are given in the approximations of
Sec. III by (13), (14), (18), and (19), respectively,
with the subscript & replaced by n or equivalently
n==. The O, and 7o, coupling orthogonal polarizations
are given by (15) and (20), respectively, with the
subscript = replaced by n, & by m and for #ns4m with
the factor No/N [see (1.59) for definition of N ]
multiplying £(was—vs). The 6um and 7,m coupling
different spatial modes (#7m) but identical polariza-
tions are given by (15) and (20) as above with the
additional replacements of =8, and +8 by % (ym—wa),
and @oF2,pr and Qs prio by Parr.

The steady-state conditions are

I,=0. (40)

Since there are four intensities here any of which may
or may not be oscillating, there are 2¢=16 solutions.
Those having negative values of I, are nonphysical

5'W. Culshaw and J. Kannelaud, Phys. Rev. 136, A1209
(1964). See also P. T. Bolwijn, in Physics of Quantum Electronics
edited by P. L. Kelley, B. Lax, and P. E. Tannenwald, (McGraw-
Hill Book Company, Inc., New York, 1966), p. 620; thesis, State
University of Utrecht, 1967, especially Chap. 5 (unpublished).

¥ N. N. Rozanov and A. V. Tulub, Dokl. Akad. Nauk SSSR,
Ser. Fiz. 165, 1280 (1965) [English transl.: Soviet Phys.—
Doklady 10, 1209 (1966) 1.

M. I. D’Yakonov, Zh. Eksperim. i Teor. Fiz. 49, 1169 (1965)
[English transl.: Soviet Phys.—JETP 22, 812 (1966)]. In the
derivation of the coefficients D’Yakonov assumes that v,=w_.
This assumption is not valid for our purposes since there may be
appreciable circular birefringence.
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Fic. 6. Beat frequency Av in kHz given by (37) versus magnetic
field. Same parameters as in Fig. 5.

and must be discarded. Using (14), (15) and the
remarks following (39), one sees that ordinarily

om0 (41)

for all n and m. It follows from this and (38) that
intensities corresponding to negative o’s equal zero.

For a given solution, the subscript n takes on values
contained in two sets, the set indexing nonzero in-
tensities M and that indexing zero intensities 3. In
this terminology, the sixteen solutions to (40) are of
the form

I1,=0,
I,= Z (67") nm@tm,

m

ne 3,

n, meN, (42)
where 67! is the inverse of the truncated 6 matrix whose
indices belong to N.

We investigate now the stability of the steady-state
solutions which are physical, ie., 7,>0 for all n.
For this we write

I,=1,"%4¢, (43)

where e, is a small deviation from the steady-state
intensity I, satisfying (42). Substituting (43) into
(38), one has

=—20 3 fmen+0(e) (44)

for n, m €N and

én=26n[an— Z onmIm(s):]_{_O(ez) (45)
for n€ 3, mcN. The condition for a stable steady
state is

€0, t—0,

(46)

which is true if and only if the real parts of the eigen-
values of the matrix in (44) with elements—7,®0,mn
are negative and the effective o’s:

anl=an'” Z onmlm(a), ne 8; m ¢ m (47)

in (45) are negative.
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Fic. 7. Intensities I, (dashed curve) and I_ (solid curve) as
functions of cavity detuning for two-spatial mode operation,
a 1«2 transition, an axial magnetic field of 1 G, a mode separa-
tion of 450 MHz (Q:=+450 MHz) and other parameters the
same as in Fig. 1. The intensities of the first cavity mode are
given in the region of detuning —450 MHz < AQ =01 —w =<0 and
those for the second are given by moving 450 MHz above into
the region 0=<AQ=0—w =450 MHz.

The computer programs include a routine to try
each of the 16 solutions given by (41) and test their
stability using (44) and (45). Figure 7 gives graphs of
the intensities I and I_ for two adjacent longitudinal
modes and a 1>2 transition.

A steady state of some practical interest (see Sec.
VIII) occurs for excitations too small for normal two
spatial mode operation, but with a magnetic field
splitting equal to the cavity mode spacing. The result
is that one cavity mode oscillates with one polarization
and the other mode with the orthogonal polarization.

V. EFFECT OF CAVITY ANISOTROPY

In a given representation cavity anisotropy is con-
veniently divided into two categories. The first consists
of anisotropy which is represented by nonequal diagonal
elements of the anisotropy matrix G, (1.10) and the
second of that represented by nonzero off-diagonal
elements. In this section we illustrate the effects of
both kinds using the == representation and examples
similar to those of Sec. III.

Cavity anisotropy of the first kind, e.g., Q40— or
Q,5Q_, is included in the equations of Secs. ITI and
IV. If Q;2Q_, one can see from (31) that curves of
intensity versus cavity detuning become asymmetric
and regions of mode inhibition (see Fig. 2) become
narrower or cease to exist for the mode of higher Q
and become larger for that of smaller Q. This is illus-
trated in Fig. 8, where a graph of intensities versus
cavity detuning is given for the same parameters as in
Fig. 2 except that Q;=1.001Q_. Nonequal cavity
resonances (Q,5%Q_) affect the intensities in a fashion
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similar to an axial magnetic field H provided
H=5(h/upga) (2 —Q-). (48)

In fact, if g,=g, and N, =N_, the coefficients in the
amplitude and frequency-determining equations (11)
and (12) are the same for a circular birefringence
@, —Q_ as for a field given by (48). The beat frequency
(37), however, is approximately @, —_, whereas it is
much smaller in the equivalent magnetic field (48).

Cavity anisotropy of the second kind leads to terms
with phase factors exp4iy in the equations [see (7),
(1.81), and (1.82)]. As we shall see presently, these
terms may cause frequency locking,®® i.e., vy =»_ and
¥ assumes a definite value. We now analyze this second
variety of anisotropy in terms of the important special
case for which the off-diagonal elements of the ani-
sotropy matrix result from an x-y Q anisotropy.!®

Treating the effect of an axial magnetic field in the
+ basis, one has from (I1.10) and (I1.20) the off-
diagonal elements of G,:

g —=8-+=3(0—0,). (49)

Adding the corresponding anisotropy terms to (11)
and (12) as indicated by (I.81) and (I.82), one has

Ey=E,(ay—BLEs2—0. zE5?)

—3iL(/Qx) — (v/Qy) JEx cosy,  (50)
vetor =Otoptpi By’ 1y w B
+3(Ey/Ez) siy[ (v/Q=) — (v/Qy) ], (51)

where the coefficients are given by (13) through (26)
with

(52)
and the relative phase angle ¢ is given by (7). Using

1.0

0.6 [~

INTENSITY

0.4

0.2

o
~450

Fic. 8. Intensities I, I versus cavity detuning in MHz for
same parameters as in Fig. 2, except Q4 =1.001Q_.

18 Reference 2, pp. A1444-5.
19 M. Sargent I1I, W. E. Lamb, Jr., W. J. Tomlinson, and R. L.
Fork, Bull. Am. Phys. Soc. 12, 90 (1967).
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(9) and (50) one has
V=0~ +o,—0_tp E—p E 4, _E2
=7+ E 243 (v/Qx) — (v/Q) ]
X[(Ey/E-)+(E-/E)] siny.

Some insight into (50) and (53) can be gained by
considering an x-y Q anisotropy sufficiently small that
the term with cosy in (50) may be neglected. Equa-
tions (50) are then decoupled from (53) and may be
solved using the steady-state theory of Sec. IIL. In
this approximation, (53) has the form

Y=a-+b siny, (54)

where @ and b are constants for a given set of laser
parameters. This has the implicit solution

(83)

12
t(Y) = dx(a+b sinx),
17}

where ¥ is the value of ¢ at ¢=0. For |a¢/b| >1, ¢
changes monotonically in time and #(¢) has the value

t(¥) =2(a*— %) {tan'[ (b+a tanjy) (a*— %) 7]
—tan'[ (b+a tanjdy) (a2 —%)"12]}.  (56)

When ¢ =27, the expression {- -
the beat frequency (10) is

Ay=[1(o=£2m) I == (2m) 7 (a*— )",

(55)

} equals 47 and

(57)

where the sign is that of the coefficient a. If | a/b |<1,

74 T T T

45+ —

8
H (GAuss)

Fic. 9. Plots of the coefficients ¢ (curved solid line) and &
(horizontal solid lines) of (54) and the beat frequency Av (curved
dashed line) of (57) versus magnetic field in gauss. The frequen-
cies of circularly polarized modes are locked together for fields
with | a/b|=<1, and the phase angle y is given by 2 of (58).
The x—y Q anisotropy 4v(Q,1—Q,™?) =0.004 MHz. Other laser
parameters are vo=15 MHz, v3=35 MHz, v4,=25 MHz, Ku=
420.6 MHz, N, =1.10, 2, =Q_, 0, =(Q_; there is only one isotope,
and no nuclear spin.
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F1c. 10. Time plot of siny obtained from an integration of
(53) using an axial field of 7.5 G. The other parameters are the
same as in Fig. 9.

the integral (55) diverges, i.e., #>o as

Y—r = —sin~1(a/b)
or

Y=y =7+sin"1(a/b).

Thus ¢ approaches one of these values asymptotically
in time. As explained in the discussion following (8),
the electric field vector describes in the course of time
an ellipse whose principle axes are rotated by an angle
3¢ from the x and y axes.

To illustrate the decoupled limit, let us now describe
the results of a time integration of (53) in which the
magnetic field was slowly increased from zero and the
intensities I, and I_ were obtained using the steady-
state theory of Sec. III. The parameters used were
similar to those of Fig. 6, with the addition of the small
x-y Q anisotropy 3[ (»/Q.)— (v/Q,)]=0.004 MHz.
Because the cavity was centrally tuned (Q.=0_=uw,),
the intensity I, was equal to I_ and had the magnetic
field dependence given in Fig. 5. Therefore the coef-
ficient b of (54) was a constant with the value 0.008
MHz. In the decoupled approximation, the magnetic
field dependence of the coefficient a of (54) is similar
to that of Av in Fig. 6. Thus, as the field is increased
from 0, the magnitude of ¢ becomes larger than tha*
of b, then smaller and finally larger. This is shown in
Fig. 9, where the curved solid line is a graph of ¢ versus
magnetic field and the horizontal solid lines are graphs
of 6. The dashed line is a graph of the resultant beat
frequency (57). Here we see Av=0 for |a/b| <1,
i.e., frequency locking has taken place. At 7.6 G
| a/b| >1 and ¢ fluctuates as a function of ¥ between
—25 kHz for siny=—1 and —12 kHz for siny=--1.
Accordingly ¥ spends most of the time near, 90° as is
illustrated by the graphs of siny versus time in Fig. 10.

(58)
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F16. 11. Plot of ¢ versus magnetic field in gauss as given by (58b)
in the second locked region of Fig. 9.

Near H=0 or in the vicinity of H=10 G, a=2b and
only the asymptotic solution v, of (58) is stable® as is
easily shown by a small vibrations analysis. The
magnetic field dependence of ¢ in the second locking
region of Fig. 9 is shown in Fig. 11.

An integration? of the coupled equations (50) and
(53) was made for the parameters above as the mag-
netic field was increased from 7.5 to 10.0 G. The time
dependence of ¢ and ¥ was almost identical to that
given by the decoupled approximation above and the
intensities were amplitude modulated characteristically
less than 29, at the beat frequency Av. Thus one is
justified in interpreting these results in terms of the
decoupled approximation.

There are cases, however, for which ¢ and b in (54)
are appreciably time-dependent and the decoupled
approximation breaks down. Tomlinson and Fork!?
have given examples of this kind for which the ratio
| ¢/b | oscillated around unity causing ¢ and ¢ in turn
to oscillate nonsinusoidally. This is not a locked state,
for ¥ does not remain equal to zero for any length of
time.

Tomlinson and Fork? have achieved rather re-
markable quantitative agreement between the theory
given here and experiments on the 1.52-p (0<1) and
0.6328-u (1¢»2) transitions in the He-Ne laser. The
reader is referred to their paper for further discussion.

A magnetic field dependence of Ay similar to that
given in Fig. 9 was observed by Kannelaud and Cul-
shaw,” who accounted? for the zero-field locking region
by an x-y Q anisotropy. Their treatment is an ex-

20W, J. Tomlinson (private communication), to whom the
authors are very grateful for numerous helpful discussions.

21 The results were presented in the form of a computer movie
of the standing wave electric field at the August, 1966, meeting
of the American Physical Society. See M. Sargent III, Bull. Am.
Phys. Soc. 11, 714 (1966).

22 J, Kannelaud and W. Culshaw, Phys. Rev. 141, 237 (1966).

2 W, Culshaw and J. Kannelaud, Phys. Rev. 141, 228 (1966).
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tension of the scalar theory? in which they used a
2>} transition and assumed the locked state. As we
have seen in Sec. ITI, the use of the 3<% transition with
no third-order coupling terms, i.e., C=0 should (see
Fig. 1) approximate to some degree the weakly coupled
12 transition, but a quantitative agreement with
experiment is precluded. D’Yakanov” gave a weak-
field theory valid for central tuning and arbitrary
angular momenta which deals with the zero-field
locking region in the presence of an x-y Q anisotropy
and regions of higher fields without this anisotropy.
Pelikan® came closest to our approach in his explicit
consideration of phase angles and derived amplitude-
and frequency-determining equations for the 0«1
transition. Velzel® has given the form of these equa-
tions and indicated how to include cavity anisotropy
of a more general nature. Doyle and White? gave a
zero-field analysis for atoms with arbitrary angular
momenta which includes cavity anisotropy of the first
kind (diagonal elements of G), but in general not of
the second kind (off-diagonal elements).

VI. TRANSVERSE MAGNETIC FIELD IN x-y
REPRESENTATION

The x-y representation is particularly suited to the
transverse magnetic field case, for magnetic quantum
number changes of 41 correspond to E,, and those of
0 to E,, This results because E,, and E,, are the
components parallel and perpendicular to the magnetic
field, respectively (see Fig. 1, Paper I). In fact, from
(1.34), one has the direction cosines

fu(e)=fo(y) =1,  fu(y) =fo(x)=0. (59)

The amplitude- and frequency-determining equations
are (I.81) and (1.82) with (1.83), (59), and

Opyy = — %’ngn,xx‘!_%V (EoflK) -1
X Z] (aj/uj) Z/ Z] Ba',b’il(@a'b')z
a a: b

X]\-‘ra’b’Z['Yu’b’_{—i(wa’b’ _Vnz) ]; (60)
Qpyy = — %ngnyU+%V (GOhK)—I
X2 @i/ ) 222 barr (P
J a b
Xiva’b’ZI:’Ya'b’—I_'i(wa’b’_Vny)]y (61)
Qppy = — %ngn:cy; Wy = — '12‘7'Vgnyxo (62)

The problem is more complicated than that of the
axial field in the == basis for unless J, or J,=0, there are
third-order terms with phase angles in (I.81) and
(1.82). This may be understood in the following

24 H. Pelikan, Phys. Letters 21, 652 (1966). Note that accord-
ing to this work, phase locking cannot take place for I.=1I_;
Z. Physik 201, 523 (1967).

% C, H. F. Velzel, Phys. Letters 23, 72 (1966).

26 W. M. Doyle and M. B. White, Phys. Rev. 147, 359 (1966);
Phys. Rev. Letters 17, 467 (1966).
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analysis along the lines of that given in Sec. II for the
axial field.

If J,=1 and J,=0, then the magnetic quantum
numbers 4’ and b’ defined in Fig. 2 of part I are zero.
It follows from the definition of ¢, » and s [see Eq.
(1.33) and (1.73)] that r=g¢ and s=*k. In terms of the
amplitudes, this implies that the polarization indices
of E, and E,» must equal those of E, and E,, re-
spectively. A similar argument holds for J,=0, J;=1.
Thus, if either J, or J,=0, there are no third-order
terms with slowly-varying phase angles for one or two
spatial modes. If neither J, nor J; is zero, there are
terms in (I.83) for which the magnetic quantum
numbers a’>£a’" or b's#d". Consequently r does not
have to equal ¢ or s and the polarization index of E,
does not have to equal that of E, or E,. Even for
single-spatial-mode operation, this allows slowly vary-
ing phase angle terms coupling the x and y fields for
any electric-dipole transition except 0«>1. This leads
in general to a time-varying problem which may some-
times simplify in one of two possible limits: (1) If the
phase angle terms are sufficiently rapidly oscillating,
they tend to average to zero in time; (2) locking may
take place, forcing the phase angle

= (Vx_”y) IHe:—oy (63)

to a constant value, i.e., v, =v,. In either case, a steady-
state solution may exist.

The latter case occurs for single-spatial-mode oper-
ation with central tuning (Q,=Q,=w,) (single isotope)
and equal populations of magnetic sublevels, for the
coefficients in the frequency-determining equation are
identically zero. This follows for », because the coef-
ficients are multiplied by vanishing frequency dif-
ferences. It follows for », because contributions to a
coefficient for which Am=+1 are equal in magnitude
and opposite in sign to those for which Am=—1. They
add to zero in the sums over magnetic sublevels [see
Eq. (1.83)]. A small amount of cavity anisotropy can
force the phase angle ¢ to a particular value as in the
previous section [see Eq. (58)].

The phase factors expinu,ror in Egs. (1.81) and
1.82) all reduce either to unity or to exp==2:#). For a
given value of ¢, the third-order terms with exp=£2:y
may be combined with other terms having the same
products E2E, or E2F,. The combined coefficients
depend on ¢ and will be denoted by 6., and 6,,’. One
may then discuss the interaction between polarizations
along the lines given for the axial field in Sec. IIT by
using the coupling parameter

Cl = oa;y,gyzl/ﬁiﬂy'

Figure 12 gives C’ versus magnetic field strength for
central tuning, and a number of J values. Curves for
values of y=0 and 7/2 (linear and circular polariza-
tion) are given for the 132 and 2¢>2 transitions.
Arguments similar to those for the axial field case

(64)
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Fi16. 12. Coupling parameter C’ given by (64) versus transverse
magnetic field in gauss for central tuning, 12, 0«1 and 22
transitions, Q,=Q,, Q,=Qy, and other parameters as in Fig. 1.
The 0«1 curve is given by a solid line, the 12 curves by long
dashes and the 2«2 by short dashes. The 12 curve with greater
values in central tuning corresponds to y of (63) ==/2, that with
smaller values to y=0. The reverse is true for the 2«2 curve.

show that in zero field C’ is determined apart from ¢
totally by the orbital angular momenta and that
Lorentzians of the magnetic field splitting decrease the
magnitudes of the ’s. Thus the coupling decreases with
increasing magnetic fields. In noncentral tuning the
phase factors exp(==24y) will oscillate and modulate
the amplitudes unless the cavity anisotropies are large
enough to cause frequency locking. The effective value
of C’ will then also oscillate.

In Fig. 13 the intensities 7, and 7, at central tuning
are graphed versus magnetic field for the 0«1, 12
and 22 transitions. As the field is increased from
zero, the resonance frequencies of atoms contributing
to I, move away from the cavity resonance, at first
causing I, to increase and then decrease to 0. The
resonance frequencies of atoms contributing to I, are
not shifted and I, approaches a constant value. For
field splittings equal to the cavity mode spacing, a
special case of three-mode oscillation can occur, pro-
vided the losses for I, are sufficiently greater than
those for 7,. This is discussed in Sec. VIII using Fig.
21.

TFigure 14 shows intensity curves versus detuning
for 0<»1 and 12 transitions in a field of 10 G. As
indicated in Fig. 11, the coupling is considerably less
than at zero field and 7, exhibits a central tuning dip.
I, is actually the sum of two terms with such dips whose
centers are sufficiently displaced to give I, a central
peak. Amplitude modulation due to the phase terms
has been suppressed in Fig. 14b since it did not appear
in the experiments of Culshaw and Kannelaud.?
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Fic. 13. Intensities I, (solid line), I, (dashed line) versus transverse magnetic field in gauss under central tuning for (a) 0«1, (b) 12
and (c) 22, respectively, and other parameters, as in Fig. 12.

Presumably this was due to the method of measurement
in which the modulation was averaged out.

Culshaw and Kannelaud gave equations for the
0«1 transition in a transverse magnetic field, neglect-
ing anisotropy and making the approximations of Sec.
III. They include graphs of the coefficients and in-
tensities versus magnetic field. Durand?” also gave
equations for this transition, although his derivation
depends upon a rate-equation approximation.
D’Yakonov and Perel” have also considered this case,
but without obtaining numerical results.

VII. ARBITRARILY ORIENTED FIELD

No major simplification occurs from choosing the
x-y basis instead of the == basis in the arbitrarily
oriented field case except for central tuning where the
beat frequency 2wy, can be zero for reasons given in
Sec. VI. However, both bases are useful in studying
the effects of misalignment of the magnetic field. For
example, the x-y basis is used for estimating effects
of a small axial component in the presence of a trans-
verse field.

The magnitude of any term in the polarization is
limited in part by the size of the products [see (I1.63)
and (1.83)7] of the “direction cosines” f(i) given by
(1.34) and evaluated for the = and -y bases in
Table I. Terms whose f products are zero for a perfectly
aligned field in its favored basis [see (1) and (59)]
have nonzero products for a misaligned field and may
influence laser operation. The largest of these contain

only one small f such as 1—cos® or sin® in an ap-
proximately axial field or cosO in a transverse. Thus
for misalignment of 1° the largest additional terms
are about 1.79, of the regular terms (only 0.03%, for
a 0«1 transition in axial field for which the largest
term has a sin?0). For the misalignments of 10%
which occurred in the experiments of Culshaw and
Kannelaud,® the largest additional terms may be as
much as 109, of the regular terms. The behavior will
be substantially different from that for a perfectly
aligned field and should have locking regions due to the
phase angles in the additional terms. Further discussion
of misalignment is given in the next section.

VIII. MEASUREMENT OF ATOMIC DECAY RATES
AND g VALUES

The determination of atomic decay rates (v’s) and
g values for the laser atoms is necessary to a description
of the laser operation. It is particularly convenient if
these values can be determined from characteristics
of the laser output since they are often unavailable or
difficult to obtain by other methods. A measure of the
level lifetimes is especially desirable since they are
sensitive to the gas pressure in the laser and can vary
significantly within the range of pressures conven-
tionally used.

In this section we use the foregoing theory to de-
termine the preferred conditions for measuring these
various atomic parameters by means of the magnetic
field tuned laser. Although the plots of mode intensity

TaBLE I. The “direction cosines’’ of (I1.34) evaluated for the = basis (1.18) and the x-y basis (I.17).

Si(3) i=+ - % y
k=41 (1/v2) (1+ cos ©) (1/v2) (1— cos ©) 1 —icos O
-1 (1/v2) (1— cos ©) (1/v2) (1+ cos ©) 1 icos O

0 (4/V2) sin © —(3/¥2) sin © 0 sin ©

27 G, Durand, IEEE J. Quantum Electron. QE-2, 448 (1966); Ann. Inst. Poincaré A4, 263 (1966).
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versus magnetic field depend on all the atomic param-
eters it is often possible to choose the operating con-
ditions so as to produce a distinct feature, such as a
dip or switch in mode of maximum intensity, which
depends principally on a single parameter. We will
discuss conditions for producing these distinct features.
Often it is possible to obtain the value of a parameter,
such as one of the 4’s, by a direct measurement of the
experimental curve. In general, however, it would be
necessary to carry out a least-squares fit of the data to
the theoretical curves to obtain the v values. For
purposes of illustration we will give examples from the
theory for a J=0<J=1 transition (in which the a
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Fic. 14. Intensities I,, I, versus cavity detuning in MHz for
transverse field of 20 G for (a) 01 and (b) 12 transitions,
respectively, and other parameters as in Fig. 12. The phase
angle terms occurring in the 1«2 calculation have been averaged
out.
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F16. 15. Mode intensities versus axial magnetic field for 160
MHz detuning and operation on a single resonator mode. The
traveling wave dip appears at H=0 and the standing wave dips
occur for a value of H (=88.25 G) at which the Zeeman splitting
equals the laser detuning. In Figs. 15-20 the solid line represents
total intensity, the dashed curve the plus polarization, and the
dash-dot curve the minus polarization. Other parameters are
the same as in Fig. 5.

level is identified with the J=1 state) and also for a
J=1<J =1 transition.

The pertinent features of the variations in mode
intensities as functions of applied magnetic field can be
divided into two basic classes, those which occur because
of a degeneracy of magnetic sublevels and those which
occur for a splitting of magnetic sublevels which is
equal to an integral multiple of the resonator mode
spacing.® Both classes of variation permit lifetime
measurements; however, the latter class also permits
g-value measurements. The variations due to sublevel
degeneracies will also permit g-value measurements in
the special case where level crossings® occur for non-
zero magnetic fields. Although these variations can be
associated with the phenomena of depolarization of
resonance radiation in the vicinity of magnetic sublevel
degeneracies (Hanle effect), the distinct features of the
variations depend on the nonlinear character of the
interaction, in particular, the saturation of the velocity
broadened gain curve and consequently are phenomena
unique to the laser.

The variation in mode intensity occurring at a
resonance generally appears as a “magnetic field
tuning” dip (see Fig. 5) or reduction in the total
intensity from the laser oscillator. As discussed in Sec.
I1I this dip results partially from competition between
waves traveling in opposite directions (standing wave
contribution) and partially from competition between
waves traveling in the same direction (traveling wave
contribution). For an axial field these two contribu-
tions can be easily resolved by detuning the oscillator
so that the resonator mode no longer coincides with the

2 The resonance actually occurs when the Zeeman splitting
equals the mode frequency difference »,—»_, which can differ
from an integral multiple of the passive resonator mode spacing
by several hundred kilocycles. This difference, caused by the dis-
persion of the medium, can amount to several parts in 1000 of

the mode spacing and is not negligible in g-value determinations.
» F. Bitter, Appl. Optics 1, 1 (1962).
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F16. 16. Mode intensities versus axial magnetic field for 160
MHz detuning and operation on two resonator modes spaced
by 1000 MHz. The features of the curve are similar to those in
Tig. 15. The horizontal scale has been expanded to exhibit more
clearly the crossover in mode intensities. Note also that the cross-
over occurs for a value of H (275.84 G) at which the Zeeman split-
ting equals the mode spacing. Other parameters are the same as
in Fig. 5.

center of the gain curve. For example, given a J =0
J=1 transition three dips appear as shown in Fig. 15.
The first dip on the left in the total intensity curve is a
standing wave dip caused by tuning the w_ gain curve
center through the cavity resonance. The second dip,
which would be present even in the absence of standing
waves, we will refer to as a traveling wave dip. It arises
because the Zeeman splitting resolves the velocity
classes with which oppositely polarized waves traveling
in the same direction interact. The third dip, on the
far right, is a standing wave dip caused by tuning of the
w; gain curve center through the cavity resonance.
In this case we have assumed that oscillation occurs
on only one mode of the resonator, and that this mode is
located 160 MHz to the high-frequency side of the
zero-field atomic resonance.

The resolution of these dips permits the extraction
of the parameters vy, and ve, separately since the
principal terms describing the traveling wave portion
of the dip are Lorentzians of width v, and the principal
terms contributing to the standing wave portion of the
dip are Lorentizians with width ~s. Provided
(Ya+75)/2=%a as given in (1.46) and the initial
detuning wo—ve>Vaw, Ve, the Lorentzians for the
traveling wave part of the dip have a width v,. Even
if v, and v, are not known this feature permits a direct
extraction of v,. Unfortunately v (va+vs) /2 except
in very low pressure lasers.**:*! However, this inequality
can be plausibly incorporated in the present theory
and useful measures of the ¥’s obtained by standard
curve-fitting techniques.

An accuracy of 109 in measuring the dip width
would provide a level lifetime value to an accuracy

% R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).
Collisions also cause the various multipole moments of the atomic
states to relax at different rates, introducing additional complica-

tions. Some of these are briefly described in the following paper.
31 A, Széke and A. Javan, Phys. Rev. 145, 137 (1966).
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competitive ~with existing lifetime measurement
methods.® An inspection of Fig. 15 shows that the
standing wave dips in the individual intensity curves
are more distinctive than the dips in the total intensity.

Consider the case where oscillation takes place on
two modes of the resonator and only one polarization
oscillates on each mode.* Resonances now occur for
nonzero values of the magnetic field when the Zeeman
splitting equals the mode frequency difference. For
example, for a mode frequency difference A, similar
curves to those shown in Figs. 5 and 15 are predicted,
with the central dip now occurring at H=7%A/upg..
This, of course, provides a measurement of g,. In this
case, a trace similar to that in Fig. 5 is obtained if the
modes are symmetrically positioned about the zero-
field atomic resonance, and a trace similar to that in
Fig. 15 is obtained if the center of the two resonator
modes is shifted to the high-frequency side of the zero-
field resonance by 160 MHz. The individual mode
intensities exhibit a crossover in intensities at H=
71A/upg.. The crossover is less sharp and the excursions
of the individual mode intensities are reduced from the
single-mode case. These effects are caused by modi-
fications in the N, and Ny terms (I1.59). Physically,
this reflects a decrease in mode competition due to the
spatial dependence of the mode phase relationships.
The distribution of the active medium within the
resonator also enters into these terms. The resulting
curves are shown in Fig. 16, where the horizontal scale
has been expanded to exhibit the crossover region more
clearly. The crossover position is insensitive to reson-
ator tuning and provides an attractive method for
making a precise determination of g,.

The precision of level lifetime and g-value measure-
ments is affected by a number of phenomena not
included in the simple theory of the Zeeman laser
given in Sec. IIL. Collisions, population differences
between magnetic sublevels, cavity anisotropies, or
misalignment of the magnetic field (see Sec. VII)
can shift the crossover or alter the dip making them
less useful. All of these effects, except collisions, are
handled by the general theory given above. Some
of the features of collisions can be approximated by a
simple model which treats vq as a pressure-dependent
parameter not equal to (ve+7vs)/2, allows v, and v,
to be pressure-dependent, and introduces a factor e®
to represent a shift and asymmetry in the atomic
interaction curve.® Using typical values for a collision
broadened line* one obtains traces very similar to those
already shown. Such a trace is shown in Fig. 17. The
main alteration is a broadening of the mode intensity
dips. The crossover in mode intensities at resonance
again occurs at H =hA/g,up; thus, in this approximation
collisions would not impair the usefulness of the cross-

2'W. R. Bennett, Jr., P. J. Kindlmann, and G. N. Mercer,
Appl. Opt. Suppl. 2, 34 (1965).

3 Such a condition can be easily satisfied if the mode spacing
and Zeeman splitting are comparable to or larger than the Doppler
width of the gain curve. (See Sec. 1V.)
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over as a means of g-value measurement. The lack of
dramatic change in the mode intensity curves is not
surprising since the principal features arise from a
competition between the two polarizations and marked
changes are more to be expected from effects, such as
population differences, which discriminate between the
gain available to the two polarizations. The collision
model described above does not so discriminate since it
introduces identical shifts, broadenings, and asym-
metries in both Zeeman split components of the gain
curve.

Alterations in the predicted mode intensity curves
caused by field misalignment are not dramatic until a
certain angle of misalignment (~10°) is reached at
which point the crossover disappears, and a marked
asymmetry appears as shown in Fig. 18. A small
misalignment (1°) produces a small shift (~0.04 G)
of the value of magnetic field at which the mode cross-
over occurs. If unrecognized this could lead to an error
of about one part in 7000 of the Zeeman splitting. It
would seem that this source of error could usually be
rendered negligible by exercising reasonable care in
field alignment.
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F16. 17. Mode intensities versus axial magnetic field for 160
MHz detuning and oscillation on separate resonator modes. Col-
lision effects have been introduced as described in the text. The
parameters are the same as Fig. 5, except that now vs=80.0
MHz, and ¢ (the asymmetry parameter) =0.03.

In the case where both upper and lower atomic
states have nonzero angular momenta it becomes
possible to measure the g value and lifetimes for the
two states @ and b. The curve features rapidly become
more complicated and the J values increase; however,
for a J=1eJ=1 case the level characteristics appear
in a simple way as shown in Fig. 19. The g values for
the upper and lower states, g,=1.295 and g,=0.999,
respectively, are sufficiently different to produce
resolved magnetic tuning dips. The upper and lower
level widths can be obtained from the two dip widths
and the magnetic field values at which the dip minima
occur provide a measure of the g values.

The precision of the g-values measurement appears
to be most seriously affected by Q differences for the
two circular polarizations or by population differences
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F1c. 18. Mode intensities versus axial magnetic field for 160
MHz detuning, operation on two resonator modes and a 10°
field misalignment. Note the absence of the mode intensity cross-
over. Other parameters are the same as in Fig. 5.

since these discriminate between the competing modes.
Q differences for the x-y polarizations cause mode
locking which is discussed under Sec. V. The effects of
Q differences for the +— polarizations are not easily
distinguishable from the effects of nonuniform magnetic
sublevel populations since both enter into the theory
in the same way. Limiting our discussion of nonuni-
formities here to the modifications of the intensity
curve produced by this kind of asymmetry, we show
in Fig. 20 plots of the mode intensities where a small
difference has been introduced in the level populations.
These differences produce large asymmetries in the
tuning curve and cause a shift of the crossover position.
In the case shown a population difference of one part
in 500 causes a change of 0.66 G in the field at which
the mode intensities switch or about one part in five
hundred of the Zeeman splitting, thus introducing a
potentially serious error in the g-value measurement.
The influence of this shift could be reduced by using
larger magnetic field values. Since the mode intensity
curves are reproduced every time the Zeeman splitting
becomes equal to an integral multiple of the mode
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F16. 19. Mode intensities versus axial magnetic field for 100
MHz detuning and operation on two resonator modes. J,=1,
Jo=1, ga=1.295, £,=0.999, 9=1.20, v,=18.0 MHz, v;,=40.0
MHz, v4=120.0 MHz and K%=1010.0 MHz. Note the separate
dips which occur for a Zeeman splitting of the upper state (H=
275.84 G) and of the lower state (H=357.53 G) equal to the
resonator mode spacing of 1000 MHz.



464 SARGENT,
3.2 T T T T T
24} -

5>
[
1]
& V6 —— —
s ~= -
< —-—-\~ ~ P e
\\\./'\\ ///4/
0.8} \\ /1./ i
\,
0 | | 1 1 1
252 260 268 276 284 292
H (GAUSS)

F16. 20. Mode intensities versus axial magnetic field for the
same parameters as Fig. 17, except that a small difference in
populations of the sublevels has been introduced by setting 9T,
for the plus polarization equal to 1.201 and 91 for the minus
polarization equal to 1.199.

spacing the computer analysis predicts, for example,
curves identical to those in Fig. 16, with the oscillation
on the n#th and (%+20)th modes of the resonator for
a magnetic field swept around 5517 G. In this case the
crossover shift would be reduced to 10~* of the Zeeman
splitting, rendering the g-value measurement cor-
respondingly more accurate.

To this point we have assumed that the homogeneity
of the magnetic field is not a problem. Since magnetic
field homogeneities of 1/10° over a 3 cc volume are not
difficult to obtain in commerical magnets the field
homogeneity would not be the most serious limitation
for high-gain lasers. For lower gain and hence longer
lasers the field homogeneity, especially for axial field
lasers, could prove to be a limiting factor.

By using transverse magnetic fields it would appear
possible to keep errors caused by magnetic field in-

GAIN —»

Fic. 21. This figure shows the relative position of the resonator
modes and maser gain regions for a transverse magnetic field
splitting equal to the mode spacing. It also shows the balance
between the gain (x—dashed curves, y—solid curve) and loss
(horizontal solid lines) parts of amiuzz [Eq. (60)] and anyy
[Eq. (61)]. The mode spacing, Zeeman splitting and Doppler
widths approximate the values used in the computer plots for
Figs. 22 and 23.
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homogeneities below one part in 10°) even for lasers
of moderate gain and hence longer active region. For
example, commercial magnets would provide adequate
homogeneity over the approximately 10-cm length
required for a laser oscillating on the 6328-A transition.

For the purpose of discussing g-value measurement
we have selected a case where the modes of different
polarization oscillate on different resonator modes and
only one polarization oscillates on each resonator
mode (see Fig. 21). Under these conditions the sym-
metry of the Zeeman splitting may permit both the
n—1 and n+1 resonator modes to oscillate as well as
the nth mode. Hence, to show competition between
orthogonally polarized modes oscillating on separate
resonator modes in a transverse field one must deal
with a three-mode problem. The analysis of this
three-mode problem was carried out by a computer
program which calculated all possible stationary
solutions and then examined each of these solutions for
stability as discussed in Sec. IV. In general it was
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F16. 22. Mode intensity versus transverse magnetic field for
zero detuning. J,=1, Jp=0, g,=1.3, 9,=0.02, N,=1.15 (for
the resolved Am= =1 component) v,=30.0 MHz, v,=60.0 MHz,
va»=100.0 MHz, and K»=420.0 MHz. In this case only the
x polarization (Am==1) oscillates.

found that only one stable solution exists. The abrupt
switch in mode intensities so characteristic of the axial
field case did not appear in the transverse field plots
run off for similar input parameters. If the losses for the
x and y polarizations are identical then the greater
gain available to the Az =0 transition tends to produce
single linear polarization oscillation with the polariza-
tion direction parallel to the magnetic field, i.e., along
y. However by introducing different losses (e.g., by
means of a tilted window) for the two polarizations as
indicated in Fig. 21 the y polarization can be sup-
pressed as shown in Fig. 22 or all three modes can be
made to oscillate, producing the plot shown in Fig. 23.
An unusual feature of the plot in Fig. 23 is the increase
in the intensity of the y polarization under central
tuning.
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In regard to g-value measurements for the transverse
field case, it appears that the intensity crossover
between modes of orthogonal polarization will not be
generally available. Hence, the dips shown in Figs.
22 and 23 would be the most straightforward means of
identifying the field at which the Zeeman splitting
equals the mode frequency difference. A crossover in
the modes having the x polarization is predicted;
however, this crossover would be more difficult to
observe in that the modes would have to be interfero-
metrically resolved.

To estimate the accuracy with which a g value
could be measured in the absence of a shift of the cross-
over, we use an experimentally obtained value for the
width of the magnetic tuning dip (13.8 G)2 for the
25s—2py (1.52-u) transition in neon and a value of the
magnetic field (8.23 kG) at which oscillation on other
lower gain neon transitions has already been demon-
strated.® An identification of the dip minimum or
intensity crossover to within one-tenth of the line-
width would predict g for the 2s, level to an accuracy of
one part in 6000.

The accuracy of these methods appears to be com-
petitive with existing techniques, but considerable care
would be required to approach the accuracies of 1/10°
and better with which precision double resonance?
and nuclear-magnetic-resonance measurements are
made.

A factor of some use is the dependence of the curve
features on J values which permits identification of
level J values, even for a case in which the Zeeman
splitting is"small compared to the Doppler width.®

#R. L. Fork and C. K. N. Patel, IEEE Trans. Commun.
Electron. 52, 208 (1964).

% W. J. Tomlinson, M. A. Pollack, and R. L. Fork, Appl. Phys.
Letters 11, 150 (1967).
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F16. 23. Same as Fig. 22 except that y loss has been reduced so
that 97, =1.44 91, =1.15 (for the resolved Am==1 components).
The plot shows total intensity (solid line), intensity in the »
polarization (short dashes), and intensity in the y polarization
(long dashes).

In addition the polarized character of the laser radi-
ation can be used to identify the presence of laser action
in that the polarization properties, as well as the
frequency width and spatial distribution, are distinctly
different from those of incoherent radiation.® In
summary, this theory yields useful information about
the presence of laser action, the level J values, and
provides a convenient method for measuring lifetimes
and g values which may not be easily accessible by
other methods.%

(1:6§¢))r example, see C. V. Heer, Phys. Rev. Letters 17, 774

# Another theoretical treatment has been given by H. R.
Schlossberg and A. Javan, Phys. Rev. 150, 267 (1966). Recent
experiments have been performed which support the conclusions
given here. See, for example, J. Kannelaud and W. Culshaw,
Appl. Phys. Letters 9, 120 (1966); H. R. Schlossberg and A.
Javan, Phys. Rev. Letters 17, 1242 (1966).



