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Theory of a Zeeman Laser. I*
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A theory of a laser subject to a uniform dc magnetic Geld at any angle to the maser axis is
given in extension of a non-Zeeman treatment by Lamb. The electromagnetic GeM is treated classically for
a general state of polarization in a cavity with any desired degree of cavity anisotropy. The active medium
consists of thermally moving atoms of varying isotopic abundance which have two electronic states with
arbitrary angular momenta and may have hyperGne structure. The self-consistency requirement that a
quasistationary Geld should be sustained by the induced polarization leads to equations which determine
the amplitudes and frequencies of multimode oscillation as functions of the laser parameters. A set of
computer programs has been written which covers the theory very generally, yielding among other things
graphs of intensities and beat frequencies versus time, cavity detuning, or magnetic Geld strength,

L INTRODUCTION
" "N a recent paper, ' a multimode theory of an optical

maser (henceforth referred to as the scalar theory)
was given in which the electromagnetic 6eld was
assumed to be classical2 and plane-polarized, and the
effects of atomic degeneracy were ignored. In the
present paper, we extend the results of that theory to
deal with general states of electric field polarization
and cavity frequency and loss anisotropy, a dc mag-
netic field at arbitrary angles to the maser axis, and an
active medium consisting of atoms having two elec-
tronic states each of which may have arbitrary angular
momenta and hyperfine structure (hfs). We character-
ize the isotopes in the mediuxn by their fractional
abundances and atomic-line centers. Our discussion is
aimed speci6cally, but not inevitably, at the weak-field
Zeeman effect (P is assumed to be a good quantum
number). Pressure effects and spontaneous emission
from the upper to lower maser levels are neglected' in
this paper.
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Mexico City, August, 1966. See M. Sargent III, Bull. Am. Phys.
Soc. 11, 714 (1966). This paper is based in part on material
submitted by Murray Sargent III, in partial fulGllment of the
requirements for the degree of Doctor of Philosophy at Yale
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' W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).
~A fully quantum-mechanical generalization of this theory

has been given. See M. Scully, W. E.Lamb, Jr. and M. J.Stephen,
in Physics of QNantlm Electronics, edited by P. L. Kelley, B.Lax,
and P. E. Tannenwald (McGraw-Hill Book Company, Inc. ,
New York, 1966), p. 759; M. Scully and W. E. Lamb, Jr., Phys
Rev. Letters 16, 853 (1966). However, the semiclassical theory
of Ref. 1 is adequate for our purposes.'It is hoped to modify this theory to include pressure effects
along the lines of a paper by B.L. GyorEy and W. E. Lamb, Jr.
(to be published). A nonrigorous method of including some of
these eBects in the present theory is given in Sec. VIII of paper II,
Ref. 5.

IL ELECTROMAGNETIC FIELD EQUATIONS

Ke write Maxwell's equations in mks units as

where

div D=0,

div B=O,

curl E= —c)B/Bf,

curl H =J+r)D/Bt,

D =esE+P, B=psH. (2)

Here P is the polarization and J is the current density.
The vector P will be used to describe the induced
atomic polarization of the active medium. It is desirable
to provide for different cavity resonant frequencies for
linearly polarized radiation along orthogonal Cartesian
axes. transverse to the maser axis. This may be accom-
plished using a real symmetric second-rank suscepti-
bility tensor g, . It is also desirable to provide for

See Appendix B. The authors are very grateful to B. L.
GyorKy, who demonstrated how to do integrals of a similar form.
See B. L. Gyorffy, thesis, Yale University, 1965 (unpublished)
and B. L. GyorEy and W. E. Lamb, Jr., Phys. Rev. (to be pub-
lished).' M. Sargent III, W. E. Lamb, Jr., and R. L. Fork, following
paper, Phys. Rev. 164, 450 (1967).' W. J. Tomlinson and R. L. Pork, this issue, Phys. Rev. 164,
466 (1967).
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The calculation divers from that of the scalar theory,
notably in that the time integrations involve an aver-
aged density matrix with many elements instead of a
pure case with four, and the constitutive relation for
the fictitious conductivity is tensorial. It difI'ers, more-
over, in that the third-order integrals are evaluated
exactly' and the form of the amplitude and frequency
equations is computer-program-oriented. The coefII-
cients appearing in the laser equations are so compli-
cated that we prefer to leave them in complex form
rather than in the real forms used in the scalar theory.
These coefficients may be evaluated numerically in a
completely general fashion. Explicit theoretical and
experimental discussions of the laser equations for
various special cases are given in paper II' and another
paper, ' respectively.
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circular birefringence such as could be produced by a
Faraday rotator. Accordingly, we introduce a real anti-
symmetric second-rank tensor g, which has the dimen-
sions of a susceptibility. Combining these effects, one
has the cavity polarization vector

P" '=Lg. —v 'g (8/Bt)7 E. (3)

It will be preferable to allow for different effective
cavity lengths along the desired component directions
of the electric field in its explicit » dependence Lsee
Eq. (7)7. This then requires that the diagonal elements
of g, are zero. Corresponding cavity losses may be
introduced by using the loss current density vector

J&"'@=Llt —v
—'lt, (8/Bt) 7 E (4)

where d, is a real symmetric conductivity tensor and
0, is a real antisymmetric tensor with dimensions of a
conductivity. Using the fact that a current density is
equivalent to the time rate of change of a polarization,
(3) and (4) may be combined to give the current
density

J=Lrt' —v 'll"(8/Bt)7 E, (5)

in which lt'=o, +vg, and d"=lt, —vg, . The second-rank
tensors d' and d" are real and have in general no
symmetry properties.

The wave equation for the electric Geld becomes

curl curl E+tls/rt' v'rl" —(8/Bt) 7

XBE/Bt+poes82E/BP = tls82P/—Bts (6).
Neglecting the small transverse spatial variation of
the field, one may replace the curl curl E by i}2E/B—»2,

where the s coordinate lies along the maser axis. The
Geld may then be expanded in the form

E(s, t) =-,'gg{e,E„;(t)i1n
X eXpL —i(v„,t+»1„;(t))7+ C.C.}U„,(»), (7)

where the e; are any two (possibly complex) orthogonal
unit vectors in the x-y plane, the amplitudes E„;(t)
and phases 22„,(t) are real, slowly varying functions of
time, and U„,(») are the real eigenfunctions correspond-
ing to the nth longitudinal normal mode (Fox and Li's
TEMss ) for e;. We will use U„,(») = sinK„;» in this
paper. The polarization P (»,t) may similarly be
written in the form

P(», t) =-Zg{e.6'-(t)
i 1 n

x exp{ —i(v„;t+»1„;(t))7+ c.c.}U„;(»), (8)

where (P„;(t) is a complex slowly varying function of
time which will be referred to as a complex polariza-
tion. Various choices of the basis {el, es} will be used
after the general self-consistency equations (12) and
(13) are derived. It is convenient to introduce here
the standard set of Cartesian axes {i, j, jr} todescribe

MAGNETIC

F IELD AXIS

ASER AXIS

FIG. 1. The basis of mutually orthogonal unit vectors {i, j, k}
is chosen to describe the position of the laser such that k is
parallel to and i and j perpendicular to the laser axis. A similar
basis of mutually orthogonal unit vectors {i, j', k' } is chosen to
describe the magnetic field such that k' is parallel to and i and j'
perpendicular to this field. Without loss of generality, the unit
vector i is chosen to be the same for both bases. The bases'are
referred to as the maser and atomic bases, respectively. The
angle 8=cos '(k' k).

the laser and {i, j', k'} to describe the magnetic field
as depicted in Fig. 1.

To obtain the self-consistency equations, one now
substitutes (7) and (8) into (6), projects the result
onto the unit vectors e;, and then onto the Fox-Li
mode U„;(»), neglecting terms containing dsE„~/dP,
j„;,o';;j„;,o';; E„,', and j„Q„,. In so doing it is con-
venient to use the expressions for E and P without
carrying along the complex conjugates. This procedure
is easily validated provided that the equations are
linear and real. In our equations neither condition is
satisfied in general. However, dropping the complex
conjugates amounts to equating the coefGcient of the
positive frequency term exp( —ivt) to zero separately
from that of the negative frequency term expivII, and
to making the rotating-wave approximation in the
derivation of P. In these approximations one finds
that 8/Bt in Eq. (6) simply yields the multiplicative
factor —zv. Thus the conductivity tensor in the consti-
tutive relation (5) for J has the matrix representation

0 nil

1I
O n21+20' esl

'.u+ ".u)
!

0 n22

in the basis {el, es},where we have indicated a possible
n dependence of o.. It is convenient to define the
anisotropy matrix

(gnll gn12 }

(gn21 gn22)

(K„,—K„O
= (esv)-'~„+i(2c/v)! !, (10)

O K„, K„)—
where K„=nrr/L, and L is the length of the cavity.
In a representation in which G„ is diagonal, the Re (g,,)
are the reciprocals of the cavity Q's and —,'v Im(g„;,)
are frequency displacements of the ith polarization
from the nonbirefringent cavity frequency Q„=nrrc/L.
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= —
p (v/«) iP-, (11)

where P„,,'=v„,t+p„; v„, t —y„; —are relative phase
angles. Equating the real and imaginary parts sepa-
rately to zero, one has the self-consistency equations

2

E„;+-',vg Irn(ig„, ; exp'„;, ) E„, = ——', (v/«) ImtP„, ,

2

(v„;+j „; Q„)E„,+—ipv Q Re(ig„;;. expiP„;,' )E„;

(12a)

= —-', (v/«) Re(P„;. (13a)

For typographical simplicity we adopt the convention
that boldface subscripts index both polarizations for
each spatial Fourier mode. Specifically in (12a) and

(13a) we replace the subscripts Ni by n and rii' by n'.
In this notation we have

E„+', vg Im(ig„-~ exp/, „.)E„=—-', (v/«) Im(P,

(12b)

Carrying out the substitutions indicated, noting that

(v„,+j„;)'—Q„' 2v(v„;+j„;—Q„),

and multiplying through by

—(2v) 'expL i(—v„,t+pp„;) 1,

one finds for the component equation

(vni+itini Qn) Eni+z[Eni+ pvggnii'(expiPnii'Eni') j

The ~ basis is particu4. rly convenient when. the
magnetic field is di,rected along the maser axis, for
electric-dipole transitions in which the imagnetic

quantum number changes by ~1 contribute to E„+,
respectively (changes of 0 are not allowed). This one-
to-one correspondence simplifies the laser equations
considerably. A similar correspondence occurs for a
transverse magnetic field in the x-y representation,
for here magnetic quantum number changes of ~i
correspond to E„, and those of 0 to E„„(xis chosen
perpendicular to the magnetic field, y parallel —see

Fig. 1) . One might like to consider a magnetic field at
some arbitrary angle to the maser axis as a super-
position of two fields, one axial and one transverse,
and treat each in its favored representation. Unfortu-

nately, the nonlinear character of the polarization
prevents one from transforming the maser equations
from one basis to another in any simple fashion and
the polarization for the arbitrarily oriented field is best
calculated using one representation consistently.

The situation is simpler in the case of the cavity
anisotropies, for they enter the laser equations linearly.
Thus if G is diagonal in one representation, one may
carry out a similarity transformation to find it in any
other, and then use (12) and (13) to find the self-

consistency equations. In particular, if G is diagonal
in the x-y basis and the magnetic field is axial, one

may transform G to the + basis and thereby simplify
the polarization calculation (and the ultimate laser
equations) . The transformed G matrix G' = SGS ',
where the unitary matrix S is the composite of the &
unit vectors written in row-vector form in the x-y basis

(v„+j —Q„)E„+-',vQ Re(ig„„.exp'„„.) E„.
2-a

= —-', (v/«) Re(P . (13b)

S=W2
i

1 —z

where

E„y', (v/g„)-E„p(v/=«—) Im(P„,

(v„+j„Q)E„=——,'(v—/«) Re(P,

(14)

(13)

If one chooses a set of unit vectors for which the

anisotropy matrix is diagonal (g» ——g» =0), these equa-
tions reduce to

(gnn+ gny

gns gny

gnn gny l

gnn+gnyP

Thus, in the circularly-polarized basis, G becomes

(1 i) (g„, 0~ (1

l1 -') l0

(20)

Q„=Q„+-',v Im(g„„) . (16)

In particular, if the losses are independent of polariza-
tion, (14) and (15) describe the amplitudes and fre-

quencies for any set of orthogonal unit vectors.
Two bases are useful in formulating the present

problem: the x-y basis for which

e2=3&

and the & (circularly polarized) basis for which

ei ——y. =2 't'(i+ij),

e& e+ 2-' '(——itij——) . —

where g„and g„„are the diagonal elements of G.
On the other hand, if G is diagonal in the circularly

polarized basis, it has the form in the x-y basis Lthe
transformation matrix is the conjugate transpose of

( gn++gn
'

l-'(g" —g. )

&(gn+ gn —) l

gny+gn

(21)

where g„+ are the diagonal elements of G.
If one should choose the x-y basis at some angle with

respect to the axes which diagonalize the anisotropy
matrix, the x and y fields will be mixed. As above, one
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may find the form of the anisotropy matrix by carrying
out a similarity transformation, this time with the
orthogonal matrix

t'cos8 —sin8)
s=l (22)

(sin8 cos8)

where 0 is the angle of rotation between the chosen
axes {it, jtI and those that diagonalize G, {i, jI. The
transformed 6 is

Z=1
Q

Fc'/, " a'
1/)

1/2

-/g

( g„,t cos'8+g„„t sin'8
G'=

I

(—', (g„,t —g„„t) sin8 cos8

—',(g,t —g„„t) sin8cos8
r

g„,t sin'8+g„„t cos'8 )
(23)

where j runs over all isotopes present. For the sake of
simplicity, we assume the magnetic field does not break
down the coupling between I; and J. If it is desired to
consider operations in other regions, one may include a
matrix diagonalization or use the Paschen-Back limit
in the following.

A basis for a matrix representation consists of the
set of eigenvectors

I nI;JFm), (25)

where'=m„eq, F=I,+I,, ~ ~ ~,
I
I —I, I

for I I„F=
Is+I;, ~ ~,

I
Jq I; I

for I=A, —and m runs over the
corresponding sublevels. For typographical simplicity,
we have not subscripted F and m with the isotopic
index j and will refrain from so subscripting the reso-
nant frequencies and atomic decay constants (49) and
line strengths (31) as well. We assume the decay
operator I' (introduced phenomenologically to describe
the radiative decay of the atomic levels) is diagonal in
this basis with the elements I' =y . The Hamiltonian
Lf('. has the diagonal elements

&W(a', j) =&V(F.,j)+p&Hgra' (26)

where g„,) and g„„) are the diagonal elements of G.
The most general relationships between any two sets
orthogonal unit vectors is given in Appendix A.

III. POLARIZATION OF THE MEDIUM

The maser action takes place between two atomic
levels a and b (see Fig. 2) which are separated by an
electric-dipole transition and are characterized by the
total angular rnomenta J, and Jg and other quantum
numbers n and n&, respectively. The jth isotope of the
active rnediurn has nuclear spin I,, average s component
of velocity I;, and fractional abundance u; for which

ga, = 1, (24)

b J-O,
b-/g

FIG. 2. Possible level diagram showing how' the levels a and b
of the active medium might be split by hyperfine structure and
magnetic field. The nuclear spin of the jth isotope is I; (here, q),
the total angular momenta are J (here, 1) and Jb(=0), respec-
tively; a' and a// are magnetic quantum numbers for sublevels of
a, while b' and b" are those for b; oro is a zero magnetic field optical
frequency between an F level of a and one of b, and co, & is a
frequency between a sublevel of a and one of b. Associated with
level a (b), are the g values go (gq) (one for each F value).

r =xi+yj'+sk'. (28)

For the purpose of calculating matrix elements, r is
most conveniently written in the form

r=-', r»n8L(i —ij') expip+(i+ij') exp ip]+r cos8k'—,

(29)

where 8 and q are the polar and aximuthal angles of r
with respect to the atomic axes {i,j', k'}.Substituting
(29) into (27), one has

SV..|,.= —P,q,.LE (i ij')8, t, +p—

+E (i+ij')8, v g+E k'8...pj, (30)

where the electric dipole matrix elements P,q, are
given by

and similar elements with u replaced by b, where u' is
a magnetic quantum number for a sublevel of u,
SW(F„j) is the zero-6eld energy of the F, level for
the jth isotope, g& is the Lande g factor for this Ii, B is
the magnetic field strength, and p~ is the Bohr mag-
neton. The oG-diagonal elements of the Hamiltonian
fi, V, ~ are the matrix elements of the time-dependent
perturbation energy

SV s = —(rl,,I,J,F,a'
I
eE r

I rig, JP~b') (27)

associated with the optical-frequency electric field.
Here e is the charge of the electron, and the position
vector r expressed in the atomic basis (cf. Fig. 1) is

P b = (F,a I
—,er sin8 expP+iyg I

Fqb ),

=(F a'
I

er cos8 IF&b'),

=0,

u'=b'+1, F =Fg+1, 0

u'=b', Z =Z&W&, 0

otherwise (31)
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with the explicit values'

P"o =~ s P[(Fo~&') (Fo+&'+&)7"
P (Fos gis) i/s

= s P[(F.~~') (F.+o'+ ~)7"

=+sP[(F.+&') (F.+&'+ &)7'"

gf yf~ y

g/ gf

a'=b'~1
u'=b'

u'=b'~1
—P(F 2 +2)1/2 F,=Fs+1,

and P is the reduced matrix element (e,F
~ (

er
) ~

rroFo). Substituting (7) into (30), one has

V, o = sP—, b 5 'QU»(s)E»

(32)

X g 3. ,o,oI f,(P„) exp[ s(& 't+o ) 7+f-o(P») * exp[+&(&»'t+o»')7I
q=1

Vo. =V. s*, (33)

where p„ indexes the two polarizations of p', q is /r' f/', —
and the "direction cosines" f, (p„) are given by

f i(p„) =e(p„) ~ (i+s3'), f,(p„) =e(p„) lr'. (34)

The equation of motion for a density matrix

p( j, n, zo, to, v, t)

describing the pure case in which an atom of the jth
isotope is excited to the eigenstate ix, i.e., ~

eFm) at
place 20, time to, and with s component of velocity e, is

p( j, a, so, to, v, t) = —i[3('., p7 —-', [I'p+pl'7, (35)

where MC is the Hamiltonian. The average electric-

dipole moment y described by this density matrix is

p= spur(per). (36)

The macroscopic polarization P (s, t) is contributed

to by all atoms of the medium which arrive at s at
time t regardless of j, n, so, to, and v. Assuming that the

excitation mechanism always excites an atom to an

eigenstate n, one has

t

P(s, t) =Pa P dto dzo dvh ( j, so, to, v)
j a —oo

X spur(per) &[s—zo —v(t —to) 7, (37)

where &,( j, s, , t,, v) is the number of atoms of isotope j
excited to the state n per unit time per unit volume.

Qne can proceed as in the scalar theory' to integrate

the equations of motion for the pure case through third

order and then to average over so, to, 0., and v. It is

simpler, however, to capitalize on the fact that the

effective Hamiltonian LK', does not depend' on so, to

and n by averaging the pure case matrix over these

variables before the integration of the equations of

motion. We define the population matrix p( j, s, v, t, t, )

by

p(j, z, v, t, t)

dto dso4( j, so, to, v) p( j, n, so, to, v, t)

X&[z so v(t —t,) 7— (—38).
Here j, s, e, and t label an ensemble of atoms of isotope j
with velocity u and the property that at time t the
ensemble is at position 2. The time dependence of

p( j, s, v, t, t) is given by t which does not necessarily
equal t. To 6nd its diGerential equation of motion, we
differentiate with respect to t;

dp/dt='A++ dto dso)i,p(ju, so,, to, v, t)

Xb[z—zo —v(t —to) 7. (39)

Here P is the excitation operator with elements 'A

which we assume are slowly varying. Substituting (35)
for p( j, rr, so, to v, t), evaluating )i (j, so, to, v) at to t-—
and exchanging the order of the Hamiltonian operator
and integrations, one has

dp( j, s, v, t, t)/dt = s[se, p( j,—s, v, t, t) 7
—-', [l'p( j, s, v, t, t)+pl'7+X( j, z, v, t). (40)

The nth spatial Fourier component F (t) of the
macroscopic polarization P(s, t) is given by

L
F (t) =2K 'ga; dz sinK z

X dv spur[p( j, s, v, t, t) ee(i) r7, (41)

7 E, U. Condon and Q, H. Shortley, The Theory of Atomic Spectra, (Cambridge University Press, New York, 1935},p. 63. If more

than one pair of Il values is involved, one has to include additional Clebsch-Gordon coeScients as given on p. 69 of this reference.
8 Because p, p, and d are not available as subscripts, we use p', p', and 0' instead.
o What is requ&red is V(t') = —(p/ti) Epsom(t t') p, which does n—ot depend on to See Ref. 1, p. sge A1432, Eqs. (33) snd (34).
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in which we have taken t= t. Dedning
I

p,q... (t) =21. I+a-; d» sinE»
0

f ~

pblib1 = (IIllbllbl+Vbllbl}pbrlbl

+i+(lfallblpbllgll I bllallparlbl)+}lbl$blbll (47)

(48)Pglgl P~lbl

dv p.q, (j, », I, t, t) (42)

bg =W(n, j)—W(n', j),
+'4' '—If (Ii-) +~b' ' fb(i)]+ C'C' (43}

Extracting the factor exp[ i(—l,t+q„)] as indicated
in (8), one has

v- =»(v.+v. ),

Equations (45}-(48) may be integrated to any
desired order in the perturbation V b by the iterative
procedure used in the scalar theory. ' Using (46) and
(4/), one has in zeroth order

a

(P, (t) =ggp. q; e pxi( It+b.}Pb;gfb(i)'f".b+b
a/ b

(44}

where the dot indicates differentiation with respect
Rnd llslllg (34) ollc has 'thc explicit form for p (t): to t II Rlld b Rlc Illagllctlc qua11'tulll numbers fol

sublevels of u and b, respectively, and
+n t =»~~pa'b', nlrb'a' '4', 'a+I +I

b/

IV. INTEGRATION OF THE EQUATIONS OF
MOTION

The matrix equation of motion for p( j, », s, t, t) has
coIDponents

a / a

pa'b' =
\, &big'b'+, Va'b') Pa'b'

p I&( j, », », t, t) =}I dt' exp[ —V (t—t')]

=X dr' exp( —v„r')
0

(50}t 'F F
tt I Ib rPrssrt/ I $~ I/ ts Ib I 1PbI Ib I (45)

/ ~

p. .-= —(~..-+v"--)p."-
+i+(p'b„gl, p, ,b„—Ifglbllpbll;. )+}l,lbglg", (46}

b/f

~he~e ~'=t —t'. Here the t' integration extends froln
the earliest initial time —oo to the time t, whereas in
the scalar theory it extended from to to t.

Using (45} and (50), one has for the first-order
contribution to p, b

p, .b &'I( j, », », t, t) =i dt' exP[—(inIg b+v b ) (t t')]LPg'a' —Pb'b""], I "b (t')

=iWj{S)galbl(»& t) dr Vglbl{t ) exp[ —(Zblglbl+Vglbl)r ])

where we have taken the excitation rate densities to have the form }1 =W, (»)A (», t) and where

/f. b (», t) =A. (», t) v. -'—&b (», t) vb
'

are the unsaturated population inversion densities for the magnetic sublevels g' and b'.
Using (46), (47), and (51), one has for the second-order components p, .,"&@ and pb„b, 1bI.

P. ,"&'&(j, », II, t, t)

{51)

dr CXP[ ($bpglgll+Vglgll)r ]g[Pbllg l(t )Palbll (J» 'P t t ) Ilalbll(t ) Pbblabl (J» II t
'

t )]
0 bf/

Wt(s) dr dr exp[ ('gIllglgll+vglgll) r ]Q I I/bllgll (t )Qglbll {» t) llglbll (t } CXp[ (III lbll+lvglbll} ra
0 0 bf/

I/albll(t )/I/bllgll (» t) @/Ilail (t ) CXp[ (bblbllgll+Vbllall)r ]}) (53)
where r"=t' —t" and

pb b 1@(j, », s, t, t) = —W;(»} dr' dr" exp[—(/4'-b. +Vb..b, }r']
0 0

Xp j Ifallbl (t }/fbrlgsl (»& t) pbllall (t ) exp[—($Cgbblall+Vbllgll) r

—I'-" (t')&" (», t) I/. (t") c p[—(i "b+v.-b) "]I.
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Combining (45) with (53) and (54), one has the third-order components

A

p, b "'(j, z, v, t, t) =i dr' exp[ —(i~, b +y, b. )r'][+V; b (t') p, , "'(j, z, z, t, t') —PU b ~ (t') pb"b. o'( j, z, v, t, t') ]
0 o// g//

= —iW, (v) dr' dr" dr'" exp[—(i(u, .b.+y. b)r']QQ(V, -b. (t')
0 0 0 g//. $//

X exp[ —(i&a;; +y, ,")r"]{Vb","(t")E,b. (», t) exp[ —(i&a,.b. +y, b..)r'"]

X V~ b" (t"') —V, b" (t")1Vb,"(z, t) exp[ —(is», +pb, )r"']Vb"."(t'") I

V b .(t') exp[ —(i~b b +rb b )r"]{V, b (t")Xb","(z, t)

X exp[ —(i~b" "+pb" ' )'r ]Vb ' ~ (t"') —Vb, (t")iV;.b. (z, t)

X exp[ —(i~+rlbi+p+lib~) r ]V+rlbi (t ) })
where ~"'=t"—t'".

(55'I

V. FIRST-ORDER THEORY

Except for the summations over magnetic sublevels and the use of the population matrix p( j, », z, t, t), the
perturbation calculation proceeds exactly as in the scalar theory and we shall omit most of the details common to
both. Combining (33), (44), (51), setting t=t, and assuming Maxwellian velocity distributions" W;(v) =
(u,z't') ' exp[ —(z/u, ) '], one has for the complex polarization (44)

tp."'=—(/bE) 'g(&tlute) gZ(P"b )'Zfb(i)*&",b+bZ&' exp'"'

where the relative phase angle

the plasma dispersion function

X g fq(Pv) ~a', b'+@+a'b'(n v')+[V—a'b'+'b(&s'b' vv') ]~ (56)
@~1

4'nv' = (vn vv') t+pn pv'~

Z(u) =iEu; dr exp[ —Ur —-',E' )'ur'],
0

and the spatial Fourier components of the population inversion density

We will often use the notation

E;b ~„„&(t)=L ' d»$, b. (z, t) cos(E„—E„)z.
0

Is

Ã..b —=1V. b (p) (t) =L 'd»$. b (z, -t) .
0

(59)

(59')

Using 8,.p+~ to do the sum over q and interchanging the sum over p' with the summations over u' and b', one has

(P„"'=—(t'bE) 'QE„(exp'„„.) g(at/ut) p f (i) bf (p„)bg+Lb+ (p bb ) , Ng b ( v )Z[y. b +i(cu, b v„)]. —

(60)

Neglecting terms with rapidly varying phase angles and using the self-consistency equations (12) and (13),
one has

E„=g Im(n ~ exp'„„)E„,
i/

v„+j =0„+gRe(n„„expig )E„E„-',

'0 A diferent velocity distribution will result in a function other than the plasma dispersion function. A substitution can be made in

the final answers if desired.



~- = —p&vg- +0 (v/«&K) Z ((bi/&i) Z fb (&) fb(&') Qg~n, b+b(P"b ) 'N"b (-= )Z[v"b +b(~. b
—v. )]. (63)

j ))(, 1 gl bl

"A

+a'b'(n —n') =lY LJa', b'(n —n') p

For zero magnetic field and any value of cavity tuning, this equation may be used to determine the minimum
values of the population inversions S, b („„)for which oscillations can occur. The problem is simplified if we
assume that Ã, b („„)has the form

v here A measures the level of excitation and the distribution D,. b („„)is independent of excitation level and has
th.o same form as N, b („„.) of (59) . Then as A is increased from zero, it will reach a value N(Q„) at which oscil-
lations just begin. The minimum value of N(Q„) as 0„is varied will be denoted by Nr, corresponding to threshold.
In the scalar theory, Az was the excitation required for threshold oscillations when the cavity frequency Q„was
tuned to the peak (0 of the atomic resonance curve (central tuning). Here with a number of isotopes, Nr will

correspond to some less obvious tuning which can be evaluated numerically.
In general, the threshold oscillations will have a polarization specified by the unit vector e i (not necessarily

equal to ei) which maximizes the imaginary part of n'nn, the n coefFicient corresponding to e'i. The relations
between this unit vector and the chosen basis I ei, epI are given in Appendix A along with the inaximization pro-
cedure. Identifying the mode with polarization e i by the subscript h (highest Q), the starting condition is

Combining this with (63), one has
IITl 0!gh =0. (65)

«ghh=(««) 'Z(~illa')Z Ifb(Pb) I'QZ~", b+bN(fl. )D. ,b(0)(p. b') ~'[7'b'+&(~o' vh)],
gl bl

(66)

where oro, is the frequency at line center in zero magnetic field of the jth isotope.
It is useful to use the starting condition (66) to express n„„(and other coeflicients which will appear later)

in terms of the ratio
X=N/Nr, (67}

called the "relative excitation. " Eliminating the factor («lbK) ' in (63) and using (66) and (67), one has

p;((b, /ib;) pbfb(b) *fb(z') g. Qb. ().. b, b(pn. b.)'D.. b. (n n.)&[v.,b +(((p.,b v„, )]-
ann' 0 bVgn' n+pV Re ghh

p(~i/~i) p Ifb(Pb) I'+pion', b'+b(Pn'b') Dn'. b'(0)z([Tn'b+&(~pi vht)]
bl

(68)

where vh& is the oscillation frequency corresponding to A r. Other coefF)cients (8„„v,) which will appear shortly
can similarly be expressed in terms of X.

VI. HIGHER-ORDER TERMS

In evaluating higher-order terms, it is worth noting that only the positive-frequency terms of V,.b. given by (33)
lead to resonant contributions to the density-matrix elements. That this is true is immediately revealed by formal
integrations of (45), (46), and (47) . Similarly, only the negative-frequency terms of Vb, lead to resonant contri-
butions to the density-matrix elements. Remembering these simplifications, we substitute appropriate terms of
the form (33) and its complex conjugate into (53), interchange the dummy summation indices )b and p' in the
terms resulting from the second term of (53), and find

)p... (0)( j, s, (), t) = ——(')[u, (ger)fbp] 'Iexp[ —(()/u, )']IgggE„E, (expire„, .)
bll pl pl

where

&«os[(K.—K')s]P" b-P"b- Zfp(P. )*~" . - bZ+fp(P. )~",b-+.&(~-"- v;+vv )—q=l

X I Nn'0" 0 ((pa'b" vp' Kp) "Nba) ((pb n +vn —K()) +Nn'b" S ((|)g,'b vv +K'V)

Nb, J3(p)b"; +v„+—Kv) I,

S((p ~ —v) =[y +i((d v)] '— (69)

(70)
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TA@I.K I. This table de6nes the ¹„in I,'74) in terms of variables like N~q ( „),which is dered by (59).The simpler forms of the
¹

obtain if g =g because the only combinations of the mode indices p, p, 0, and e corresponding to significant contributions to the
amplitude- and frequency-determining equations are those for which I=I/, —p+cr. Other combinations correspond to rapidly varying
contributions /see Eris. (72), (81.), angi (82) g which average to zero in tigne. For reasons given in Sec. II oi paper II (Ref. 5), the
simpler forms obtain for arbitrary birefringence when the magnetic Geld is axial.

+a'5"(n-p'-p'+gr') =+a'&"22(&'-p')
W

Qf t Fatt(n pt+pt~t) =+f2«att

Qgt tat t(rl ~t+pt ~t) gfIttatt

jurat tg t(n+p t pt gtt) +at t72t Q(pt pg)

+a'ft" (n-/s'+p'-a') satb"

gf ttatt(n «t pt+ t) ggttatt 2(~F pt)

+72ttatt(n+pt pt t/t) gftttatt gtgt pt}

+attest(n pt+pt~t) gattgt

jfatgtt(n+p t pt~ IF) gatftt t Q(fggt pt)

Qpt tat t (rl+pt pt ~t) +7tt tat t 2@t pt)

Qgttatt(rl pt pt+gtt} ggttatt 2(grt pt)

gattf2t{n pt pt+ttt) gattfgt g2(grt pt)

t//+2 11+ /

Integrating over velocity and exchanging the sums over p,
' and p' with the sum over b", one has

p. . "'(j, s, i) =-'(&'&~ ) 'ZZ~'E. (cuter" ) cosU&' —~&")slpft(p, )*gf (p») Z~" .2-+g",2-+.
q=l r=3 Q//

)(P+Iisifg/tteig~ Q(ogggiggr~ —p&F+ptt) PT+lgtI$Z(ggggglys —ptt) +Qggiqg~s2Z(ogyIg Ig+p&i) j, (71)

Ollc call Ob'talll slrnlial' cxpl'csslolls fol' py~b~@ llslllg (54) 111 place of {53).
To find the third-order colnpiex polarization (PJ2I(t), we substitute appropriate variants of V, 2 as given by

(33) into Eq. (55). In so doing, Increased compactness results from using the dulnmy summation indices F2', p',
and gr' in V,„,, V,-.-, and V, b", respectively, because the reiative phase angles gp„„,. all have the same form:

0'gggg't'gg' = (Pgg Pgg'+Pt' Pg') i+Pa gFggg'+Pt' gggg' ~ {72)

~e then interchange summations over magnetic subleve»nd~ces a', b', ~", and b" with those over mode indices

ig & p, alld gr and pl'0)cct 011 thc nth mode U„(s). Uslllg (44), wc fiIld

6'-"'(i) =4(&'&) 'ZZZ~'E'&" (expgkp t ")Z(ggg/Ng) Zfa(2)*gf, (p ) gf, (p )*gf (p )

XQQQQ~;span", 2+2, »-;- .~",2-+2 p»" p; s p. b (gtg;2 Q QTg,
t=l ttg=l

y,„=sZN;E,~ dr/ d~" d~'" exp —vg~/ v~~// v]~~/// -*, Eu) 'x„2 (74)
0 0 0

and where /&~ and g„are QC6ned in TR41e I and v@ In Table II.71' Tg~ Inay bc coIlvcnicnt1y cvaluated4 jn terms
Of thc p&asma dispersion function Z{v) defined by (58):

&gl =C&gl/Ug2XZ(Ugl)+Z(Ugs) 3/(Ugt+Ugs) (75)

(76)7 gs LEgs/Ug2XZ(Ugl) Z(Ugs) j/(Vgl Ugs) g

~gs Z(vg. ) -Z(2Ug2) Z(Ug. ) -Z(2")
T ——

N
Utl ~t3 ~gl g~gR g~g2

7 gtg 7 g2& 7 g2~2+ggg+gll(Vglugsugs) g

as they shouM according 'to Eq. (74) ~

For large Doppler broadening (XN;)) atomic decay rates and various best frcquencics), Z(U) =2(~Fr) and T,
reduces to the "Doppler limit" of the scalar theory

Q any of the denominators in. Ty, and T@approachL &ero, the nunMrators do also, tile limit being a derivative of g
with I'cspcct. 'to v. Tillls fol' vgl=pgsg Tgs= (Egs/vgs) gfZ(UI)/dUI, ctc.

As the atomic velocity NF~O, Z(v)~2(egg;/v), and (75), {76),and {77) yicM

7 gl 22(V gr) +glfug2(Ugl+Vgs) ] Tg~Tga~ 0~



Tanz, z II. This table defines the p~b appearing in the third-order integrais (74).

st
potbt+$ (ltbioq, t —p&t+ppt —p&t)

Vs'b'+q(ees%' Pe'+Pe' Pe')

'raryi+q (ees bi Vei+Ve—b —Ve&)

~ /
Qtbt+$ (Q)~tbt P t+P/tl Pstt)

s I'
ptsttst t+'Ie(~+ttst t+ p&t —p~ t)

~ /
pottstt ~$ t Qpot+tt+ppt —p+t}

Pbt tbt+$ (+bt tbt+P&t —P&t)

'Yb''b'+e(eeb"b'+Pe' P»')

~ /
jl@tfttl ~$ (4gotbll Py, l)

~ -.-+'( -.-+., )
y'ftttrsrt+f (gybttNtt+P t)

~ ti

p~»bt+$ t +pet tbt —ppt)

Substituting (l9) into (73) and writing the result in a form more closely resembling Eq. (76) of Ref. I, one has

(p &'& (/) = ssqr'"(fb'E) 'pg gE„E,E. exp(g „„,.)g (a;/I;) pf (s)*gf,{p„)gf„(p,)*gf,(p, )
p/ pl sr/

Xppp +~a', b'ps~a", b'+q'4", a"-e~a', b "+epb'u' pa"b' ps "b"ps'b"
g/ b/ 0/l bll

)(, IQ(btuzutt+pee —pet) $Quibsrtee~tyas np)(rdulbe —pab+p t —2pet+rduqit)

Qbiguiitez ei+ai n)Q(resists pap
—pai+2pei+bebiraii) )

+(bqb"b'+Pe' Pa') P a"b'(e' ie'+e' -n)L)(-&a'O' Pe'+Pe' 2Pa'+bqa"b')

+b" (aut —p +a'—n)+(rqa'b' pir' p+a2 p'p+& ab' ) $ j i

where, for example,
+(~a'b'+res'b" 2p) PV b'+a'r b"+aS(bta'b'+tquib» 2p) j

VIL GENERAL AMPLITUDE- AND FREQUENGY-DETERMINING EQUATIONS

Adding the real and imaginary parts of third-order terms given by (73) to (6I) and (62) according to (j2)
and (13), one has {to third order) the completely general form of the amplitude- and frequency determining
equations

where

En ™IQ+nn En exps4nn' QQQ~na'tie'Ea'Ee'Ee' expslpnaieisi j
j/ /// pl sr/

ps+In =~a+En ReI p ernn'En~ exp'Llpnn' g et +Susie siEaiEeiEei expo/ „.. .j
j/ p/ pl y/

(82)

~"""'=' "{'"'+)'+('f") +f (')'Zf {P)Zf()b)*Qf (p)QQQQs. .. ~„b.„,„
4 3

&&» ."M".b"+ Pb" P" b P."b P.b-T +2', , {83)

and various symbols are defined by equations as indi-

cated: e„, (63);P, (5'/); f,„... (72); a;, (24); p„
and f„(34);P,q... (32); Te, {74) through P9) and
Table I.

VDI. 9ESCRIPTIOH OF THE PROGRAMS

The computer programs" written in FORTRAN xv are
depicted schematically in Fig. 3. The heart of the
programs consists of the subroutines coEPI' and INTGRL,

which are used to calculate e and e given the number
of Fox and Li modes, the nuclear spins, atomic angular

"Further details about these programs are contained in the
Ph.D. thesis of Murray Sargent, which may be obtained from
University Micro61ms, Ine. , and the programs themselves may be
obtained from M. Sargent at Bell Laboratories, Inc. , Holmdel,
New Jersey.

momenta, decay constants, g factors, population inver-
sion densities, magnetic Geld strength and inclination,
cavity detunlng and anlsotropy) etc.

A large class of steady-state solutions of the laser
equations have been calculated algebraically and may
be evaluated using INTEN and INTENj. . Any solutions
may be calculated by numerical integration using
pRzocT, a predictor-corrector routine and RUNGE, a
Runge-Kutta routine which sets up the required back
values for pREDcT. Subroutine zTION deGnes the
differential equations for the laser and, if desired, for
servomechanisms and other devices used with the
laser.

Subroutine swzzp is used to control the computat. ion
of one or more values of the intensities and frequencies
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FIG. 3. Diagram of computer programs showing links between
subroutines. The programs are used as follows: MAIN and szTUr
to read in data and initialize parameters; scALAR to calculate
Clebsch-Gordon coefFicients; swzzp to vary one of several param-
eters such as cavity detuning; INTEN 8,nd INTEN1 to calculate
certain steady-state solutions to (81) and (82); cozvs and iNToRr.
to calculate I and 0; pREDc T, RUNGE, and FTIoN to integrate (81)
and (82};TsTpc and Moviz to print, plot, and make movies of
the solutions; and I LOT to plot e, 8, E„~ +q, etc., as functions
of the parameter varied in swzzr. A number of additional sub-
programs are not shown, such as mathematical functions and
auxiliary plotting routines.

of oscillation for which some parameter such as 6eM
strength or inclination is varied. %hen integrations
are used in the sweep of a parameter, the 0. and 8 may
be held constant for a given point in the sweep until
the desired number of steps of the integration has been
taken, or they may be interpolated linearly up to the
next point in the sweep. The latter choice corresponds

quite closely to what is done experimentally. For a
particular value of the sweeping parameter, swKEr may
be used to iterate the calculation in a self-consistent
fashion.

rsrrc is used to print and plot results of time inte-
grations and with the help of Movrz to make computer
movies of the solutions. Pr,or controls the graphing of

coeKcients, intensities, etc., versus the sweeping param-
eter. The laser parameters are either calculated or read
in as data in MAIN and sxrUp. MMN is also used to
read in values of logical variables which control the
Row of the program during execution and to choose

any unspecified initial conditions for integrations of

the equations.

IX. DISCUSSION

Although specific connections between the present
and previous calculations are more conveniently dis-

cussed in paper II, it is desirable to make some com-

ments of a general nature here. Among the rather

large number of papers dealing with a laser in a mag-

netic field. , those that come closest to describing the
amplitudes and frequencies of laser oscillation experi-

mentally are all generalizations of the single-mode

scalar theory. ' lt is these that we discuss here more or
less in order of publication.

Fork and Sargent" "gave amplitude- and frequency.
determining equations for axial magnetic delds and a
"R. L. Fork and M. Sargent III, Phys. Rev. 139, A617 (1965).
"R.L. Fork and M. Sargent III, in Proceedings of the Inter-

national Conference on the Physics of Quantum E/ectronics, edited

by P. L. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill
Book Company, Inc., New York, 1966), pp. 611-619

J=~J= j. transition. Rozanov and Tulub" gave
similar equations without the electric quadrupole
contribution" which they believed could be neglected
because of collision effects. Inasmuch as the quadrupole
terms increase the coupling terms and it has been
observed experimentally" that the coupling is still
stronger than predicted, this assumption seems un-
justified. D'Yakonov" gave a theory of a laser valid
in a weak axial magnetic field in which the medium
consisted of atoms of arbitrary angular momenta and
the cavity could have an x-y Q anisotropy. Culshaw
and Kannelaud'~ also analyzed this problem but used
a J= ~~+-+J= ~ transition and assumed the electric fie1d
was plane-polarized at an angle to the axis of highest Q.
For sufhciently weak magnetic fields they found that
such a state of oscillation couM be realized.

Heer and Graft" outlined an extension of the scalar
theory which dealt with a magnetic field at any angle
to the maser axis and atoms with arbitrary angular
momenta) hfsp Rnd isotopic RbundRnce. Tlieil RITlplltude
and frequency equations have a form general enough to
describe the operation of amplifiers, ring lasers, and
standing-wave lasers. However, they did not evaluate
the coefficients in these equa, tions (or in any special
eases), and they assumed the cavity losses were
isotropic. In another calculation for arbitrary fieM
orientation and angular momenta, O'Yakonov and
Perel" evaluated. the coefficients for transverse and
axial fields in which they included the effects of spon-
taneous emission neglected in our analysis. They
assumed that g =gg, which considerably simplifies the
calculation but is valid only for a limited number of
atoms in nonzero magnetic fields, and they did not
give any numerical results„

Culshaw and Kannelaud" analyzed a laser in trans-
verse and axial magnetic fields for the 0&-+II. transition.
Durand"" also treated a laser in a transverse field for
this transition. His amplitude- and frequency-deter-
mining equations were derived however, from rate
equations whose velocity dependence was introduced
in the nonrigorous although plausible fashion described"

'4N. N. Rozanov and A. V. Tulub, Dokl. Akad. Nauk SSSR
165, 1280 (1965) [English transl. : Soviet Phys. —Doklady 10,
1209 (1966)].

'~ R. L. Fork and %. J. Tomlinson, IEEE J. Quant. Electron.
QE-2, xxiii (1966);R. L. Fork, W, J.Tomlinson, and L.J.Heilos,
Appl. Phys. Letters 8, 162 (1966); H. deLang, and G. Bouwhis,
Phys. Letters 20, 383 (1966);H. deLang, thesis, State University
of Utrecht, 1966, especially pp, 57—75 (unpublished),' M. I. D'Yakonov, Zh. Eksperim. i Teor. Fiz. 49) 1169 (1965)
LEnglish transL: Soviet Phys. —JETP 22, 812 (1966)j.

'7%. Culshaw and J. Kannelaud, Phys. Rev. 141, 228 (1966)."C.V. Heer and R. D. Graft, Phys. Rev. 140, A1088 (1965).
9 M. I. D Vakonov and V. E. Pereli Opt. l Spektroskoplya

20, 472 (1966) I English transl: Opt. Spectry. (USSR) 20, 257
(1966)$. See also the review article by M. I. D'Yakonov and
S. A. Pridrikhov, Usp. Fis. Nauk 90, 565 (1966) /English transl:
Soviet Phys. —Usp. 9, 837 (1967) t.

"%.Culshaw and J. Kannelaud, Phys. Rev. 145, 258 (1966);
1S6, 308 (1967).' G. Durand, Ann. Inst. Poincar6 A4, 263 (1966}.

"G. Durand, IEEE J. Quant. Electron. QE-2, 448 (1966).
23%'. E. Lamb, Jr., Ref. 1, p. A1448.
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in the scalar theory. This method may be interpreted
in terms of "hole burning. ""D'Yakonov and Perep'
gave a qualitative description of axial and transverse
field operation using a hole-burning model.

In a zero-field calculation with atoms of arbitrary
angular momenta, Polder and Van Haeringen'~ gave an
expression for e 'de/dt, where the eccentricity

e= (&+—&-)/(&++~-) ~

In another zero-field calculation with atoms of arbitrary
angular momenta, Doyle and White'~ analyzed a laser
with cavity anisotropy represented by (in our notation)
a diagonal anisotropy matrix. This precludes certain
interesting configurations (see paper II, Sec. V) .
Pelikan" analyzed a laser in an axial magnetic field
and included the x-y Q anisotropy. His treatment of
this anisotropy is more in the spirit of our work than
of D'Yakonov. " Sargent et al. " gave a discussion of
this problem in terms of the present theory. VelzeP'
has indicated how to include cavity anisotropy of a
somewhat more general nature in the laser equations.

The present calculation gives the amplitude- and
frequency-determining equations for the multimode
operation of a laser in an arbitrarily oriented magnetic
field with possibly anisotropic cavity loss and resonance
and an active medium consisting of atoms which may
have arbitrary angular momenta, isotopic abundance,
and hfs. Computer programs have been written for
analyzing these equations very generally, yielding
graphs of intensities and frequencies of oscillation
versus time, cavity detuning, magnetic field strength,
or any other laser parameter. As illustrated in the
following paper, this facility allows the results of the
theory to be graphed either in the most convenient

theoretical form or in virtually any way the experi-
mentalist observes his apparatus in the laboratory.
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APPENDIX A

In general, any two orthogonal unit vectors {e'i, e'p}
are related (apart from a possible phase factor) to the
unit vectors {ei, e&} of our initial cavity basis by
equations

e'i ——ei cos8+ep sin8 exp(iP),
e'p ———ei sin8 exp( —sP) +e& cos8. (Ai)

These equations correspond to the similarity trans-
formation

cos8 sin8 exp (r'P) )
(—sin8 exp( iP)— cos8

As indicated in the latter part of Sec. II, the anisotropy
matrix G in the {ei, es} basis is transformed to

G'=SGS-& (A3)

in the {e'i, e'& }basis. One of the diagonal elements of G' is

g»=g» cos'8+[g» exp('P)+g» exp( 'P))
X sin8 cos8+gpp sin'8. (A4)

The polarization of threshold oscillations will be
specified by that unit vector e'& which maximizes the
imaginary part of n'„», the n coefficient [Eq. (63)]
corresponding to e'i. Using (Ai), (A4), and (63), one
has

c li — slav {gli cos 8+s[gsr exp(1p) +gis exp( sp) ] sin 8+gss slil 8}+s(v/epfbK)

XP(a/u) P { cos8fb(1)+ sin8 exp(iP)fb(2) ~'gPb;, b+b(P;b )'N, b Z[p, .b+i(pp. b v'„i)]. (A5)—

The imaginary part of 0.'„» may be written as

Im( e'„») =a cos'8+s (b cosP+c sinP) sin28+d sin'8,

(A6)
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(A7)

g(i, i') =s(v/epfbK) g f (i)bf ( b)ps(a, /u, )

X Qpbo. ',b'+b(Pa'b')

XN bZ;[y, b+s(pp b
—v' i)]. (AS)

where

a= —-', v Reg»+g(1, 1)—= Imrr~ii,

b= ——', v(Regis+ Reg»)+ 2Re[g(1, 2)],

c= ——', v(imgis —Img„) —2Im[8(1, 2) ],
d ——',v Regps+g(2, 2) —= Imn„sp,

and the gain parts g(i, i') of n'„» are given by
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To maximize Imo. '„~~ one must solve the equations

8 (Ime'„ii) /BP =0

8(Ime'„n) /cI8=0

{A9)

(A10)

simultaneously and choose the solution yielding the
largest 1mc „ii.Equatloll (A9) gives

8(Imn'„ii)/BP = i~ sin20(c cosP —b sinP) =0, (A11)

which implies either

where we have kept only that root of (A17) which yields
the larger Im0. '„11. This value for Imat'„~1 is greater
than or equal to the solutions a and d implied by (A12) .
Thus the polarization of threshold oscillations is speci-
fied by e'i of (Ai) in which p is determined by (A13)
and 8 by (A16).

APPENDIX 3

or
sin20= 0, i.e.,

tanp =c/b.

(A12) Ty =$EN dt I& Ch

0 0 O

X exp {—Luis'+umr"+use"'+-', (EN) '(r"'+7') 'j }

Equation (A10) gives (81)

8 (Im n'„n) /80 may be evaluated in terms of the plasma dispersion
function Z of (58) .This can be accomplished by malung

d) s'n2~+{bcosP+cs'nP) c s ~= { ) the coordinate transformation

or
tan20= (b cosP+c sinP) /{u—d)

= (b+c tanp) cosp/(u —d) . (A15)

Equation (A12) implies either the identity transfor-
mation (0=0) or a simple interchange (0=2+) of ei
and e2 with the introduction of the phase factors
exp(+ip) . The resulting Irn n'~n are Im e ii and Im e„22,
corresponding to the polarizations of 61 and 62, respec-
tively. Combining (A15) and (A13), one has

tan20= + (b'+c') '"/(a —d), (A16)

with inverse

and Jacobian

»=r"'+r',

$3—7'II

r'=-', (x2—xi),

T g (x2+xl) p

01 1
2 2

(83)

where the sign is the same as that of cosp. Noting that
(A6) can be written as

Imn'„n ———',(e+d) +-', {tan'28+1) '"

)&L(a—d)+ cosp(b+c tanp) tan2ej, (A17)

we substitute (A13) and (A15) into (A17) and find

I '„„=-,'( +d)+-', { {b'+ '+( —d) ] ~, (AIS)

I II III

0 0 1 =-', . (84)
a(xi, », xs)

The integration over x3 may be done ilzunediately,
yielding the multiplicative factor v2 '. The variable ~
varies between 0 and ~ as r' and 7" vary between 0
and . Choosing these limits for x2, x~ varies between
—x2 and +». Thus one has

Tg= 7+= g$(ER/um) dx2 ~xi exp{ $s (u3 ui)xi+2(ui+») x2+g (It+) x2 ]}~ (85)

After integrating over x2, one has

2~—=+«&L»(»»)3 ' ~xsexp{ L2(»»)»+2(»+us)w+&(&I) x2 j}{., »*' *I
0

=—L»(»—»)j 'L~(») —~(») 3 (86)

Next we consider
Ti~ » 'dZ(u, )/du, . —-

T'i=T =2&(&&lu-m) d» dxi «p{ t g(u3 ui)x—i+ ', (ui—+u3)x, +-4(Xiii x, 'j} (Bg)
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Interchanging the integrations over» and», and using (58) one has

),=-i(E x/ «) Ixef Cxe(exp( ('( e «)xe+ ( le+ ee) x+e'-(E x)'x e])
0 &1

+ e~ I
—t~(vi —vs)»+l (vi+va)»+l (E~) '»2j })

=r ( +»-L~(")+z(.*)j
An integral of the form

r, =iEN dr' dr" dr"' expI —(vga'+v2r"+vs~'"+4(EN)'( '+2 "+ "')'$}
0 0 0

may be similarly evaluated after completing the coordinate transformation

/ff
$$—7 f

III+ I

III+2 Ily I

This transformation has the inverse
r'=g(» —»),
r"=g(g)L—»),
r'" =-', (»+»),

and Jacohian
02

(810)

8(», xg, xs)
0 ««exec«

1 1
2 4i

The transformed T3 is

Ts =
e) fEQ dt's d» d» exp f

—$g (v()—vg)»+g (vg vy+va) Kg+ 2v2Ã3+4 (EQ) $3 f}

',eZx( e ,)—'fIxe —lee-(ex)e( [(« ',«)x,+ ',«x,+—,'(ICx—)'-x,'j)--
6 0

—exp —$(vg —',»)»+-,'vs()+-,'(EN) 'xo'))

, ~(») —~(k») ~(») —~(k»)
Vj,

—
gVg ~8

If v~=u3, this reduces to

(314)

Ta=-', (vg —
gvm)

' dZ(vg)/dvg—
~(») —~(2»)

Ua
—gA

(315)


