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that the carbon is a truly surface contaminant is un-
doubtedly an oversimplification. If, as we have argued,
the carbon originates in the bulk of the target ribbon,
it is entirely reasonable to suppose that sufhcient con-
centrations of carbon can accumulate in the vicinity of
the surface (i.e,, the nearest few atomic layers) to
cause the density-of-states function there to diQer

significantly from that for a pure Mo sample. Hence
the changes observed in the shapes of the distributions
here may reAect changes in bulk band structure as
well as Auger transition probability.

Measurements have been made of the Auger electron
emission from polycrystalline molybdenum targets
bombarded by He+ and Ar+. It has been found that
carbon impurities present in the Mo sample reduce
the value of the electron yieM below that for an atomi-
cally clean surface. In accordance with previous work,
it was found that the carbon could not be removed

from the target by heating in vacuum, but that a
short heat treatment in an 02 atmosphere would re-
move it, producing an atomically clean surface. This
contamination effect is thought to be responsible for
some discrepancies in electron yields reported in the
literature.

The di6erences between the Auger electron yields
for the clean and carbon-contaminated surfaces can
be at least qualitatively explained in terms of an in-
crease of about 0.5 eU in work function of the con-
taminated surface relative to the clean-surface value.
The measured increase of 0.4 eV supports this model.
Measurements of the ejected electron-energy dis-
tributions for the tmo surfaces, however, show dif-
ferences which do not seem interpretable on the basis
of this simple model. Rather, it seems that in thi;.
case the carbon must be regarded as having a more
subtle inhuence, perhaps involving alterations of the
Mo band structure by impurity carbon in the bulk of
the sample.
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Landau damping results from the loss of energy of collective motion to the excitation of individual
particles. +ell known for plasmons, it can also occur for phonons and photons, as is shown herein. For a
coupled longitudinal plasmon-optical-phonon wave, it can be signi6cant both near the phonon resonance
and near the plasmon resonance. It is generally insigni6cant for coupled transverse photon —optical-phonon
waves. These results are important for infrared spectroscopy and Raman scattering involving plasmons and
optical phonons.

I. INTRODUCTION

p qHE Landau damping of a plasma wave is due to the..loss of energy from a collective motion to the in-
dlvldual particles, such as a plasmon decaying by ex-

citing an electron below the Fermi energy. This occurs
when the phase velocity of the wave becomes com-
parable to the thermal speed of the electrons, ' ' i.e.,
when the wave number q of the plasmon is comparable
to go.b„. of the electrons de6ned by qD= (plasma fre-

quency) /e, h„,&. In a coupled system of infrared active
longitudinal optical phonons and plasmons, the optical
phonons may also decay by exciting electrons. Thus,
in addition to the usual optical-phonon loss due to
lattice anharmonicity, we have the Landau damping
of the optical phonons. The dispersion relations of a
coupled system of longitudinal plasma waves and
longitudinal optical and acoustic phonons have been

' H. DerQer and T. C. Simonene, Phys. Rev. Letters 1V, 172
(1966).' L. D. Landau, J. Phys. (USSR) 10, 25 (1946) .

examined by Tsu and White. ' Due to the use of the
moment equations of the Soltzmann transport equa-
tion, their results do not contain the eGects of Landau
damping. Varga4 used the Drude model for the electron
gas to derive dispersion relations which include the
transverse case, one in which the transverse optical
phonons interact with the dressed photons, i.e., photons
dressed by electrons. More recently, Singwi and Tosi~
used the electrostatic interaction Harniltonian of a
longitudinal optical phonon and an electron gas to ob-
tain a dispersion relation similar to Varga s. However,
because of the use of a power-series expansion of the
dielectric response function in powers of the wave
number, their results, like Varga's, also exclude Landau
damping. In a coupled system, at frequencies near the
optical-phonon resonant frequency, the condition of
matching the phase velocity to the thermal speed of the

&R Tsu and D I, @&hite A» phy, IN') 32 1 ~1965)
32, 100 (1965).

B.B.Varga, Phys. Rev. ],3'I, A1896 I'19/5)'K. S S g d M P. Yo ', » . R, 147, |58 (1W|.).
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electrons may be satisfied. Thus, Landau-damping
losses may be signi6cant near the optical-phonon fre-
quencies in addition to the usual Landau-damping
losses of the plasmons near the plasma frequency. How-
ever, if the optical-phonon damping due to lattice
anharmonicity is taken into account, the condition for
Landau damping can be met only for the longitudinal
case, but not for the transverse case. Hence, in Raman' '
scattering involving plasmons and longitudinal optical
phonons, Landau damping may be an important factor
in the line broadening, whereas in experiments' in-

volving reAection and transmission of infrared light
near the optical-phonon frequencies, Landau damping
in almost all cases may be ignored.

II. DISPERSION RELATIONS

The coupled system is represented by putting the
free electrons of density ~p into an infrared active
crystal. For simplicity, it is assumed that the crystal
may be represented by scalar dielectric constants, a
high-frequency one which measures the atomic polari-
zations, and a low-frequency one which measures the
polarizations of the optical phonons. The e6ects of the
free carriers are accounted for by using the currents
induced by a self-consistent field. Using these currents
in Maxwell-Lorentz equations together with the rela-
tions for the polarization and displacement vectors
for optical phonons at long wavelengths, the disper-
sion relations become

e'+pro/zo& —e„+(eo—e„)&voz/((o' —o&p'+zygo) =0, (1)

where e~ =0, r =r ~ for the longitudinal case, and
e'=qzc'/a&', o =o.' for the transverse case. In Eq. (1),
c is the speed of light, y is the optical-phonon linewidth
due to damping mechanisms other than Landau damp-
ing (e.g., lattice anharmonicity), &oo is the optical-
phonon resonant frequency, e and ~p are the high- and
low-frequency limits of the dielectric constants, and
a.

~ and gg are the longitudinal and transverse conduc-
tivities, respectively.

III. CURRENTS DUE TO THE SELF-CONSISTENT
FIELDS

The conductivities ~~ and 0 & due to a time-dependent
self-consistent 6eld have been treated by several
authors. 'P "In order to obtain expressions most readily
useful for the dispersion relations including quantum
eGects, charge bunching, Landau damping, and colli-

6 A. Mooradian and G. B. Wright, Phys. Rev. Letters 16, 999
(1966).

R. Loudon, Advan. Phys. 13, 423 (1964).
A. S. Barker, Optical Properties and Electron& Structlre of

Metals and Alloys (North-Holland Publishing Company, Am-
sterdam, 1966), p. 452.

9 M. Born and K. Huang, Dynamic Theory of Crystal I-attices,
Oxford University Press, New York, 1954), p. 82.

':H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959)."J. L. Warren and R. A. Ferrell, Phys. Rev. 117, 1252 (1960).
'~ D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

M

{tt—no 'Q D'-
pii(ar+iv)

X[f(k) —f(k+q)](k+'I/2) (k+'I/2) I E„(4a)
Mp t7$

J,=Z
4mig fiep

X[f(k) f(k+q)][e(k.+q—/2)+tk~]E'

i Q f(k) P(k,+q/2—)+tk~],
cpa

(4b)

Z D-'[f(k') f(k'+q)]@-
fPg

(4c)

D=k 1+—', q' m-(co+—zv)/k,

"P. M, Platzman and S. J. Buchsbaum, Phys. Fluids 4, 1
(1961}."D. C. Mattis and G. Dresselhaus, Phys. Rev. 111,403 (1958) ."H. N. Spector, Phys. Rev. 137, A311 (1965).

sion damping arising from collisions of electrons with
thermal phonons and impurities, we shall brieQy derive
these conductivities from the self-consistent equation
of motion of the single particle density matrix p,

Np=[HO+Hg, p] i5—(Bp/Bt) „(2)
with Ho ——P'/2m, Hz —(——e/2mc) (P A+A P)+e4', in
which A and P are the self-consistent vector and scalar
potentials, and P and m are the momentum and effec-
tive mass of the electrons.

For the longitudinal case, the collision term (Bp/Bt),
is described by a phenomenological frequency inde-
pendent v to account for the hnite lifetime of the elec-
trons due to collision with thermal phonons and im-
purities. In order to account for the charge bunching
described by a local density n&, we let"

(~p/'t). =[p po(1+nz/«)]v, (3)

in which p—=p,+p„and no is the electron density. The
average current and density are calculated from
J=Tr(sp) and nz=Tr[8(x —x')(p —po)], with the
current operator S defined by S=(e/2m)[(P —(e/c)A),
6(x—x')]+. For the transverse case, a simple way to
account for the effects of collision is to set p= po+ pz(t)e"',
A=A(t)e"', and (Bp/Bt), =0 '4 Althou. gh these forms
suggest processes involving adiabatic turning on of the
perturbations, v is 6nite in our case.

We shall not go into a detailed treatment in view of
the fact that Spector" has done a similar calculation
without collision damping. (Spectors conductivity,
represented by his Eq. (213a), has an error in sign. )
Neglecting the term H~p~ and taking

po I k) =f(k) I k), HO
I k) = 8'kz/2m

I k),

with
I k) the free particle wave function of the electron

momentum k, we obtain for the transverse and longi-
tudinal current densities
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FIG. 1. Dispersion relation for SnTe for a coupled system of
transverse optical phonons and dressed photons. The constants
used are ep= 1200, e =45, cop ——10") u„=4.78 &( 10', u= 10",
0.01'&s, and m 0 07=m, .(taken from G. Pawley, et al , Phys .Rev.
Letters, 1V, 753 (1966); H. R. Riedl, J. R. Dixon, and R. 3.
Schoolar, Solid State Commun. 3, 323 (1965); R. Tsu, W. E.
Howard, and L. Esaki, ibid. 5, 167 (1967)].Shaded region shows
the (Imp)L. n..

where Z=X+i Y= (tttto/hq —sq) —i(mv/Aq) . Because
v is not infinitesimal, the path of integration should be
moved up the imaginary Z plane to

—~+iY~+ ~+i Y

Therefore, Eq. (5) may be written as"

" gt"&(k,)dk,.
j(Z) =g (I!) '(i Y)" IP — +iong&"~(X).

k, —X

(6)

to s=4rrrt e'/m Et= —Vp, Et ——(iot/c) A, and,
t and i are the unit vectors transverse to and parallel
to q. In the second term of Eq. (4b), the electric-6eld
factor is contained in the density function rs&. It looks
as if the conductivity tensors derived from Eqs. (4)
would have oG-diagonal components. Actually these
off-diagonal terms will vanish when the sum over k is
performed. After the sums over k are replaced by in-

tegrals, we have integrals of the form

I(Z) =
- g(k, )dk,.

-m z

where

B= —'L1+&(tI,/o)'] —(2Q ) (m /So„) (o/o, )'
XL exp (Irtto/2ET) —exp (—A to/2E T)]
XexpL- —(o/o„)'] —t& '(v/to) (1+s(4/tt) )
—(igm. ) (rtt/Aq) (%„)Lexp(trtto/2ET)

—exp( —Aa)/2ET) ] expL —(%,)'],
and o =to/q e ' =2ET/rtt. The terms involving ex-
ponentials come from the i'"(X) term in Eq. (6)
and have been integrated exactly. The imaginary ex-
ponential term is the Landau-damping contribution to
the losses. The condition stated previously that the
Landau damping becomes significant as ~~ethermai de-
rives from the factor expL —(o/t~„)s] in Eq. (7). This
condition is actually not exact, since for very large q,
the pole of the integrand in Eq. (6) gives the condition
for Landau damping which is also the condition for
pair creation. The other terms which come from the
principal-value integrals are integrated approximately.
We caution that our results are only valid for small
but finite v, e.g., v((co, because we have terminated the
series at n= 1 in Eq. (6) . For large v, the classical mo-
ment equations of the Boltzmann equation give far
simpler expressions. ' Similarly, the transverse conduc-
tivity is

o, = [(o,'/4r—ri (to+ iv) )(1+B,),

B =L("/ )),LI-'(2 / ))-L(2& )( /q;)( /, )+'v' ]
XLexp (ftto/2ET) exp( —A to/2ET) ]e—xpP —(e/o„) '].

If 8&=0, then r~ is identical to that of the Drude theory
including damping.

IV. DISCUSSION

If we take B=o '(1 iv/to), an—d B,=O for ot and
o, in Eq. (1), we obtain two dispersion relations similar
to Varga's. ' The dressed photon-transverse optical
phonon coupled mode has q dependence, and thus has

10

o t = tovsB/4riq, — (7)

where gt"&(X) =t)"g/ctk, " ~x. For simplicity, we shall

calculate up to n = 1, which is sufhcient for a compari-
son of the imaginary parts involving v with those not
involving v, i.e., the Landau-damping contribution to
the losses. Further, ere shall neglect the second term
in Eq. (4b), which is only important for very high v,

electric field and carrier concentration. Upon using the
Maxwellian distribution function for f(k), we obtain
the longitudinal conductivity
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dispersion, However, because of this simple form of 8,
the longitudinal expression is only a frequency equation,
being independent of q. Because our 8 has q dependence,
the longitudinal expression is also a dispersion relation,
an expression for co as a function of q. At this point, a
brief mention on the comparison of the dispersion re-
lations obtained here and those by Tsu and White'
is in order, particularly because both the forms and
methods used are diGerent. Neglecting the Landau
damping and terms involving v in O-E, the dispersion
relation for the longitudinal optical phonon-plasmon
coupled mode may be written as

[~2 ~ 2/~ 3~ 2q2(~ 2/~ ~2) $(~2 ~02)

= («/~ —1)~o'~' (9)

On the other hand, Eq. (26) of Tsu and White

[1+zD,+s(aov'/c ) (1/~v) j(&v' —a&0') =g~P(1+zD ),
with D, = (co/v) (3v„'q'/~' —1), and ~))v, may be
written identical to Eq. (9) if g= co/e —1.It is interest-
ing to note that Tsu and White used g= ei2/Cia, with
e~ and C~ being the appropriate piezoelectric constant
and elastic constant, respectively, for CdS crystal.

Using the full 8 and B~ in o.
~ and 0.~, we have com-

puted Req and Irnq from Eq. (1) as shown in Figs. 1
and 2. First we neglect parts of q due to Landau damp-
ing for the dispersion relations, then these values of
co and q are used to compute Landau damping. For
the transverse case, note that (Imq) Ln, imaginary part
of q due to I andau damping, is much smaller than the
Req and Imq. However, as shown in Fig. 2, (Imq)Lo
may be comparable to Req for the longitudinal case.
Also, because of screening, the longitudinal optical
phonon mode is lowered to co coo. Fig. 3 shows another
example for SnTe. The shaded region bordered by two
parabolic functions, denoted as the pair-creation region
(electron below the Fermi surface excited above the
Fermi surface), is the region of a&

—
q where Landau

damping may be signi6cant. The longitudinal branch
crosses into this region twice, once near ~0, and the
second time slightly above the plasma frequency. The
latter one produces the usual Landau damping of the
plasmon, a plasmon decaying by exciting an electron.
The former represents the decay of an optical phonon

by exciting an electron. The broader parts of the ~—
q

curve indicates where (Imq)Ln are significant, such as
the example shown in Fig. 2. However, the dispersion
curve for the coupled mode of dressed photon and
transverse optical phonon is not anywhere near the
pair-production region. In principle, if the losses due
to lattice anharmonicity are negligible, then even for the
transverse case as in Fig. 1, near coo, q will have large
enough values to approach the shaded region. As the
dispersion curve for the transverse case in Fig. 3 has
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FIG. 3. Dispersion relation for SnTe, p=0.05coo for the trans-
verse case and y=0.01cvo for the longitudinal case. The shaded
region shows where Landau damping may be significant. (This
region, denoted by pair creation region, refers to the excitation of
electrons from below the Fermi surface as contrary to usual
excitation of electron-hole pairs across the valence and conduc-
tion bands. )
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a lattice damping five times greater than the example
used for Fig. 1, Landau damping for this case is almost
zero. It is frequently true in practice that the lattice
damping is large enough so that Landau damping may
be ignored for the transverse case. In the case of
Raman scattering from longitudinal optical phonons,
the line broadening due to Landau damping will be
important for infrared active materials with low lattice
anharmonicity and relatively high mobility. At the
moment, low carrier concentration SnTe materials
are not available, so that we do not know the pure
optical-phonon damping due to lattice anharmonicity.
Consequently, experiments involving SnTe cannot
separate Landau damping from others.

The coupling of the phonon and plasma waves does
shift the resonant frequencies of these waves. Due to
the inclusion of an electron-collision term, phonon
modes are damped through coupling to the plasmons
even without lattice anharmonicity. However, it is im-
portant to realize that the Landau damping of the
phonon results from its interaction to the individual
electrons, As pointed out by Platzman and Buchsbaum"
for the case of plasmons, collision is only necessary to
maintain a steady-state Landau damping.


