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A new type of ground-state wave function for a magnetic impurity in a metal is postulated, and its
parameters are determined variationally. The basic idea is that formation of a singlet ground state requires
the phase shifts of all electrons near the Fermi surface to be adjusted simultaneously. The method resembles
a configuration-interaction treatment of in-out correlation. The result is a phase shift which varies as
(E— Ep)'2 near the Fermi surface and a binding energy larger than in previous variational treatments.

HERE has been much recent interest in the be-

havior of magnetic impurities in metals below the
Kondo-Suhl temperature.!~? The prevailing opinion at
present is that the ground state is in some sense a
singlet,®#1 which forms near Tk with binding energy
~kpTxk. If the ground state is to be a singlet, it seems
reasonable that it should be treated by methods and
with a model which is not incompatible with the
“ordinary” nonmagnetic impurity. For instance, such
an impurity obeys the Friedel sum rule so that the
T=0 phase shift at the Fermi surface is determined
by electrical neutrality, which is difficult within the
usual “Kondo model.” Such a method and its results
are the subject of this paper.

The strong Coulomb interaction, which, in the mag-
netic impurity, causes magnetism, can in a singlet
only induce the “in-out” correlation effect. In-out cor-
relation in nonmagnetic impurities should be dealt
with as in atomic systems, by some combination of
unrestricted Hartree-Fock (HF) and configuration in-
teraction. The corresponding methods in the magnetic
impurity system, however, run into a paradox which
is both the difficulty of and the key to the problem.
This is that, using the result of a recent paper,'® the
lowest unrestricted HF solutions have no matrix ele-
ments to any singlet solution or to each other, because
they have phase shifts at the Fermi surface for opposite
spins which are greatly different. A singlet state in
any real sense—i.e., having no net spin within a finite
sphere around the impurity—must have equal phase
shifts for the two spins, by the Friedel theorem.
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Our technique will be to construct a solution from
antisymmetrized products of single-particle scattered
wavefunctions, as in HF, but to modify each such
determinant so that it can interact with the other
configurations chosen: Essentially by fiat, we change
the phase shifts in a small region near the Fermi sur-
face so as to make them equal and allow finite matrix
elements. The form of the modification is chosen varia-
tionally, by minimizing the over-all energy.

As in the usual HF approach,’® we work with the
following Hamiltonian as a model which contains most
of the relevant physics:

5e= D ettea— Ea D, tar+Unayna,
k.o o
+ 2 Var(Car'Cort-Cio'Cag) . (1)
k,o

For the time being let us assume
U Ez>p(0) (V2)a=A4, (2)

where p(0) is the density of states at the Fermi sur-
face, which is taken as the zero of energy. Va becomes
small for | ¢ | ) a cutoff D, which is taken of order ~E,
for simplicity.

Our variational assumption about the wave function
is the following:

b= (d'+d*) +63". (3)

Here &', ®*, and @° are determinantal wave functions
made up from two sets of scattered wave functions,
¥, t(r) and ¥;,~(7), and we define Fermion operators
Cit and Ci,~ annihilating the two types of waves.
At a considerable distance from the Fermi surface,
¥, + is the same as the scattered wave function of en-
ergy ¢ with U in (1) set equal to zero and the reso-
nance at E;—i.e., the up-spin HF solution—and ¥;~
is the corresponding down-spin solution, with the reso-
nance at Eg+U. These wave functions, of course, are
also relatively shifted by the well-known energy shift
< §/RY

16 P, W. Anderson, Phys. Rev. 124, 41 (1961).

17 We will use repeatedly the essentially complete equivalence
of the phase-shift scheme for doing the magnetic-impurity prob-
lem [A. Blandin and J. Friedel, J. Phys. Radium 19, 573 (1958) ]
and the local orbital scheme of Ref. 16, which equivalence is
proved in P. W. Anderson and W. L. McMillan, in Proceedings
of the Imternational School of Physics “‘Enrico Fermi” Course
XXXVII (Academic Press Inc., New York, 1967) p. 64ff.
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Near the Fermi surface, both ¥’s are modified, in a
way which may be characterized by the appropriate
scattering phase shift as a function of energy 6+ (L),
which is to be the variational parameter of our method.
That this is the case may be seen as follows®: By defini-
tion of the scattering matrix 7 and using the un-
scattered wave functions ¢x,

To=VV,
W— (Fr—3C0) " Tpp= ( Er— 3Co) 1 (LE—3Co— V) ¥, =0,
(d’k': \I/k) = (fk"" Ek) 1Tk (4)

Ey is the energy of the scattered wave function ¥.
Near the energy shell, this reduces to

sindy sindy _
— —1 j—

(0, 1) =[mp(O T —— L= ()
We have defined k=mn;/R, where R is the box radius
here, and we observe that the phase factor is automat-
ically eliminated by using real “box” eigenfunctions.
As demonstrated in Ref. 15 and 18, the behavior at the
pole as given by (5) makes the normalization correct.

It is clear that we may make (5)—which is an ex-
pansion of the ¥ in terms of a complete set of states—
a definition of the ¥ by fiat. We believe that this is
actually an accurate assumption because off-energy-
shell deviations would be expected to be on the
scale of E4 since the electrons by our choice of
Hamiltonian interact with nothing outside the impur-
ity: Asymptotic wave functions should hold up to the
central atom. As in Ref. 15 and Ref. 18, then, the
overlap integral of two spherical scattered wave func-
tions ¥,* and V8, (a, B=-4, —) may be taken to be

( 1%, \Ifk/’g) = sin(ék"‘— 5/91’3) /[r(nk— Mkf) +5k°"— 5k'6:].
(6)

We define the three determinantal components of
our wave function as follows:

kp
(I)T = H (Ckf+)f(ck¥_)fq)vac,
k

kg
q)l = H (th—)T(Ck¢+) Tq)vac:
k

kp

$y= H (Cet™) T(Cx) 1Pyae.

k

(7

The variations of the phase shifts 8+~ and the phase
shifts for the wave functions (7) are sketched in Fig. 1.

The energy of our variational function contains two
d-dependent parts which we calculate as follows. The
first and simpler is the extra kinetic energy of any of
these determinants caused by the anomaly of & at the

18 J. Friedel, Phil. Mag. 43, 1115 (1952)
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Fermi surface. We use (4):
ALyin= Z | (T, p) [2(err—e€) i
k<kp,k’>kp
and with (5)
2 in%, 2
AE=— > » SO =—‘/d€k sin?y In( Ea/ex)
T2P? K kP kiShp €r— €6 T2
(8)

(introducing the cutoff at E; previously mentioned,
and assuming the sin?6 functions for both spins identi-
cal). For present purposes we assume the local state
resonance structure near E; to be basically unmodified,
and we include only the corrections to § near &g in the
integral (8).

The second contribution to the energy is the off-
diagonal matrix element connecting the two types of
singlet wave functions in (3). In the limit U large,
at least, these are good approximate eigenstates of
all but the Vg terms of the Hamiltonian (1), but
the states have been so constructed that the Vg terms
connect them with finite matrix elements. This con-
struction is the crucial feature of our wave functions:
The theorem of Ref. 15 demonstrates that energy
can be gained from forming a linear combination such
as (3)—i.e., singlet formation—if and only if the phase
shifts for the two spins are forced to be identical
at the Fermi surface. A way of putting it is that
the Va terms represent a local operator, and a local
operator cannot move electrons back and forth to
infinity: It must connect only states with the same
numbers of electrons in a finite region containing the
impurity.

Consider a typical term of such a matrix element,
say,

M= Via(®o | CayCay | @y). 9

The expression on the right is the overlap integral of
two determinantal wave functions, ® and C,'Cs®;.
It will be clearer how this is evaluated if we first do
the simple case

Sot = (Do, B4). (10)

The spin-down pieces of ® and &, are identical, so
that we are left with the overlap integral® (we assume
N states of angular momentum [ below the Fermi
surface)

Sor= //[ g (dry) (N1)—

X 3 (=me ] e (P (P ]

= Det l (‘I’]{", ‘I’kl_) l
EJ/=1.--N
= Det

| sin(6k+— 61;1'—) /w(nk—nk/) +5k+_ O™ l
k (11)

nk,nk’=1---N
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We are assuming U>>all other energies, so that the
¥~ do not contain any ¢q. Thus the off-energy-shell
contributions in ¥+ from ¢4 do not enter. In all cases
we want to concentrate our attention on the Fermi-
surface contributions, so this kind of approximation
is made. We believe that any correction in this would
be an irrelevant numerical renormalization of Vi, Eg,
etc.

As far as we can see, this determinant cannot in
general be evaluated exactly, but a case which can is
sufficiently flexible that it probably gives us an excel-
lent indication of the behavior of (11). This is the
case in which one of the phase shifts remains constant,
so that sin(8y*— 6x~) depends on % or %’ only. Again,
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F1c. 1. (a) Schematic de-
pendence of phase shifts §+ and
6~ on energy. (b) Phase shifts
of states in the three compo-
nents of the ground-state wave
function.
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we are making an on-energy-shell approximation: We
use the numerator at the pole for all values. It has a
wider validity: For many ranges of the variables one
or the other ¢s constant. To make this approximation
let us define

On= (6k+" Bk_)/w,

where #= 1, — 1, and measures the distance from Ep.
Then

N
Sor= [ (sinws,/x) Det | 1/n—n'+35, |.

n=1

This can be evaluated by an algorithm due to Cauchy?:

Sup= H sinmo, H (n—m+8,—8,) (m—n) / I% n—m-+0,,
. T wln m,n
. .\n 1T sinmo, [1+(6u=80)/(n -m) ]
— (=¥ H i I<I (14627 (2 —m) 180/ (1 -m) ]

()Y exp {Z In <s1n7r6 >

m<n

L In (1+

(12)

%) nfirgty) w5

It will turn out that in all cases of interest the first few terms in an expansion of the exponent in powers of &
are adequate. The linear term manifestly cancels out. Using the standard product expansion for (sinwé) /78, we
obtain for the result taking into account the quadratic terms

¥, 1 Sa—0a)? 82
(—I)Nexp—{Lén.ZE”?‘l‘%Z{( >‘~

m<n (71« - m) 2

=(—=1)"exp

~(—1)¥ exp[

(n—m)?

26 2w (N -nF1)~

n=1

B2 }
 (n-m)?

1 N o) Bn 2 =1 2 N—n 5n m n)?
5[ E0)+ 2 ()+Z“ J
n=1 m=n m=N—n-+1 m=1

° 67’/ m— On
LZ( + )J. (13)

n=1 m=1

19T am grateful to J. M. Luttinger for suggesting the source of this algorithm: G. Polya and G. Szegd, Aufgabe und Lehrsatze aus der

Analysis (Dover Publications, Inc., New York, 1945), Vol. 2. p. 98.
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Let us note several features of this result. First,
if & is finite as #—0 (or —N) the overlap is zero as
exp[—%(8?) InN7]. This is the exact version of the or-
thogonality theorem proved as an inequality in Ref. 15.
It is interesting that the main difference from the
previous result is to replace sin?$ by é2. A phase shift
of 7 corresponds to S« N7U2 which is precisely the
overlap one expects, since then one state contains pre-
cisely one localized electron which in the other is free,
and a local-free overlap integral is ~N—12, We should
note that when § is finite and large it is not valid to
retain only the quadratic terms in the expansion of
(12), but the change in the result is a numerical factor
in the first few factors of the product which can be
computed in detail if need be.

For the actual overlap (12) to be finite, §, must
vanish as #—0 fast enough to converge the first sum.
This gives us a Fermi-surface structure of a width W
which we may define by setting

© 52  F
S —m=2, (14)

In later sections and the Appendix we handle this
structure in more detail, working out as best we can
the additive numerical constants in expressions like
(14), which is correct to logarithmic accuracy. These
constants will be vital to the later evaluation of the
energy.

Let us estimate the contribution to the third sum
in (13) coming from the region of the resonance at
L4 by assigning a width A to that resonance as follows:

N—n

N—n _— 2
ZMQ_ S (ym)

m=1 m2 m=(Eg+A)p--n
~[(Eat8)p—nT— (V=)

The sum over » of the last term cancels the second
sum in (13); the first gives us

X 6n2 1!‘ Nz (5m+n'— 6n) 2 Ed
—— ———=ln—. 15
nZ=1 N —n+ ?:1 mz=1 m? A (15)
Thus
Sor=(AW) 12/ ExKL1. (16)

(The contribution of n~Wp to the second two sums
is not logarithmic, though it may, of course, be finite:
All calculations are of necessity limited to a kind of
logarithmic accuracy.)

The actual evaluation of the desired matrix element
(9) requires one more trick of manipulation with these
overlap determinants. Acting on ®; with C4 is not
an operation which is easy to evaluate numerically,
but physically it is clear enough what that does: It
removes the resonance at E; and leaves the phase
shift at all energies above E, shifted by . It is an
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Fi1c. 2. Phase shifts of the wave function obtained by multiplying
by one component V3, of the single-particle potential.

excellent approximation to consider ®; as a projected
wave function in which the projection operator 1 —n4; =
0, as & is projected on 74=0. Then except at the
resonance near Ep these may be changed into each
other by multiplication with Cz or Cg'.

We then wish to compute (D _xCi") Ca®y. Now Cady
is a wave function with one less electron than &, but
because their phases are now shifted by r at the Fermi
surface the energy levels match precisely at both #>> Egp
and at #=0. We now insert into C;®; a wave function
having constant amplitude Vg for each yy, in &), which
is to say our overlap determinant now looks like

T (O, ¥t (9, %F) .

1 (¥, ¥t) e
1

Via .
1

(17)

1

1

To evaluate this we resort simply to the sum of the
minors of the first column. The Mth minor is now an
(N—=1)X(N—1) determinant with the Mth wave
function W~ omitted. The nm element of this Mth
minor is (we again assume that only one phase shift
varies, for the sake of simplicity only in this case)

sinmréy,
Danz_—'— )
[ n—m—+0,]
m=1-+N—1,n=1,2-+-M—1, M+1---N
sin (w8, ™)
= —son(M—
7an~m+5n'M] %gn( n))
n=1ee+N—1 m=1:++N—1, (18)
with
8, M =5, m<M
8/ M=5,+1, m>M. (19)

The effect of the sgn function in (17) is just such as
to remove the (—)* in the minor expansion of (17),
so that the net result is that the kth matrix element
is just obtained by introducing a saltus of = in the
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phase shift at 2 (very little to our surprise: that im-

plies simply dropping a state at that point). We show

in Fig. 2 the phase shifts including the saltus at ¢.
Thus we have

sinmré, ™

Z M= Z Via €xp {Z In ————— 5.0)
M 5 12,74 BnlM
+ > [m (1+-———m.—) In (1+- )

m<n n -m

(-]

6k>> W .

M
ot ~__ 1 i -
ln[Mk /de] (ln —|— nZ_‘l N n

PHILIP W. ANDERSON
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with M =exp. Again, keeping terms only to logarithmic
accuracy in the exponent, we may limit ourselves to
the quadratic part of the exponent, as in (13). The
major difference between (20) and (13) is that now,
because of the saltus in §, there remains an actual
divergence, which together with the N—'/2 dependence
of Vig and the sum over %k combines to make (20)
finite as a whole, while it would not be so if the Fermi-
surface structure were omitted.

The most important range for ¢ is Eg>e>W. In
this range the effect of the saltus is to replace the
smooth cutoff at E4 by a sharp one at €. Let us com-
pute this element:

SR

n=Wp m=M—n m2

=j |t 3 ot 3 (- -
- 2 w n=Wp N—-n n=Wp
—3i[Ine/W+1InM ] (21)
(we remember that M =e¢,p and p is of order N, so that we get ~N—12, as stated.) Thus we have, for
6k>>W:

M 0""(3”“(6/211’) 1/2I/V1/2de/P1/2€k (22)
The factor (2w/e)7'/2 comes from the evaluation of the energy. The result is
nonlogarithmic factors at the saltus given in the Ap- T - )
pendix. The factor e'/4 is the result of an approximate InEa/ WE1.215/¢"(Ea/ V"),
evaluation of the sums involving the Fermi-surface W=2E,exp(— Ey/4.48pV?)= Egexp(—1/4.480J), (26)

structure.

At this point we have enough information to deter-
mine W variationally to logarithmic accuracy. The
excitation energy of &, relative to (®'+&) is | Ey|
[the kinetic energy (8) is insignificant]. Since also
(22) is small on this scale as is So; we may take a=3V2
and

—\@(Zk: M)/ | Eal, (23)

and the energy gained by the 8 admixture is (a factor

inside the logarithm is neglected)
E2—2(3 M)/ Eq
k

=— (2 | V 2/ Eg) W In2( Eo/W).

The energy loss may be calculated from (8), again
using the Appendix to get the result approximately to
the next order better than logarithmic:

(24)

2 E
Fa== [ sin% In = de,
Y €x
~1.215(W/x) InEq/W. (25)

We now vary with respect to W to minimize the

using the Schrieffer-Wolff exchange integral value. This
width is better than the result of most previous varia-
tional calculations. 2 Qur total binding energy is ex-
tremely sensitive to details and to higher-order terms
since the lowest-order approximation (26) cancels out
in the binding energy and the next correction to the
In must be kept. For the record, it is

— Byt Ey= Ey=—1.215(W/x). (27)

If our estimates are correct, this is larger than that
obtained in other variational calculations.?

% With the numerical factors as we have used them, we can
identify V?/Eq as Kondo’s J, and then our variational energy is
much lower even than his in Ref. 13, which he believed (but is no
longer certain) was already too low with respect to perturbation-
theory extrapolations. Excessive weight should not be placed on
such comparisons, since all variational theories leave out pertur-
bation-theoretic terms which are algebraic in J: One makes the
implicit assumption that perturbation theory starting from the
new ground state will not give results differing by an amount
greater than ~W /D because of the Fermi-surface structure rela-
tive to the usual perturbation theory, since only that fraction of the
electron states are strongly perturbed, while the perturbation-
theoretic energy comes from the whole spectrum. It should be
noted that Kondo’s wave function is rather close in effect to that
used here, being much more specialized in its choice of the same set
of scattering states for each spin, but allowing for more freedom in
the off-energy-shell parts. Nonetheless, the motivation and physi-
cal meaning of his calculations are very different from ours.
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The cancellation of the biggest terms in E, has an
important physical meaning. This is that the kinetic
energy of the Fermi-surface structure (which is of the
nature of a bound state) is considerably larger than
its binding energy ~W. Thus the uncertainty principle
does 7ot require that its extension in space be of order
iVe/W, but rather of order hvp/Ei~ (fiveg/W) Eq/p??,
a factor ~1/Jp smaller. This makes more plausible
the apparently surprising fact that strong interaction
effects are not observed in the ~10~% concentration
range.

Next we attempt to get some indication of the de-
tailed behavior of & for low energies <KW, Again the
basic energy-balance problem is controlled not by the
low-energy matrix elements but by the fact that § for
low energies enters critically into the high-energy ma-
trix elements. This enables us to write down a precise
equation in the limit A/E;—0 (weak coupling: the
Kondo limit) for the variation of § with energy, even
though all our other numerical results are approximate
even in this limit. That is, there are three ways in
which 4, as a function of energy near Ep affects the
multiplicative factors outside the logarithms in (24)
and (25):

(a) Asin (13), the term involving W in (21) is the
result of a sum over #:

exp(—% D 8:.2/m).

Given that 6, is some function

d=f(es/ W), (28)
we have
0,2 Bk , [ €n den_ E;_,
S () St
o (L@ ol da
re | + fo [Fa) =115 (299)

I, depends on the form of f and not on the scale factor
W, which may be defined arbitrarily so long as fap-
proaches unity for ¢/W>>1 and 0 for ¢/W<1. This
arbitrariness leads to no difficulties in the variational
problem: the scale factor cancels out.

(b) A factor which we ignored in the approximate
evaluations (21) and (16) is the factor common to
both matrix elements,

o3 RE 5

m2

or at least that portion of it coming from the Fermi-
surface structure. This term is vital in the present
problem, because (29a) does not prevent &(e) from
becoming infinitely steep at some point other than
e¢=0. This is the term, in fact, which enforces continu-
ity of f. Clearly it is qualitatively proportional to
(dé/de)? but that is not an adequate approximation to
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it. The quantity which enters, then, is
exp(—%I,,),

~ [0 TP ()
I [ dx / S L@+ =2, (29)

Clearly if f—0 as x—o0, the upper end is highly con-
vergent and may be extended to «.

(c) Finally, there is a form-dependent term multi-
plying the logarithm in (8). Here we have made a
special assumption: that in the HF solution both reso-
nances are far from the Fermi surface. Thus §t+ 8, =,
and

sin?8; %= cos?2md () .

This is a specialization for convenience; in general we
should have 8xt+8,~=a(k), &t — 8~ =0, where a(k)
is a function determined by electrical neutrality at the
Fermi surface and by an auxiliary variational proce-
dure elsewhere. Nevertheless, it is easy to show that
with given o the energy varies with cos*3wd. Inserting
(28) in (8) we have

2W [
AEz—W?/ dx cos*ymf (x) (InEy/W+1nx).
0

Thus we have a third multiplicative constant outside
the logarithms, which again in principle is scale-inde-
pendent.

I.= /o “ dx cos’3mf(x). (29¢)

Now let us write down the total energy including
the form-dependent factors (29);

AE= (2/7%) I,W InEy/ KW
—(p| V ¥/7E) W I Eo/ KW exp[— (I+1,) ]. (30)

K, and K; are form-dependent additive terms, which
would be vital in getting the energy exactly, but do
not determine W in the limit ES>W. In that limit
clearly the variational problem controlling the form of
¢ is to minimize 7, and I, keeping I, fixed or vice versa
(Za and I increase with 8, and I, decreases). This may
be done with a Lagrange multiplier,

0(La+Iy+N1,) =0, (31)
where from (30) X is essentially of order unity:
N 1 . 31)
(pVZ/Ed) lnEd/W

Performing the variations in (31) we get

*d
B2 [0t -]

- / %2 [f(ay) =f(x) 1= 4(x)) sinaf(x) =0. (32)
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This nonlinear integral equation is probably not solu-
ble in general, but limiting behaviors can be deter-
mined. First let us examine the behavior at the Fermi
surface (#—0). Here the last term is linear in f and is
completely dominated by the first two, each of which
can be singular as x—0. First, we observe that f must
go to 0 more slowly than «, for at =0 the second

term reduces to
/‘m dy
b
0 3’2

which is infinite if f~ux, and finite if f~a'*¢; while
f(x)/x goes to a finite nonzero limit if f~x, and to zero
if f~x!te, On the other hand, f must go more rapidly
to zero than (Inx)~Y2 in order that the integral I, be
convergent. By trial, we discover that

f=Aatl, a1 (33)

gives an exact solution for the first two terms of (32):

1g
Axileg Agre / 272[2—(1—z)1/2—(1+z)1/2]
0

@ d
— 4z [ 2 L4e-11-0.
1

The integrals are barely convergent, but elementary.?
The solution cannot proceed in series starting from
this term because the third term has high-end singu-
larities.

To estimate the large-» behavior where f is smooth,
the second and third terms may be dropped, and we
get

1/a~% (7)) sinm(1—f)=23(x™\) (1—F)

4 /m0\x, >1. (34)

Again, the peculiar form of the second term prevents
straightforward series solution. An approximate form
which fits both ends is

)

In conclusion, in this paper we have formulated a

(35)

2t This form has somewhat indirect verification from several sets
of experimental data. A preliminary calculation of the single-
particle excitation spectrum indicates that ds/dE~E™2 is inter-
pretable as a peak in the density of states. This would give x oc 712
at low temperatures, which fits well a number of data: T. H.
Geballe, B. T. Matthias, A. M. Clogston, H. J. Williams, R. C.
Sherwood, and J. P. Maita [J. Appl. Phys. 37, 1181 (1966)]
mention this as a good fit to data on Fe in Ir; and it also gives an
excellent fit to the data of M. D. Daybell and W. A. Steyert
[Phys. Rev. Letters 18, 398 (1967) ] on Fe in Cu. D. R. Hamann,
Ref. 7, arrives at a similar behavior from the Nagaoka theory. If
we may identify § (£) with 8(7"), the temperature behavior of the
Fermi surface phase shift, in some cases the resistance may be
ocd2oc T, which is a rough fit to data on Fe in Rh of B. R. Coles,
EPhys. Letters 8, 243 (1964) ] and on Fe in Ir of M. P. Sarachik

to be published).
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new type of wave function for an impurity in a metal.
The idea of this wave function is relatively simple:
that is, the wave function is to be made up out of
several configurations. For each configuration a differ-
ent set of one-electron wave functions is chosen vari-
ationally. The entire complexity comes from the pres-
ence of the Fermi surface, which seems inevitably to
bring an infinite number of these wave functions into
the computation, and leaves one with the serious tech-
nical problems, first of parameterizing many-body wave
functions with an infinite number of degrees of freedom,
and second of evaluating matrix elements between wave
functions differing for each of an infinite number of
particles. The techniques we have found for these prob-
lems may not be unique but are usable. The only
serious competitor would be the use of a pseudo-
potential varying from one component of the state to
another, but the matrix-element evaluation would re-
main a problem.

The basic difficulty seems to be expressible in con-
ventional many-body theoretic terms as a divergent
vertex correction

(Thar)?

k,k! (ek_ek’)2

to the scattering matrix element. The basic structure
of our idea for dealing with this is to introduce two or
more different ‘“vacuum” states which are defined so
that these corrections can be handled, at the cost of
there being matrix elements of JC between the differ-
ent vacua. (This idea will be clearer when we discuss
the calculation of the excitation spectrum in a subse-
quent paper.) Some of the more standard techniques
were attempted but did not seem to work; of course,
we cannot guarantee that none of them would.

This technique, and our methods for computing ma-
trix elements between disjoint ‘“‘ground” states, may
have much wider applicability. The basic infinite vertex
correction seems to appear in a number of optical-
transition problems as well, 2 particularly x-ray emission
edges and possibly even in ordinary optical transitions
in metals. Our methods of matrix-element evaluation
are still effective, but unfortunately in the optical case
the divergence due to the finite §( Er) actually occurs
and the complicated problem of the full spectral dis-
tribution of the matrix elements comes to the fore.

I would like to acknowledge specific suggestions of
value from J. M. Luttinger, J. J. Hopfield, W. L.
McMillan, J. Kondo, and D. R. Hamann and many
valuable discussions with these and many others, in-
cluding W. Brinkman, L. Dworin, J. Appelbaum, J. M.
Rowell, T. Geballe, M. P. Sarachik, and A. M. Clog-
ston.

22 This aspect of these methods has been evolved in conversa-
tions with J. J. Hopfield and D. R. Hamann. There is some rela-
ltjolimh)ip to the results of G. D. Mahan, Phys. Rev. (to be pub-
ished).
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APPENDIX. EVALUATION OF THE
NONLOGARITHMIC FACTORS IN THE
MATRIX ELEMENTS

In order to calculate the correct width of the reso-
nance structure (which should of course agree at least
roughly with the Kondo temperature as calculated from
perturbation theory), it is essential to get at least the
multiplicative factors correct to better than logarithmic
accuracy. We find that the additive constants are more
complicated (although in principle they could be done)
and that even the multiplicative constants can be at
best approximately evaluated.

There are several places where such factors enter.
The simplest, if trickiest, comes from the power series

sinzdy, * m™ On
I (1+5,)
nel TOn  mei
We use the product expansion

sinwén;H<1+ )( @)
Ton m=1 m

and, renumbering the factors in the denominator of
(A1), we find that many of them cancel against the
corresponding ones in the sine expansion (including
all those which go to zero as e—0). We are left with
the following product:

IVINfI"(14 >H(1+> Il (1ﬁ).

n=1 m=1 m=n M/ m=N-—n+1 m

Since 6 is continuous, no large terms appear in the
first product; and since &y and all those near it are zero,
the last product is also highly convergent whenever
m—1. We are left with the middle product. Our ap-
proximation to this kind of product (which is inde-
pendent of any particular numbering of levels) is to
exponentiate and expand the logarithm. This is very
convergent above some value of # and m>>1, so let us
evaluate it only up to K, first by our approximation
(setting, now, §,=1):

TTIT (tmmvexp 3 S n(14m,

n=1 m=n n=1 m=n

K

K
~exp Z ; (m1—

n=1 m=n

1/2m?),

K‘\
K—3 2 (n=K™)},

n=1
~exp{K—3 InK+3}}. (A2)

(The sum of 1/ can be done more accurately but our
approximation has been to neglect the lower limit of
integrals in the quadratic terms, so we maintain con-
sistency here).
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expansion in § which we have made in evaluating M*,
This breaks down at the saltus in § because there we
have factors 1=4=68/m, where § is not small and m is
not large. Consider the matrix element again in the
range e>W.

The wave functions at energies below ¢, are identical
and may be ignored. From ¢ we start out with a phase
shift of = [let us imagine actually that it is #(1—e¢)
and go to the limit e—0 to keep everything finite at all
times]. From 7 the phase shift decreases continuously
toward zero at the Fermi surface; let us continue on
above the Fermi surface to some number &, introduc-
ing zero shifts so that the upper-limit terms are negligi-
ble. Then, using the algorithm and numbering our levels
n from the one above ¢, the matrix element is formally

(A1)

The same product may be evaluated exactly. It is

(1+1/1) (143) - - - (14+1/K)
X(1+3) (A+3) - (1+1/K) X -+
_(B4DE (K41D)EH - K e ,
Kl (K+1)! KT (2p)we” (A2)

The ratio of these two evaluations is (e/2w)'2, which
we have inserted in (22).

The other multiplicative factors come from the three
integrals we have called I,, Is, and I, in Eq. (29),
which depend on the detailed Fermi-surface structure.
These can not be done analytically even with the ap-
proximation for f(x) given in Eq. (35), but we believe
that an accurate enough estimate is obtained by using
the simple function

Fle/W)=2e/ (e+W). (A3)
Then

; 572— In ;iV —1, (A4)
and

_[" ty o« )2_}
.rb_fo dx/o (1+x+y ) T (A5)

I. may also be calculated explicitly.

x fee]
= / dy sin? =
+1 1 2y

/2 sinZx
T / 5 dx
0o X

=ir{—2/m4+Si(r) } =4r(1.215). (A6)

These values have been inserted into Eqs. (22), (24),
and (25) in order to obtain the variational results
given in the text.
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