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The Lamb theory of the optical maser is extended to Gfth and higher orders in the perturbation by the
time-dependent iteration method, and by a rate-constant approach obtained by removing the time de-
pendence in the Hamiltonian with a unitary transformation. The third- and 6fth-order Fourier projections
of the atomic polarization are integrated exactly over the atomic velocity distribution, assumed Maxwellian,
and the results are then valid for any ratio of natural linewidth, or cavity detuning, to the Doppler width.
Dominant fifth-order terms occur whose variation with cavity detuning depends only on the natural line-
width of the transition. These produce an increase in laser intensity versus cavity detuning, including a
reduction of the dip phenomena, and are effective at low levels of laser excitation. In addition, third-order
and numerous fifth-order terms occur which involve sharper resonances near line center because of Doppler
interference effects. Such terms involve the individual decay constants of the states in a complicated way.
Owing to cancellation effects, the totality of such terms is in general small compared with the usual saturation
term and the dominant 6fth-order contributions. This considerably simpli6es the deduction of higher-order
perturbation terms. Collision processes would also reduce their effect as a result of their higher-order atomic
response functions, but the theory is reasonably consistent with present experimental characteristics even
without this possibility. The rate-constant approach facilitates the deduction of the various higher-order
perturbation results and would be of even greater utility in discussing the Zeeman laser, particularly for
axial magnetic fields and complicated transitions.

C. INTRODUCTION

~ ~ ~

THIRD-ORDER perturbation treatment for the
.L atomic polarization generally suSces to determine

the steady state of the laser oscillator at low levels of
intensity. Such an analysis, however, gives no indication
of the level of laser intensity, or excitation, for which
the results, such as steady-state intensity and frequency
as functions of cavity tuning, are valid. It is thus
desirable to extend the analysis to at least Gfth order
in the perturbation, and to assess the magnitude of the
changes which then occur in the steady-state conditions
of the laser. This is particularly important for further
detailed applications of the theory, and for work in
which comparisons between theory and experiment are
made by the empirical variation of the atomic param-
eters, so as to obtain better agreement with the experi-
mental data.

The higher-order perturbation terms are also perti-
nent to discussions involving mode interactions and
polarization changes in Zeeman lasers, ' ~ particularly
under conditions of neutral coupling between say
circularly polarized oscillations in an axial magnetic
Geld. '4 For such noncoarse equilibrium states, ' in addi-
tion to changes produced by other small perturbations
such as in reflector characteristics, the higher-order
terms can play a significant role in changing the
characteristics of the phase paths of the nonlinear
equations in the phase plane. However, while our
results may be extended to such cases, we shall not

*Supported by the Lockheed Independent Research Funds.' R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).
2 C. V. Beer and R. D. Graft, Phys. Rev. 140, A1088 {1965).
~%. Culshaw and J. Kannelaud, Phys. Rev. 145, 257 (1966).
4 W. Culshaw and J. Kannelaud, Phys. Rev. 156, A308 (1967).
'A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of

Oscillators (Pergamon Press Inc. , New York, 1966), pp. 374-404.
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discuss such applications to the Zeeman laser in the
present account.

Some results on the effect of higher-order perturba-
tions on the laser have been given by Uehara and
Shimoda. ' These were mainly concerned with the
Doppler limit, although some higher-order terms in
the ratios of linewidth and cavity detuning to the
Doppler parameter were considered. Their results
showed that the Lamb dip' is affected by the fifth-
order terms for threshoM parameters as low as 1.10,
and that the steady-state intensity deduced from the
fifth-order approximation was greater in general than
that deduced from the third-order results. A dependence
of the steady-state conditions on the ratio y, /y& of the
decay constants of the atomic states, as well as on the
usual mean value y,~, was also noted. It is apparent
that such results will affect the values of decay con-
stants, or other atomic parameters which are deduced
from the third-order results, and also that some further
assessment of the relative magnitude of the various
fifth-order terms is necessary, particularly for those
which exhibit a dependence on the individual decay
constants of the atomic states.

%e shall thus be concerned with a more exact
deduction of the fifth-order perturbation terms in a
two-level atomic transition. First the results will be
derived by the time-dependent iteration method follow-
ing Lamb's procedure, together with the exact integra-
tion over the atomic velocity distribution (assumed
Maxwellian) of the various terms which occur in the
spatial Fourier projection of the atomic polarization
onto the single cavity mode of oscillation considered.
These deductions will then be valid for any ratio of

6 K. Uehara and K. Shimoda, Japan. J. Appl. Phys. 4, 921
(1965).

r W. E. Lamb, Jr.
&

Phvs. Rev. 134, A1429 (1964).
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"Y(t)

which must be transformed onto the spatial par t of
the cavity mode given by

U„(z) = sinIC„z,

and finally inserted into the conditional equation

,' lg —i(—2v~„+vv„E /Q ) +E„20„(Q„—(v,„+j) )]
X expI i (v—„t+y) }+c.c.

= -'; 1(v'/Eo) P.(t) exp I i (v„t+—y) I + c.c., (6)

Fso. i. Two-level laser system and associated parameters.

Doppler width to natural linewidth or cavity detuning.
Next we develop what might be termed a rate constant
approach to the problem by removing the more rapid
time dependence of the optical perturbation by a
unitary transformation. This has the advantage that
the equations are more readily deduced for any order
of the perturbation, and the necessary integrations
over the velocity distribution may then be Anally
made by inserting the spatial Fourier transform onto
the cavity mode by analogy with the time-dependent
iteration procedure. This effective-rate-constant ap-
proach would be of even greater utility in deducing
the various coupled equations involved in Zeeman
lasers, particularly in the case of an axial magnetic
field, but we shall reserve such an application for a,

future account.

2. DIRECT II'ERAYION PROCEDURE

A. First-Order Theory

Referring to Fig. 1 and following the method devel-

oped by I.amb, 7 we write the time-dependent equation
for the density matrix as

p= —iL&, t]—lLrt+t 1'], (1)

with the Hamiltonian given by

where the unit vector 1 denotes the polarization of the
emitted radiation.

Following the iteration procedure and changing the
order of integration so as to integrate first over all
values of $0, the time of excitation of a particular
atomic state, we obtain the first-order result

p,bar(z, zr, t)

= —itr*/(2A, ) E(t) expL —i(v„t+4r) ]
expL —(p i T)r']N—(z, t) U„(z zrr') dr',—(7)

where N(z, t) is the excitation density, y= ', (y.+y-r)
T= (v~ —or, r, ) (cavity detuning), sr= t t', and or,—r,

=
co,—co~. Retaining only appropriate terms, the factor
U„(z) U„(z rrrr), whic—h occurs in the spatial Fourier
projection onto the cavity mode, viz. ,

P o&(v t) =(2/I. ) P~'r(z v t)U (~)dz
0

may be reduced to the term

g cosICvT .

This may now be substituted into Eq. (7) and the
integrations over 7-~ and s may be carried out.

Integrating finally over the assumed Maxwellian
velocity distribution, we then obtain

p~ —— iver, */(4—A) E(t) expL —i(v.t+y)]N(z, t)I(zr), (10)

where

(. v)
+=j

(ye )
(2)

ccr

I(z) = I exp ( —z'/zz')

XP(y —iT—iÃzr) '+(y iT+iKrr) ']d—rr (11).
and the time-dependent part of the perturbation as

fiV(t') = ——',E(z —v(t —t'), t')6*exp} —i(v„t'+P)]. (3)

Here I' is a diagonal matrix representing the phe-

nomological decay of the atomic states, 6 is the matrix
element of the transition a—+b, and co, and co~ are the
energies of the atomic states in angular frequency
units. The rotating-wave approximation is automati-
cally introduced by Eqs. (2) and (3). The equation
for the macroscopic atomic polarization is then

P:(t) =~~. (t)+~"~.(t), (4)

Here E=2zr/X, and —',rrzM'=kT„where T. is the atomic
temperature. The integra, tions a,re readily performed
using the relationship' '

1 " exp( —tz)
. dt= iZ( (, q—), —

rr'r' rt+i(+zt

where r7 is positive, and Z($, izt) is the complex plasma.

' B.D. Fried and S. D. Conte, The I'Lasma Dispersion Function-
HiLbert Transform of the Gaussian (Academic Press Inc. , New
York, 1961), p. 1.

' 8, R. Schlossberg and A. Javan, Phys. Rev. ISO, A267 (2966) .
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dispersion function. ' The contributions from the +Ev
terms are in fact equal, and we obtain the usual result

t ~(t) = —(a*/MCu) —,'[E(t)]
y exp[ i (—v„t+y) ]tVZ($, r/), (13)

where (= (v„co~)—/Ku, rt= v/Eu, and X is the excita-
tion. Equation (12) is an important relationship be-
tween the velocity integral and the Z function, since

the various integrals which occur in the higher-order
perturbations can be resolved into partial fractions and
integrated by this relationship or its derivatives.

B. Third-Order Results

In a similar way, carrying out the iteration to third
order and simplifying, we obtain the basic third-order
integrals

t.,&'&(s, ~, t) =i
~

t1 ~' t1*/(M, ') E„'(t) exp[ i(.—„t+y)]

d&rd&rrd&lrr exp[ (v —iT) rr] exp( —v„ irrr) exp[ —(v&gT) rrrr]

yiV(s, t) U„(s wr') U —(s i (r'+—r") )U. (& ~'(r'+r"+r"') ), (14)

where as before we retain only signihcant terms in the
expansion, and we consider only a single cavity mode.
The exponential form of these expressions must now
each be inserted into Eq. (14) and the integrations
over s, 7~, etc., performed, and then finally over the
velocity distribution. Again we note that only the
positive exponent in each cosine term need be con-
sidered, as the negative exponent gives the same
contribution. The integrations over the velocity distri-
bution are performed by expanding the various terms
into partial fractions and using Eq. (12), together with
the equation

1 exp( P)—
, dt= iZ'(-&—, it), (16)

(rt+i /+it) '

which is derived by differentiating both sides of Eq.
(12) with respect to the real part of the complex
argument. YVe shall merely indicate the results of these
integrations, omitting the constant factors in Eqs. (14)
and (15). In this respect we remember that a factor
of 2 from the integral

L

E(s, t) ds=2X
L (17)

iiiust finally be inserted,

where 7 =t' —t", v =t"—t"', and the W sign in the
exponent means that the integrations are performed
with the negative sign in this term and then with
the positive sign and the results added. The term
exp( —v,&) means that v, is to be replaced by v& for
an additional contribution from state b.

The product of the four sine functions now involved
in Eq. (5) for the spatial Fourier projection onto the
cavity mode may now be reduced to the expression

'[cosEp(rr -rrr )+ co—sEv(r +r )

+ cosEv(r'+2r" +r"')], (»)

The term cosEv(rr r'rr) giv—es the dominant third-
order. contributions

I (v.Eu) '[ i(v—iT)—'Z(f, n)+v 'Z'((, ~)]
+(the same with vb replacing v, ) }. (18)

The costs(rr+rrrr) term gives the contributions

I -v,.-'(E.)-'[Z'(~, .)+Z, (~,.)/6
+(the same with vq replacing v ) }. (19)

The cosEii(r +2r +r r ) term is more complicated,
but gives the following third-order contributions:

I (v —v./2-iT) '(2Eu) 'L —iZ(O, %)]
+Lv. 2(v —iT)]—'(Eu) 'L Z'(& —~)]
+2[v,—2(v —iT) '(Eu) 'iZ(f, i7)]

+(same with vb replacing v ) },
and

I l[v. 2(-v iT-)] '( -Eu)-' Z-(~, ~)/~
—i[( v- v. /)2'+ T'] '(2Eu) 'Z(o, n.)

-l[v.-2(v+ T)]-'(E )-'Z(-&, .)/(-f)
+ (same with vi, replacing v, ) } . (21)

Here the parameter q, =v,/(2Eu), and similarly for vb.
Z„and Z; represent the real and imaginary parts of
the complex Z function.

The substitution of Eqs. (13) and (14) together
with Eqs. (18) through (21) into Eq. (4) and finally
into Eq. (6) gives the steady state of the laser oscilla, —

tion to third order in the perturbation. It is apparent
from Eqs. (18)—(21) that, in general, all terms must be
considered in the expression for the saturation coe%-
cient P of the laser oscillation, for which the real part
of these expressions is required. The contributions from
the spatial transform factors cosEii(rr+rrrr) and
cosEi(rr+2rrr+rrrr) are small when g is quite small,
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but may become signi6cant at values of g around O. j.
or more, and which may be encountered in practice.
This applies particularly to the contribution given by
Eq. (19).The results in Eqs. (20) and (21) due to the
COSKs(rz+2rzz+rzzz) factor are seen to depend on the
individual decay constants p and p&. Some cancellation
between the various contributions is apparent, however,
and it will appear later that the over-all contribution
from this term will be small, though possibly not
entirely negligible in all cases. The various expressions
in Eqs. (20) and (21) also vary more rapidly with
cavity detuning T, due to the mutual interference

between the Doppler-shifted traveling waves involved
in them, and which is least around T=O. Nevertheless,
the over-all curve of the contribution to the saturation
coeflicient P turns out to be a relatively flat function of
cavity detuning T due to the cancellation between the
various contributions. A similar behavior will be made
evident in the similar fifth-order contributions which
involve p, and p& explicitly.

C. Fifth-Order Terms

Proceeding to a fifth-order iteration of Kqs. (1)
through (3) and simplifying, we obtain the equation

p,g&@(s, 5, t) = i
~
6—~4 5*/(32fP)E„(t) exp[ —i(v„t+y)]

X d&zdrzzdrlIIdrzvdTv expL (7 iT) rz] exp( Za, trzz) expr (r+iT) rzzz j
0

X exp( —y,g ) expL —(y+iT)r jN(s, t)U (s sr )—
X U (s &(&I+&II))U (s &(&I++I+Ezzz) )U (s &(&I+&EI+&IIE+&Ev))

X U (s s(r'+r"—+r'"+r'"+r ) ) (22)

All combinations of the plus and minus signs in Eq. (22) must be taken together with all the indicated replace-
ments of p, by p& in the 7- and 7. exponents, and which must be combined in all ways. The product of the six
sine functions which now occurs in the spatial projection onto the cavity mode given by Eq. (8) may again be
reduced to the following signihcant terms for our single cavity mode; these are

Ezs[cosK'v(t +r +T ) + cosK'v(r I I ) + cosIA(r +I r ) + cosKs(T +T 7 )], (23)

which by analogy with the similar third-order contributions not involving v may be expected to give the domi-
nant fifth order contribution, and also the terms

,PcosKs(EI+2r—+r +rv) + COSKs(r rz 2r r— )—+ COS—Ks(rz+r I+2r "+rv)

+ cosKs(T T 2TIv rv) + cosKs(XI+22 +r I+2r "+rv) + cosKs(rz+2r +3TIII+2zzv+ v) j (24)

which by comparison with the term rz+2rzz+rzzz encountered in the third-order results, may be expected to give
terms involving sharp resonances around line center, but with cancellation effects leading to a small over-all
contribution from such fifth-order terms.

The various terms in Kqs. (23) and (24) must now be considered separately by substituting them into Eq. (22)
and performing the simple integrations over s and over the 7 factors as before. The results are then integrated
over the velocity distribution by resolving the resultant terms into partial fractions and then using Eqs. (12)
and (16), together with the additional relationship

(23)

where the primes again denote the second derivative of the Z function with respect to the real part of the com-
plex argument. There is no difFiculty in principle apart from the number of terms which must now be considered.

Thus substituting Eq. (23) into Eq. (22) and performing the integrations we obtain the following contributions
from the various velocity integrals which occur. These results are given for p in both the r'I and 7- exponents
in Eq. (22), and those for the z& substitutions are readily deduced in this case since these terms are not involved
in the velocity integrals deduced from Eq. (23).We indicate the integral involved in Eq. (22) by the signs of theiT
terms involved in the rzzz and rv exponents, viz. , ( —,—) etc., and we omit the constant term involved in all
the integrals.
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cosEv(r +r r—) term:

(+, +)

—(i/2)(v —iT) '(EN) 'Z(4n)

,
—(2)(v —iT) '(KN) 'Z'(k, n),

(i—/4) v '(EN) '(Z(t, n).+Z( 4—n) )

.
—(2v) '(«) 'Z'( —k, n),

-( /4) v-'(7- T)-'(E )-'Z(~, ~)

(26)

(22)

(—,+) and (+, —) ~

.
—(4~) '(K ) 'Ã( —4n)/( —&)+(v—'T) 'Z(4n)/H.

cosKn(r"+sr rrIr) —term:
—{'/2) (~—T) '(K ) 'Z(& ~I

(——) —(-,') (y iT) '(—EN) 'Z'($, q-),

—(i/4)v '(v+iT) '(EN) 'Z( —4n)
(+ +) -(!)(E )-'I v-'Z(~, ~)/~+(v+ T)-'Z(-&, .)/(-~) j,

-('/4)7 '(v 'T-)-'(-«) 'Z(~, .-)

. -{-:){K )- Lv-Z(-~, .)/~+(. -'T)-Z(~, ~)/a,
-('/2) V-'(E )-'Z(-~, .)

(+ —)
(l)7 '.(—EN) 'Z'(k, n)

cosEv(r" rr err—r) te—rm:
—(i/2) (v —iT) '(KN) 'Z(4 n)

(——)
.
—(l)(v —iT) '(«) 'Z'(4~),
—(i/4)v '(v+iT) '(EN) 'Z( —4~)

(+, +)
.—(l)(«) 'Cv 'Z(4n)/k+(v+iT) 'Z( —t, n)/( —5) j,
' —(/4)v '(EN) 'LZ(t n)+Z( —5 n) j

(—+)
. —(2)v '(«) 'Z'(& n),

-('/4) v-'(v-'T)-'(E. )-'Z(~, ~)
(+ —)

.
—(-')(E ) 'S. Z( —&.)/( —&)+(v—'T) 'Z(&.)/n.

cos(rr+r rr+r~) term:

(—,—) (i/2)(«) 'Z"(4n),

('/4) T-'(«)- Ã(~, ~) ~/+Z(-~, .)/( ~)j-
(+ +)

.
—(i/2) T '(«) 'Z'( —5, n)

-('/4) T-'(E )-'LZ(~, .)/~+Z(-~, .)/(-~) j
(—,+) and (+, —)

(i/2) T '( «)-' Z(& g)

(33)

{34)

(33)

(36)

(38)

(39)

Since these integrations do not involve the exponents r I and v~~, the required interchanges of y and y~ in Eq.
(22) simply multiply all the above results by the factor (2y/y, yq) '.

The same procedure has been carried out for all the terms in Kq. {24), but the resulting equations are too
numerous to write out in full. W'e shall content ourselves with writing down the results obtained for each such
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term when the signs of the i T exponents in Eq. (22) are taken as (—,—). These results will be useful later on
when we consider the relative magnitudes of the fifth-order contributions.

Thus, the cosICe(rv i—2—rrr r—) and cosEii(r' i — 2r—v rv—) terms each give the contributions

—(i/4) (7-'T)-'(7.+2(7-iT) )-'(E )-'Z(t, ),
—i(7—7,/2 —iT) '(7+7,/2 —iT) '(2EN) 'Z(0 g )

—(i/2) (7—iT) '(7.—2(7—iT) ) '(EN) 'Z'(.",~),
—iL7.—ti(7 —iT) 1

4(7—iT)'(7 2(7—iT) )—'Eii Z(~, ~)

The cosEi (r'+22 +r +i") and cosEv(r +r +2r "+r') terms each give the contributions

—i (7—7./2 —iT)—'(2Eu) —'Z(0, g.),
4'(7—. 2(7—'T)—)-'(«) 'Z(t-, ~),

2(7.—2(7- T) )-'(E )-'Z'(r, ~),

(/2)(7. —2(7—T)) '(E ) 'Z"(E, n).

(40)

(41)

The required interchanges of 7, and 7b in Eq. (22) are then obtained by replacing 7 by 7& throughout and
multiplying the sum of the results by 27/7 7i,

Similarly, the cosEv(r'+2m"+rrrr+2r'"+r") term, with 7, in both r" and r'v exponents, gives the results

8(2—(7 iT)—7,)—'(2KN) 'Z'(0 g )

24i(2(7 —iT) —7.) 4(2KN) 'Z(0, iI.),
(i/2) (7.—2(7—iT) ) '(K~) 'Z"($ ~)

4(7. 2(7 iT)—) '(«—) 'Z'(5, n),
—12i(7—2(7—iT) ) '(EN) 'Z(&—, g),

—

while with yq in the z exponent and y in the r ~ exponent, and vice versa, we obtain the results

i(7g —7.) '(7—7b/2 —iT)—'(2Eu) —'Z(0, gi,),
i(7. 7~) '(7 7./—2 iT) '(—2K~) —'Z(0, %),

(/2)(7 —2(7—T)) "(7.—2(7—T)) '(E ) 'Z"(5, ~),

2(7, —2(7 —iT) ) —'(7i, —2(7—iT) ) '((7b —2(7—iT) ) '+(7, 2(7 iT) ) 'j—(EN)—'Z'(f, g),
—4i(7.—2(7—iT) ) '(7 —2(7—iT) ) 'L(7 —2(7—iT) ) '

+(7~—2(7—iT) ) '(7.—2(7—iT) ) '+(7.—2(7—iT) ) '](K~) 'Z($, ~).
Finally the cosKe(v +2r +3r +2r "+r") term gives the similar contributions

—27i(2(7 —iT) ) '(37, 2(7 i—T) ) '—(3Eii) 'Z($/3, P/3) )

2(7.—2(7—iT) ) '(7 —iT) '(KN) 'Z'(&, g),

8(2(7 —iT) 7.) '(2—(7 i—T) —37—.) '(2EN) 'Z'(0, q,,),
(i/4) (37-—147) (7.—2(7—T) ) '(7—T) '(K~) 'Z(k, ~),

8i(10(7—iT) —97,,)(2(7—iT) 7, ) '(2(7 i—T) —37,) '(—2ItN) 'Z(0, q,),
and

8i(7.—7i) '(2(7 —iT) —7 ) '(2(7—iT) —37.) '(2EN) Z(o, n.),
Bi(7i,—7,) '(2(7—iT) —7i) '(2(7—iT) —37') '(2Eu) 'Z(0, gb),

—27i(2(7 —iT) ) '(37 2(7 iT) ) '(3—7i 2—(7 iT)—) '(3—ICN) 'Z( —$/3, g/3),

(2(7-iT)) '(7.—2(7—iT)) '(7i —2(7—iT)) '(EN) 'Z'(5 ~)

(i/2) (y, 2(7 iT) )—'(7i 2(7 i' T) )—'(2(7 iT) )—~

L3(2(7—iT)) ' 2(7i, 2(7—iT)—) ' —2—(7,—2(7—iT)) 'j(KN) 'Z($, g).

(42)

(43)

(43)
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The interchanges of p, and» now require the substitution of » for p, in Eqs. (42) and (44), and the multi-

plication of Eqs. (43) and (45) by the factor 2.

D. Extension to Higher Orders

A comparison of the third- and Gfth-order results for p~(s, v, t), given by Eqs. (14) and (22), respectively,
indicates that the basic seventh-order integral for this component of the density matrix will be given by

p~& '(s, n, t) =i
~

6 ~' 5*/(12851)E,„exp[—i(v t+p) j
drrdriidrIEIdrivdrvdrvIdrv11 exp[ —(r—i T) r j exp( r,—br ,)

0

X exp[ —(yWiT)r ] exp( —y, ,br ) exp[ —(yTiT)r ]exp( —y, ,br )

&( exp[ —(y&iT) rvII jN(z, t) U„(s sr') —~ ~ ~

XU (s ~(Py+I+rEII+. riv+rv+rvr+rvii)) (46)

and similarly for the higher orders. The expansion of
the eight sine functions now involved in the spatial
Fourier projection onto the cavity mode represents a
tedious problem. It can, however, be circumvented by
applying the discussion given by Lamb~ on the inter-
action between the atom and the various running waves
at the diferent times t', t", etc.

Thus, if we consider the fifth-order problem again,
the accumulated Doppler phase angle of the integrals
in Eq. (22) will be given by

IArE+Es(r +rI) +Es(r+. riI+r.
~E~(rI++I+rIII+rlv)

~Es(P+PI+QII+rEv+rv) (47)

Not all combinations of the signs, however, lead to a
finite value of the spatial Fourier projection, and it
follows that the effective combinations are those in-
volving interactions with two running waves to the left
(right) and three running waves to the right (left).
This follows from the signs required of the propagation
constants, in order that the integral over 2 may give a
Rnite contribution. Thus if we take the sign combina-
tion in Eq. (47) as

aEw[rI 1(r'+r'I) + ( +rr"+r"')
(rI+rEE+rIII+rIV) (r1+r11+rIII+rEV+rV) ]

this then reduces to

&En (r r" 2r' r")— — —(49)

and is one of the terms in Eq. (24). Similarly, all the
other terms in Eqs. (23) and (24) may be obtained
by this procedure, which represents a great simpliGca-
tion of the method by which these projections were
originally obtained.

The extension of these considerations to the seventh
and higher orders follows directly. Here an effective
interaction would be with four right (left) running
waves and three left (right) running waves. A typical

term in the spatial Fourier projection of the seventh-
order atomic polarization onto the cavity mode would
then be

(1/128) cosEv(v +r' —r +r" ) (50)

3. DISCUSSION OF THE RESULTS

The fifth-order terms must now be collated and sub-
stituted into Eq. (22) and then used in Eqs. (4) and
(6), together with the first- and third-order contri-
butions to the atomic polarization, to give the steady
state of the laser oscillation. %e shall confine our
remarks to a discussion of the steady-state intensity
to 6fth order in the perturbation, the equation for
which may then be written as

g = IEE pjV3+pgb— (51)

The results of Sec. 2 may also be applied to determine
the frequency of the laser oscillations, but we shall not
discuss this any further.

Expressing the intensity in terms of the parameter

I=
I
~ I' ~/(&'»b) (52)

and omitting a constant factor of v
)
5 )' N/(28bfiEN)

in all the parameters, we then obtain the expressions

&=~'(5, rt) —rtt '~'(0 rt)

t3E=~ Im[»h —iT) '~(& ~)+2~(f ~)

i2n(~'(4 n)+Z—(h, ~)/&)],

J32=I's Imv.»[$(»/2 iT) 'Z(0, rt.)—-
+'(E )-'(»-'2T)-'(&'(~, ~)+~(~, ~) i~)

(54)

2(» i2T) '—~(f, ~—)+k((»/2)'+T') '~(0 %)

+(same with an interchange of y, and») j. (55)

and similarly for all other such combinations. The
integration of Eq. (46) may now be carried out as
before, and the seventh order perturbation result
presents no difIiculty. For the present, however, we
shall only consider the fifth-order contributions.
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factor. In any event we find. that

O ='-, PZ. (0, ~) -3~Z'. (0, ~)+~'Z" (0, ~) j (57)

when T=O. Equation (57) then gives the value fi
0.164 for g =0.2, and a limiting value- of 0.166 is q—+0.
From Eqs. (54) and (57) we then find that the limiting
value as g~0 for the ratio of pi to p is b. Figure 3 shows
the values of Pi as a function of cavity detuning T for
the parameters g =0.2 and 0.5 with Eu=100 MHz.

As already indicated, the determination of P2 as a
function of T is quite complicated due to the numerous
terms involved. This function, however, attains its
maximum value at T=0, and this simplifies the deduc-
tion of its magnitude considerably, since the four
integrals due to the sign permutations in Eq. (22) all
have the same value for a given spatial factor
cosKii(rr+2rrr+rrrr+r~), etc. The required P2 contri-
bution may then be deduced directly from Eqs. (22)
and (24), or by multiplying the results already given
in Eqs. (40) through (45) by the appropriate numerical
factors as T goes to zero. Thus for the contributions
from Eq. (40) we compute the result with the required
interchange of y„and yb and multiply by the factor
(1/16) y y,yb, and similarly for all the other equations.
Proceeding in this way we obtain the total contribu-
tions 0.03, 0.01, —0.08, and 0.01, respectively, from
Eqs. (40) —(45), which give a total P~ value of —0.03
a,pproximately at T=O. In these results the values
Eu= 100 MHz, q=0.2 and y~ ——3y, have been used.

Comparing this value of P~ with the value 0.164 of Pi
for these same parameters, we see that in general the
eGect of the P2 terms will be small for the values of g
and of the p's usually encountered in gas lasers,
although some deviation from this may occur if the
parameters get large. Even in the absence of any
collision effects, the theory is thus reasonably consist-
ent, and indicates that the curves of intensity versus
cavity detuning will be only very slightly dependent
on the P~ and P2 contributions. Also, if we introduce
some collision broadening of the atomic response
following the work of Szoke and Java, n," these latter
terms will become still smaller compared with P& and Pi,
due to the higher-order I,orentzian factors involved in
Eq. (55) for P2 and in Eqs. (40) through (45), which
determine P2. In view of these results we shall neglect
the P, and P2 contributions in what follows.

Prom Eq. (51) the steady-state intensity of the
laser is then given by

0.2

0.(

0
320 80 40 0 40 80 120

T (MHz) +

Fx(". 2. Variation of pI (full curves) and p2 {dashed curves) as a
function of cavity detuning T. Curves 1 and 2, y=50, pf, =75,
y =25. Curves 3 and 4, 7=20, y6

——30, y, =10. Em=100 for all
curves. All values expressed in MHz.

cos(7' —r ) and cos(r +7)'
terms in Eq. 15, and P2

——0.0073. Similarly, for &=0.5,
Kib= 100 MHz and yb=3y„we obtain the values pi ——

0.273+0.113=0.386 and P2=0.019. Curves of Pi and
P2 as functions of cavity detuning, deduced from Eqs.
(54) and (55) are shown in Fig. 2, for the above values
of the parameters. The i4 curves are relatively flat
functions of cavity detuning T, and give a small contri-
bution to the saturation coefficient P for the values of q
used here. It also follows from Eq. (55) that P2~0 as

q
—&0.

Similarly, we may write P=f&+$2, where P& is the
fifth-order contribution due to the terms in Eq. (23)
and P& that due to the terms in Eq. (24). We then
obtain the result:

Pi ——(1/128) ImPy'(p —iT)—'Z($, g)

—i3nv(7 —iT) '(Z'(5, 0)+Z(k n)/&)

i 3riz'(P, g) +3y(y —iT) 'Z(&, n)— —

+3Z(4 n) b3nz(4 n) /5—
+&„Z"(~, &)+i3& Z'(~, ~)/(j.

(58)I= 8/2~) [I-(I-4~/~') '"3,
(56) from which it follows that the condition

Here q& represents the relative excitation or threshold
parameter of the la,ser, and we have put P=Pi+i4,
where P~ is the contribution from the (rr+2r'r+rrrr)
term given by Eqs. (20) and (21) . The relative magni-
tudes of P, and P2 may be ascertained from their values
a,t T=O which is a maxima for both curves. Taking
q=0.2, Eu=100 MHz, y, =10 MHz, and y~ ——37„we
obtain the values Pi ——0.35910.071=0.430, where we
have separated the two contributions from the

The maximum value of this function occurs again at
T=O, and its value may be deduced by applying the
proper limiting procedure to Eq. (56), or it may be
deduced directly from the values of the integrals in
Eq. (22) which are all equal at T=0 for the same spatial

4cqk/P'( 1 (59)

must be satisfied, otherwise the value deduced from

"A. Szoke and A. Javan, Phys. Letters, 10, 521 (1963);Phys.
Rev. 145, A137 (1966).
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Eq. (58) is complex. For given values oi f and P, this
places a restriction on the value of 0., and hence on the
relative excitation parameter q&, for which the fifth-
order results are valid. It follows that the intensities
deduced to fifth order will be more accurate if the
inequality in Eq. (59) is satisimd by a fair margin,
otherwise the perturbation treatment should really be
taken to a higher order. When ~/P'((1, Eq. (58) may
be approximated by the result

10 l i i l l I I l l i I

0.8—

0.6—

0.4—

I=~/ti+~V/P', (60)

which shows that the intensity will be greater than that
deduced from the usual third-order perturbation results.
Figure 4 shows the intensity parameter I=n/Pr and
that given by Eq. (58), with /=Pi and /=fr as a
function of cavity detuning T. The parameters ICN=
100 MHz and q=0.2 have been used in the computa-
tions. The changes in the intensity curves, including
the reduction in the Lamb dip, due to the fifth-order
terms are evident. Relative excitations g& of 1.2 and
1.05, respectively, were used in the deductions, and the
inequality in Eq. (50) is then satisfied. It is apparent
that the fifth-order terms are significant at values of g&

as low as 1.05 for which no Lamb dip occurs even in
the third-order approximation with these parameters.

4. EFFECTIVE-RATE-CONSTANT APPROACH

The labor involved in deducing the higher-order
perturbation equations by the time-dependent iteration
method becomes even more tedious when more atomic
levels and transitions must be considered, as in the
theory of the Zeeman laser. It is thus advantageous,
even for a two atomic level system, to remove the time
dependence in the Hamiltonian by an appropriate time
dependent diagonal unitary transformation. " The re-
sulting equation of motion for the density matrix may
then be solved directly or iterated, as before, the process
then being much simpler since a, number of terms are
collated directly from the beginning. However, the
method is no real substitute for the more rigorous one
used in Sec. 2, and its success depends on the fact that
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Frc. 4. Variation of laser intensity I, with cavity detuning T.
EN = 100 MHz, y= 20 MHz. Curve 1, qt, = 1.2. Curves 2, g~= 1.05.
Full curves for the Gfth-order approximation. Dashed curves for
the usual third approximation.

0-= UtpU,

and the equation of motion for o- is then given by

o = —(Qo+oQt)+r,

(62)

(63)

where r is a diagonal matrix representing the excitation
rates of the various states, and where

(64)

is now independent of time. The steady-state solution
for 0 is then given by the equation"

the order of iterations may be monitored, and the
velocity terms finally inserted using the known spatial
projections of the atomic polarization onto the cavity
mode. This is possible because the effective perturbation
does not depend on to, the time of excitation of any
particular atomic state, and only the v. factors occur
in the spatial projection. The method will be made
clear by applying it to the two-level scheme shown in
Fig. 1.

The Hamiltonian may now be written as

V exp( —iv.t)
(61)

V* exp(iv„t)

and we require a diagonal unitary transformation U
such that UtHU is independent of the time. " The
density matrix then transforms into

Qo+aQt =r. (65)
0
-120 -80 -40 0 40 80 120

T ( MHz) For the Hamiltonian given by Eq. (61) the required

FIG. 3. Variation of P& versus cavity detuning T. Curve 1,El=100, y= 50. Curve 2, EN, =100, y=20, expressed in MHz.

"L. R. Wilcox and %. K. Lamb, Jr., Phys. Rev. 119, 1950
(1960); see also, W. E. Lamb, Jr., and T. M, Sanders, Jr., Phys.
Rev. 119, 1901 (1960).

'2 Here we formally identify the diagonal matrix r with the
excitation rate densities of Lamb's theory. These may be functions
of the time, but will be relatively slowly varing compared with the
time dependence of the optical perturbations„which has been
removed by the unitary transformation. Equation (56) then
follows from Eq. (54).
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diagonal unitary transformation is given by

0

0 exp(ip„t)
and from Eqs. (63}-(65) we obtain the equations

v.o i —(V*a~ V—o.g.) =r.,

vaaM+i(V*aa V—a~) =r~,

(a+b*)as, i V—{a.. are)—=0, (67)

where zz= ',v, +-iao, b= ', vq+-i(zol+1„). Equations (67)
can be solved explicitly for 0.~, but we may proceed by
ltcl ation which ls bcttcl foI' more complicated lcvcl
systems.

The 6rst-order approximations are then given by

a.. oM, r.—/V. ——rg/~=—X(s, i)

a "1=iVX(v—iT) '.

Equation {73) then gives exactly the same result as
Eq. (19) after integrating over s and over the velocity
distI'lbUtloD.

In like manner the 6fth-order contribution is given

by

a.~"'=(iV&/~)
I

V I'L(v='+vs ')~(v. '+vr')~j,
(~I) (~II) (TIII) (~IF) (~F)

(74)

where we indicate the terms belonging to the respective
v' parameters concerned. Thc vcloclty vallRtloD ls Dow

incorporated in a similar way by using Eqs. (23) and
(24) for the spatial projection with exactly the same
lcsults Rs bcfol'c. This Incthod I'cplcscnts R coDclsc Rnd

convenient way of collecting the various contributions
which arise in the higher-order perturbations. In fact
Eqs. (67) may be solved explicitly to give

a~ (i'——/A) f1+(v. '+vg -')
~

V ~' EP', {75)
Thc Doppler shift ls Dow lIlscrtcd UslDg the spRtlR1

Geld factor U„(s) U„(s »rz), th—e contributing term of
which is —', cosK»r" from Eq. (9). Noting that the
denominator in Eq. (69) arises in the time-dependent
iteration process from the integration of an exponential
with a negative g' exponent, and that the terms ~~Ev
give the same result, we may write

Rnd by a binomial expansion with the order of the
factors maintained as in Eq. (74), the results for any
oldcl of thc pcrtulbRtloD Rrc I'cRdlly deduced for in-

clusion of the velocity variations. This result is then
in agreement with that already given in Eq. (46) for
the seventh-order perturbation result. The method also
proves to be very convenient in evaluating the various
contributions to the atomic polarization terms in the
Zeeman laser whenever the required unitary trans-
foI'DlRtlon cRD bc foUnd.

~ ~" (», , i) =('/2) V&(s, i)l.v- (T+K )1-' (»)

S. CONCLUSIONS

A more cxRct 1QtcgI'Rtlon ovcI" the atomic vcloclty
distribUtion, of the various terms occurring in the
third- and 6fth-order projections of the atomic polari-
zation onto a single cavity mode, has been carried out
for a two-level laser transition. The results, which are
valid for any ratio of natural linewidth or cavity
detuning to the Doppler width, show that there is a
Gfth-order colltl'lbll'tloll 'I(1 'tile sllape of wlllcll does
not depend explicitly on y, or yg but only on
v= »1 (v,+vt), and which should be considered even at
low levels of laser intensity. Such contributions will

not be materially reduced when collision cGects are
included, since they contain atomic response functions
slmilRl to those in thc cxplcssion fol thc more USURl

third-order saturation cocKcicnt. They will thus con-
tribute to thc over-RB shRpc of thc intensity-vcrsus-
cavity-detuning curves, leading to a general increase
in the laser intensity and to a reduction in the Lamb-dip
phenomena. The inequality 4cnjr/P'(1, where f is the
fifth-order coefficient in the equation for the steady-
state intensity, must be satisfied to a reasonable degree,
otherwise thc perturbation should bc taken to R hlghcr

o..—try, =$$1—
j V )'(V,-'+Vl, ') Eg,

a~'@= i'/A—D V P(v, '+vg-') Rg, (72)

where 2 =v iT, and E=—A '+A* ', an effective-rate
constant. The insertion of the velocity va.riation is Dow

done as before, using Eq. (15) for the various terms in
the third-order spatial projection onto the cavity mode.
Thus for the cosIA(rz+rzzz), r' is associated with

i'/2, and rzzz with R in Eq. (72), which may then
be written as

~VX

p —iT—i'm

2v
~

V ~' (v iT iKa) '+—(v+—iT iK-»)—
Ve7&

(73)

Inserting the perturbation V= —E(t}LP/(25), and
integrating over s and over thc velocity distribution
as before, then gives the same result as Eq. (13) for
the 6rst-order contribution after transforming 0. to p
by Eq. (62).

Similarly, the third-order terms Rre deduced by sub-
stituting Eq. (69) into Eqs. (67), and we readily
obtain the results
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order. This places a restriction on the level of relative
excitation for which the fifth-order results are reason-
ably valid, and shows that in general the higher-order
terms should be considered in any deduction of decay
constants made by inserting empirical values into the
theory so as to obtain agreement with curves of experi-
mental data.

In addition to the fi component of the fifth-order
term discussed above, there are additional contribu-
tions P2 and Pg to third and fifth order which involve
sharp resonances at line center. This is particularly the
case for the numerous fifth-order contributions, which
have this tendency due to Doppler-interference effects.
Cancellation effects, however, occur among the various
terms, and the resulting curves of Pm and f2 as functions
of cavity tuning appear to be relatively Qat, and small
in magnitude. This is certainly so for P2, whilst f2 has
at least been shown to be relatively small in general
compared with Pi for the value T=O. These terms
would give rise to an explicit dependence of the
intensity-versus-cavity-detuning curves on both p, and
y~ as was encountered in earlier work. ' However, the
more exact results given here show that such terms will
in general have only a small effect on the tuning curves
for the values of parameters usually encountered in gas
lasers. This statement is substantiated by the compu-
tations given for q =0.2 and pb ——3&„ though any widely
deviating case must of course be considered on its
merits using the expressions given here. Collision
effects should reduce these terms still further, due to
the higher-order atomic response functions involved in
the pertinent expressions. The theory, however, appears

to be reasonably consistent even in the absence of any
appeal to collision processes, in that no serious dis-
crepancy between the deductions and present experi-
mental results are apparent when the totality of the
numerous fifth-order terms in P2 is considered. The
result that P2 and $2 may in general be considered small
in relation to P& and P&, respectively, results in a con-
siderable simplification of the fifth- and higher-order
perturbation deductions, and such an approximation
should be used whenever possible.

The effective-rate-constant approach represents a
concise way of dealing with these higher-order pertur-
bations, and leads to the same results as the more
rigorous, but more tedious time-dependent iteration
procedure, when used in the correct way. It may be
applied with even greater utility to the more compli-
cated atomic-level schemes and transitions encountered
in Zeeman lasers, and may be used to discuss the effects
of axial magnetic fields on all laser transitions so far
investigated. The situation with a transverse magnetic
field is, however, more complicated, and the required
unitary transformation can only be found in the simpler
cases, such as for a J= 1~0 transition. The higher-order
perturbations are most likely of some significance in
Zeeman lasers, particularly as regards mode competi-
tion and the stability of the oscillations, but we must
defer any such application for the present.
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