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Self-Steepening of Light Pulses

10 DE CENSER f967

F. DEMARTINI*t AND C. H. TowNEs*f

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

T. K. GUsTAPsoN)

Department of E/ectrica/ Engineering and Research Laboratory of E/ectronics, Massachusetts Institute of

Technology, Cambri dge, Massachusetts

AND

P. L. KELLEY

Lt'rtcolrt Laboratory, ~~
Massachstsetts Iststctttte of Techlology, Lext'ttt, tort, hLassachttsetts

(Received 19 May 1967)

The self-steepening, or change in shape, of light pulses due to propagation in a medium with an intensity-

dependent index of refraction is investigated. The time required for the pulse to steepen into an optical
shock is found, and the time development of the pulses is studied for both zero and nonzero times of relaxa-

tion of the index of refraction. Analytic and numerical solutions are given for the pulse development in a
number of cases. The frequency spectrum is obtained in the zero-relaxation time limit, and the largest peak
intensities are found on the lower-frequency side of the input spectrum. Although the rate of steepening is
modi6ed when the decay time of the pulse becomes as short as the relaxation time for the nonlinear part of

the index of refraction, the time of decay can become arbitrarily short when there is no dispersion. Estimates

are given of the thickness of the optical-shock. region and of the frequency spreading allowed by dispersion

with the effect of relaxation included. The influence of self-steepening or pulse distortion in nonlinear optical
experiments is discussed.

I. INTRODUCTION

N intensity-dependent index of refraction' will

distort an optical pulse along its direction of

propagation and can give rise to optical shocks (pulse

self-steepening). If the index increases because of the

nonlinearity (due, for example, to the Kerr effect), the

trailing edge of the pulse steepens until its intensity

falls as rapidly as the dispersion will allow, this steep-

ening being analogous to the development of an acoustic

shock on the leading edge of a sound wave. Steep-

ening occurs on the trailing part of the pulse in materials

where the velocity of the peak of the pulse is slower

than that of the wings, because the trailing part of the

pulse catches up with the peak.
In the absence of dispersion, a discontinuity is pro-

duced on the trailing edge which travels with a velocity

appropriate for the maximum energy density in the

pulse and the pulse tends asymptotically to a triangular

shape. The front of the pulse travels faster than the

rear and the pulse continues to broaden even after

the discontinuity has occurred. As indicated above,

dispersion prevents the development of an infinitely

sharp jump and hence limits the I'"ourier spectrum of

the pulse from spreading indefinitely.
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In the situation where the pulse exhibits a periodic
modulation (due, for example, to the beating of two
nearby modes of the laser) the steepening occurs in
each period of the beat and the pulse eventually appears
as a series of sawteeth. The frequency spectrum spreads
and has its most intense components on the lower-

frequency side. Such e8ects are observed in the spec-
trum of the output pulse from liquids such as CS2
when two or more frequency components are initially
present in the beam. ' It should be noted that the asym-

metry of the spectrum occurs even in the limit of zero
relaxation time.

Electromagnetic shocks in the microwave frequency
region and at lower frequencies have been discussed. '
In these cases attention was concentrated on shocks
which form on the leading edge of the pulse, such as

may occur in ferrite materials, transition layers in
semiconductors, and in transmission lines. The forma-
tion of electromagnetic shocks in the optical range has
been discussed by Ikuta and Taniuti' and by Rosen. '
However, these authors emphasize shocks which occur
on an optical cycle due to the generation of optical
harmonics, as may be seen from the time of shock
formation they give, which is related to the period of

~ B. P. Stoicheff, Phys. Letters 7, 186 (1963); E. Garmire, in
Physics of Quantum Electronics, edited by P. L. Kelley, B. Lax,
and P. E. Tannenwald (McGraw-Hill Book Company, Inc, ,
New York, 1966), p. 167; thesis, Massachusetts Institute of
Technology (unpublished); N. Bloembergen and P. Lallemand,
Phys. Rev, Letters 16, 81 (1966); P. Lallemand, Appl. Phys.
Letters 8, 276 (1966).

3I. G. Katayev fE/ectromagnetic Shock $Vaves (Sovietskoye
Radio, Moscow, 1963) (English transl. : Iliffe Books Ltd, , London,
1966)) contains numerous references.

4 K. Ikuta and T. Taniuti, Nagoya University Research Report
No. IPPJ-31, 1964 (unpublished) .' G. Rosen, Phys. Rev. 139, A539 (1965).
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the light wave. Although the response of Donlinearitics
in electronic polarization is very rapid (of order of the
optical period), shocks on an optical cycle cannot
be highly developed in real media because of color dis-
persion and absorption. Furthermore, the nonlinear
polarization responsible for the harmonic response is
usually an order of magnitude smaller than, for example,
that due to molecular orientation. Optical-shock forma-
tion has also been considered by Sroer, ' including the
role of dispersion. A brief report on optical shocks by
Joenk and Landauer' is rather closely related to the
considerations presented here, and does apply to the
case of molecular orientation.

AssuIDc now Rn optlcRl medium with R noDllDcar
dielectric response which is too slow for optical fre-
qucnclcs, but which decreases thc wave velocity with
increasing optical intensity. The characteristic distance
for shock formation, assuming a very short relaxation
time and neglecting dispersion, is given approximately
by s, '=Bvs(dp/dh);„/ees, where p =ms'E'/Sn is approxi-
mately the energy density in the wave. The symbol
(dp/dk); indicates the largest negative slope of the
initial pulse in time, and No is the linear refractive index.
Further, e2 is a constant of the material given by ~2=
Swrrses/nes, where ee is the linear velocity of propagation,
and the index of refraction is given by N=ns+nsE'.
Note that the period of the electromagnetic wave does
not appear. For a Gaussian pulse, the shock distance is
found to be s,=0.19nel/bred, where l=t~es, 1~ being the
initial width of the Gaussian in time, and &s is the
nonlinear index change at the peak of the pulse. In a

small-scale trapping fllarnent ln CSs, bR/se of the
order of 10-' can be obtained. For Q-switched pulses
normRlly RvRllRblc, f) ls about 10 nscc, glvlng 8 Rbout
5 m. However, for a "mode-locked" laser, ' t~ can bc
less than 10 " sec and hence pulse steepening can
occur over propagation path lengths of less than a
centimeter. Shocks may also develop in such short dis-
tances when the light intensity is rapidly modulated
due to the mixture of Brillouin or Rayleigh-scattered
waves with laser light.

In the case of an initially sinusoidal intensity varia-
tion, sidebands shifted by multiples of the modulation
frequency are developed by the shock, with the most
intense sidebands shifted downwards by about 15% at
the shock distance. Further down shifting will occur
beyond the shock distance.

In general, the intensity-dependent part of the refrac-
tive index can respond at the sum or difference of nearby
optlcRl fl cqucnclcs ln thc lascl pulse. In llqulds the
most prominent nonllncRI'lty which lcsponds to diffcr-

6 L. J. F. Broer and P. H. A. Sarluy, Physica 30, 1421 (1964);
L. J. F. Broer, Z. Angew. Math. Phys. 16, 18 (1965); Appl.
Sci. Res. Sect. B 11, 273 (1965); 12, 113 (1965).

~ R. J. Joenk and R. Landauer, Bull. Am. Phys. Soc. 12, 178
(1967); Phys. Letters 24A, 228 (1967). %e would like also
to acknowledge useful correspondence with these authors.. J. ', S, d . Hy, Appl. Ph
Letters S, '/ (1966).

ence frequencies is normally due to the Kerr cGect. A
dominant part of the Kerr cGect corresponds to molec-
ular alignment by the optical Gclds, an alignment
which will respond appreciably to frequency differences
AEo lD thc 1Rngc AMT'Q j., where T ls the Iclaxatlon time
for alignment and is normally in the range 10 '—j.0 "
sec. Molecular alignment is also at least partly responsi-
ble for self-trapping, ' self-focusing, " stimulated
Rayleigh-wing scattering, " and light-by-light scat-
tering. "

A further important difference frequency nonlinear-
ity, which CRD also pI'oducc self-stccpcnlng, ls lntcnslty-
dependent anomalous dispersion due to saturation of
an atomic or molecular transition. For a normal distri-
bution of population, the self-steepening due to this
process will occur on the leading edge of the pulse if
the light frequency is below the atomic frequency and
on the trailing edge of the pulse if the light frequency
is above the atomic frequency, For an inverted popula-
tion, the leading Rnd trailing edges exchange roles. This
c8cct is analogous to the induction of self-focusing and
self-defocusing" due to intensity-dependent anomalous
dispersion, and can produce steepening in laser pulses.
Estimates of the maximum intensity-dependent index
change give variations from 2g 10 ' in the Xe gas laser
to 5&10 ' in the GaAs semiconductor laser.

IL THE LIGHT-PULSE EQUATIONS WITHOUT
RELAXATION

The light-pulse equation is readily obtained from the
Poynting equation, which for a nonmagnetic material
may be written as

E (r)D/r)$)+I (BH/R)+cV (E&H) =0. (1)
Assuming a linearly polarized plane wave propagating
in the z direction, we may write (1) as

(E(BD/N) )+-', (e) (II')/81) + (8 (EH )/r)s) =0, (2)
where the angular brackets indicate averaging over
optical periods. This averaging is carried out since we
consider the case where the optical-frequency comp-
nents of the energy density do not contribute to the
nonlinearity. In the spatial derivative term we may
replace (EII), using Maxwell's equations, as follows:

where p is given by

p= (I/16m) ((ED)+ (H')), (4)
9R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.

Letters 14) 479 (1964).
'06. Mayer and G. Hauchecorne, Compt. Rend. 261, 4014

(1965); P. Lallemand and ¹ Bloembergen, Phys. Rev. Letters
15, 1008 (1965)."D. I. Mash, V. V. Morosov, V. S. Starunov and I. L.
Fabelinskii, JETP Pis ma v Redaktsiyu 2, 41 (1965) I English
transl. : JETP Letters 2, 25 (1965)j."R.Y. Chiao, P. L. Kelley, and E. Garmire, Phys. Rev. Let-
ters 1V, 1158 (1966); R. L. Carman, R. Y. Chiao, and P. L.
Kelley, ibid. 17, 1281 (1966}.

'3A. Javan and P. L. Kelley, J. Quantum Electron. 2, 470
(1966).
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and vn(p) is the phase velocity, which is taken to be a
nonlinear function of p. In writing (3), terms of order
of the wavelength divided by the characteristic pulse
distance and the effects of color dispersion have been
neglected. We may also rewrite the time-derivative
term

(E(BD/Bt) )+', (B(H-')/Bt) =-,'LB((ED)+(&'))/Bt]

+s((ED)/e) (Be/Bt)

For most situations of interest v2)0. If terms in p'
and higher powers are neglected in (13), and assuming
v,p(&vo,"we may approximate (7b) by

BP/Bt= (vp 3»P) (BP/Bs) =B(v PIBs).

Here,
p, =80—~82p —8„—~52p.

Also, (10) becomes

=8rr(BP/Bt) +(4'/e) (Be/Bt), By/Bt+vp(By/Bs) =k o,vp. (16)

C =~os —coot+/ (9)

where D =eE and where e =c%„'.The light-pulse equa-
tion is then

Bp/Bt+ (p/2e) (Be/Bt) +B(v„p)/Bs =0, (6)

or, replacing ~ by the phase velocity,

Bp/Bt (p/v, )(—Bv„/Bt) +Bv,p/Bs=0. (7a)

In addition to the equation for p we also have the
approximate equation of motion of the phase,

Bc/Bt+v, (BC/Bs) =0. (8)

Assuming that the wave consists of a dominant initial
Fourier component at or near frequency coo and propa-
gation vector ko=rpo/vp then we may write

0- obeys the same equation as p provided v2p&(~0. Equa-
tion (14) may be recognized as the continuity equation
for energy density, with the effective velocity of the
energy Row through a boundary given by v, .

In the frame moving with linear velocity vo along
the s axis, (14) becomes

Bp/Bt = ', v, (BP'/—Bs)=3v,p(Bp/Bs), (17)

where s is now the coordinate in the moving frame, "
and (16) becomes

&Bf&/ tB= Aovsp. (18)

The solution of (11), the light-pulse equation, can
be obtained by the method of characteristics and is
given in implicit form (for the boundary condition of
an input signal varying in time at a=0) by the set of
equations

and we have for p p(s, t) =p(o, to), (19)

(p/V. ) (Bv./Bp) ~p+«,

where 0.0 is independent of p and time, we may write
the light-pulse equation as

Bo/Bt+B (v,p) /Bs. =0 (12)

If the material system has a high heat capacity and
rapid exchange of energy between its modes, then
molecular orientation does not appreciably change its
temperature. In this case, the system is isothermal
during passage of the light pulse and o is the Gibbs
free energy. The change in velocity due to the non-
linearity may be written

vn=vp —vpp+v4p +' ' '. (13)

By/Bt+v„(By/Bs) =kp(vp —v„) . (10)

In general, v„ is a function of other variables (in
addition to p), such as temperature and pressure. We
assume these do not change enough in time or space to
significantly affect the nonlinear terms of importance.
If relaxation is su%ciently rapid, we can take ~„ to be
a function of the instantaneous value of p and Eq.
(7a) may be rewritten

L1—(p/v„) (Bv„/Bp) ]BP/Bt+[vv+p(Bv„/Bp) ]BP/Bs=0

(7b)
Or, introducing the quantity

s= I v, —3v,p(0, t,) I(t—t,). (20)

Equation (19) indicates that along ea,ch characteristic
curve leaving a=0 at 1=30 the density p remains con-
stant. Equation (20) determines the family of charac-
teristic curves, in this case straight lines. Taken to-
gether (19) and (20) describe the distortion of a pulse.

Another form of the solution of (14) is

p[s —(vp —3vsp) (t—to) ],
where p is an arbitrary function. However, for physical
reasons it must be single valued. It follows from this
form, or from (19) and (20), that the peak intensity
of the pulse is constant, and that the pulse may be
constructed at any distance before formation of a
shock by translating in time a given intensity from its
initial time, an amount proportional to the product of
(vp —3vsp) ' and the distance.

There are thus three distinct velocities of importance.
One is the phase velocity of the optical wave, v„=vo-
e2p. A second is the effective velocity of energy Row,
e,—= vo —~v2p. The third is the envelope velocity, or the
velocity of a given field intensity on the envelope of the
optical wave, which is e,„=—vo —3v2p.

"This corresponds to assuming n=np+ne(E') for ne(E')&&n~,
in which case e2= 87t.n2/e04.

"The fields are still referred back to the frame fixed with
the medium; in other words, they are the fields measured in the
axed frame,
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At some distance a discontinuity or shock forms due
to the crossing of two characteristics. This crossing
distance is found from (20) as follows:

s/[vp —3vpp(0, tp)]+to' ——t=s/[vp —Bvpp(0, tp)]+to, (21)

to change the variable of integration from f' to tp',

, e(~, ho')
dh' t'0 P 0 (33)

that is,

1 [vp 302p(0, hp )] [v0 3v2P(0)t hp) ]
(22)

fo —fo

Thc charactcl lstlcs that cl oss fli st, must bc initially
adjacent so that we can take the limit to'—+f0 to obtain

d (1/v.„) —
3vpd p (tp) /dhp

dhp ['vp —3'vpp(tp) ] (23)

The smallest distance occurs when the right-hand side
of (23) is largest and positive [since the left-hand side
of (23) is positive]. This occurs for times greater
than the time when the peak passes. In other words,
the steepening occurs on the trailing edge of the pulse.
The steepening distance 2', is then given by

3vpdp(—tp)/dtp —3v2 dp

[vo 3v2p(ho) ] max vo dho max.

For a Gaussian initial pulse

p(0, t) =pp exp( 4h2/tP), —
(24) gives the steepening distance

s -'(-'0) "2(thv02/vppp) =0 194(l220/. bn), (25)

p(s, t) =p(sp, tp),

s—so= jvo —3vpp(0, to) jt.
(26)

(27)

The characteristics will first cross at a time given by

t, '=3v2(dp/dsp) j,„. vps, '. (28)

To solve the phase equation in order to determine
the Fourier spectrum of the pulse we introduce the
coordinates

where bm is the nonlinear refractive index change at
the pulse maximum, and l =vol~.

If the boundary conditions are those of a given varia-
tion in space at an initial time t =0, the solution of (14)
can be written in the form

~he~e to'= t—s/[vo —»2p(to') ].
Equation (33) may be integrated by parts to give

sv2P(tp)4=~0 (1—lnLp(ho)/pp])
voLvo 3—vpp(to) ]

t—zle0

p(tp') dt, '+ — in[p(tp') /p, ]dtp'
tp

The last two integrals can be easily carried out for
speci6c input signals p(tp) .

Appendix A gives some further properties of the
light-pulse equation ( 14) .

Figure 1 shows the development of a Gaussian pulse
for the two types of boundary conditions discussed
above. Note in Fig. 1(b) that the pulse moves back-
wards in the moving frame because of the intensity-
dcpcndcnt dcclcasc ln vcloclty.

Figures 2(a) —2(e) show the evolution in shape and
Fourier spectrum of a pulse which is initially sinusoi-
dally modulated. This modulation could arise from the
beating of two laser modes or from sidebands produced
by a stimulated scattering process (e.g., Brillouin or
Rayleigh scattering'0) . Bloembergen and Lallemandp
have already discussed the beating of two frequencies
together to produce, through Kerr eRects, additional
sidebands. Their perturbation approach is useful for
the initial growth of additional frequency components.
The present approach allows calculation of the fre-
quency spectral distribution for cases where the addi-
tional components have become arbitrarily intense.

To examine the frequency spectrum of a pulse we
take the time Fourier transform at a given point in
space along the direction of propagation. To obtain the
spectra shown in Figs. 2(d) and 2(e) we have used
a spatial boundary condition. The spectrum is given by

S(s, a)0+Aco)

f =l( / o+h), g =-', (s/vo —t) . (29) =c/4~ ReE(s, ~0+AM) H*(s, ~0+6~)
The phase equation (16) becomes

~4/~f= (~ov2/vo) p(n, i),
which has the solution, assuming P =0 at s =0,

0/2) (t+~/~ o&

d~ p(~ t).

(30)
'Vo

T T
dh j p(s, t) j'h2 exp[2$(s, t)] exp(ih~t)

(35)

0/2) (t—~/s 0)

We then use the characteristic equation (20) written
in the form

i (V, ho') =[3vpp(to')] '

&&[j3vpp(hp') 2vpj2h+ j»2P(ho') vojhp'] (32)

'6 Exactly in the forward direction, the Brillouin shift is zero
in liquids and also in the exact forward direction Rayleigh-wing
scattering for linear polarization gives a mode with zero gain and
one with a small loss constant of the order Qfop0 smaller than the
corresponding stimulated Rayleigh gain for large angles, where 0
is the beat frequency. However, these components are present at
small angles as weB as in the backward direction, where they could
be reQected into the forward direction.
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curv{ are translated by —g./po, ) I b) Spatial distribution at various times of a Gaussian lnltlal pulse. $0=0 II = g/s g=$s. (The pulse
is shown in the frame moving with velocity @{1.)

where A~ is the frequency shift relative to the frequency
~0. For a periodic pulse, T is taken to be the modulation
period. The second line of (35), used to find the spectra
in 2(d) and 2(e), holds in the limit s&)esp. This

approximation tends to increase the high-frequency
components relative to the lower-frequency compo-
nents. The quantity S(s, &pp+App) is the average power
flowing per cm' per sec in the spectral component at
frequency ppp+h&o. Using the field equations this quan-
tity can be shown in the lossless case to obey the gen-
eralized Manley-Rowe relations. " We note that the
power spectrum develops one or more strong peaks on
either side of coo, as s increases the shifts become more
predominant. The prominent downward shifts come
from the leading part of the pulse while the upward
shifts come from the steepened region in the tail. The
upward peaks shift in frequency faster because of the
steepness of the tail. The ratio of peak spectral intensity
on the upper side to the peak spectral intensity on the
lower side becomes progressively smaller with distance.
The amount of upward shifting will decrease when the
relaxation time is taken to be nonzero. The same general
features are observed in the power spectra of other
pulses such as the Gaussian. Deviations in the spectra
on the high-frequency side occur when the steepness
of the shock becomes comparable to the optical wave-

length, because the approximations used to obtain the
light-pulse equations break down.

The downward frequency shift ko, estimated in
Appendix 8 for the particular case of an E wave or
asymptotic pulse, is

bM = —&pp(s/f) bm/np

A similar result has been obtained by Joenk and

»H. A. Haus, IRK Trans. Microwave Theory Tech. 6, 317
(1958).

I.andauer. ' lf expression (36) is used for the case of
sinusoidal modulation, it Predicts a 30oro shift in fre
quency at s, for the most prominent, peak, which is
to be compared with the 15% shift shown in Figs.
2(d) and 2(e). As the pulse develops for distances
larger than s„ further downward shifting of the most
intense spectral components will occur.

Even though present considerations are not strictly
valid in the shock range (s)s,) because of the finite
relaxation time r of the nonbnear dielectric response
and because of dispersion, as well as the breakdown of
the assumption that the characteristic pulse lengths are
much greater than the optical wavelength, it is never-
theless valuable to examine the pulse behavior assuming
the relaxation to be infinitely fast to gain insight into
the behavior of solutions, particularly when tp&v. After
the discontinuity first occurs at z„ the conservation
equation (14) in differential form must be replaced
by one in integral form, It is possible to show in the
frame moving with velocity vo that the velocity of the
shock front is given by the Rankine-Hugoniot equation

"~=kssIP j/EPj= $&s(py+p ), (37)

where I g indicates the jump across the shock front
of the q«ntity contained inside. p+ and p are respec-
tively, energy densities immediately in front of and
immediately behind the discontinuity. The negative
sign shows that the shock moves backwards in the
moving frame with a speed proportional to the average
of the initial and 6nal energy densities. For the parts
of the pulse not on the discontinuity, the velocity is
p= —3~2p, which is the Inoving frame "envelope veloc-
ity" de6ned above. Therefore, since p+& p, we have

'UP Q 'Vg) VP+q (3g)
where v,~ are the velocities of the pulse just in front
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and zm for arpT =500. The frequency is in units of half the initial modulation frequency, the even multiples being absent. At z„ the most
intense peak is about 2000 wave numbers below cop for the case of a ruby laser.



318 DEMARTINI, TO% NE S, GUSTA F SON, AND KELLE Y

I.O

0.8

0.6

0.4

0.2

0.0

—o.*(
-04—

-0.6—

-08—

I.O
I

3,0 4,0 5.0 ~- 6.0

(RELAXATION TIME) x Vp

—I.O

(a)

0.725-

0.700-

0.675-

U
0.650-

0.625-

0.600-

0.575
0 2.0 4.0

(b)

6, 0
TI ME

IO.O I 2.0

Fio. 3. (a) Propagation of a pulse in the stationary frame.
The initial pulse just before entering the medium is Gaussian
with the height and width normalized to unity. v2p&jv0=0. 2,
(t,vo/1 =0.291) . r =0.0017t„ tj =0.89t„ t2 =2.61t„ t3 =6.97t, .
(b) The integrated energy density

U= pdz

as a function of time (normalized to the shock time).

of and behind the shock. Equation (38) indicates that
the tail of the pulse is catching up with the shock,
increasing the discontinuity with time, and thereby
further increasing its backwards velocity (in the moving
frame). This process continues until all or most of the
tail catches up with the pulse discontinuity.

The entire pulse spreads in time because the front of
the pulse travels faster than the shock region. Even-
t ll the shock discontinuity begins to decrease inua y

18height because of this spreading. It can be shown
that the shape of the pulse tends, for t~~, to a triangle
(X wave) for an initial function which is zero outside
a 6nite interval. The height of the shock front in the
X wave decreases as t 'i' and the width increases as
t+'i', the total energy being constant. If the energy
density is periodic with period P (the case of a sinusoi-
dal modulation pulse), the asymptotic solution is a
series of sawtooth functions (i.e., a series of E waves)

with the discontinuity in each period proportional to
P/~.

As the pulse steepens, more and more Fourier com-
ponents appear in the pulse, the spread in Fourier
components being given by ddt 2x, where d is the
thickness of the shock. If the medium is dispersive,
the spread in Ak gives a spread in linear velocity
»6=

I
d&o/d& I

6& (vo'/eo)
I
de/d~

I
~k. This spread

in velocities tends to dissipate the shock front. Equating
this spreading velocity to the nonlinear velocity change
which steepens the pulse, we obtain the following
approximate results for the stable thickness:

d6 (2mr6'/3r2p6m&)
I
de/d~ I =(v&&/3Bm) I

dm/dv I, (39)

where be is the nonlinear index change. This distance
is somewhat analogous to the Taylor thickness in acous-
tical shocks. "The frequency spread, as opposed to the
downward shift given by (36), is

"M. J. Lighthill, in Surveys in Mechanics, edited by G. K.
Hatchelor and R. M. Davies (Cambridge University Press,
Cambridge, England, 1956), p. 250; P. D. Lax, Comm. Pure
Appl. Math. 10, 537 (1957).

3~2ppmp 3be

~6 I «/dv I I
de/dv I

(40)
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I
5X10 ' cm and in a small-scale

trapped 6lament, the percentage changes in index range
from about 0.1% up to a few tens of percent. Choosing
be/mp 0.1, we obtain hvsp 10' cm ', and dp 10 ' cm,
a distance smaller than a wavelength, which is small
enough that some of the approximations used are no
longer correct. We must include higher-derivative terms
which were dropped in obtaining the energy density
and phase equations because of the assumption that
the distance (or time) over which the pulse changes is

large compared to a wavelength (or period). The
actual thickness is considerably increased and the fre-

quency spread correspondingly reduced by relaxation
of the nonlinear index as will be shown in the next
section.

IIL THE LIGHT-PULSE EQUATIONS WITH
RELAXATION

In Sec. II the pulse-steepening equations are derived
assuming an infinitely fast response of the nonlinear
polarization. If the relaxation process is exponential,

In differential form, Eq. (41) is

8be/Bt =2epv, p/v pr 8e/r— (42)

This may also be written as an equation for the phase
velocity

r)8v/r)t = (vs/r) p ov/r, (43)

where 8v =v„—vp. In the moving frame (41) becomes

2epv2 ' dt'—p(z+ v. l
t —t'], t')

vp7

X exp[ —(t—t') /r], (44)
'9 See J. Frenkel t Einetic Theory of Liquids (Dover Publica-

tions, Inc. , New York, 1955)g for a discussion of orientation re-
laxation in liquids.

then the nonlinear index change 8e (where 6e=e ep)

can be written, to erst order in p,
"

be(z, t) = p(z, t') expl ——(t—t')/r] (41)
26pv2
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FIG. 5. {a) Propagation of a pulse in the stationary frame.
Distance is normalized to modulation wavelengths. The initial
pulse is sinusoidal of the form po sin' {~s/vo T) . v2po/vo= 0 && (~ vo/
l=0.531). v-=0.0094t„ tI=O, &=1.66$„$3=3.13t,. (b) The inte-
grated energy density as a function of time (normalized to the
shock time) .

where s is in the moving frame. In differential form
we have

Bbe/Bt v(&be/Bs—) =2e v p/v r be/r—(43)

ao/R+ (r/v, v,
' (Bbv/Bt)'+8 (v„p) /Bs =0, (46)

where

o =p+ (bv) '/2vpvp+op

and op is independent of time. The second term in (46)
represents the irreversible part of the work done by
the external sources on the volume element under con-
sideration. Since this work must be positive unless the
medium ampliGes the wave, or there are other over-
riding losses such as those due to resistance, v2 is nor-
mally positive. For an isothermal system, 0 is just the

Equations (7a) and (8) together with (43) form a set
of coupled equations describing the development of
pulse steepening in the case of the nonzero relaxation
time. In the limit when r +0 (7a) and (4—3) combine
to give (15).

If we solve Eq. (43) for p and insert it into the second
term on the left of (7a) and approximate v„by vp in
the denominator of this term, the equation becomes

Gibbs free energy made up of the energy stored in
the Geld and dielectric and the remaining free energy.
Furthermore, in the case of the alignment of polariza-
ble molecules, vp K/T, where ——Eis a constant and T
the temperature. It can then be shown that the part
of the entropy density due to alignment is

s = vp(be) '/S—Eep' —(bv) '/——2Evp. (48)

The electromagnetic Geld does not appear in this
result since the entropy is an intrinsic property of the
alignable molecules. The internal energy density I is
found to be equal to p [defined by (4)] either from the
the relation pe=o —Ts or from integrating EdD+HdH
holding entropy (and hence be) constant. In aligning
the molecules under isothermal conditions, heat Qows
out of the alignment degree of freedom into the sur-
roundings. If the relaxation time is nonzero, then part
of this heat Qow is irreversible, this part being related
to the ratio of the relaxation time to the time over
which the pulse is changing.

Equations (7a) and(43) still indicate the buildup of
a rarefaction shock. For pulse widths which are long
compared to the relaxation time, the pulse builds up
a sharp trailing edge of width 7vo in a distance given by
(24). Further sharpening occurs with the thickness
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decaying to zero (neglecting loss and dispersion). The
finite relaxation time of the nonlinearity does not
intrinsically limit steepening and frequency broadening
of the pulse. After steepening of the trailing edge to a
width somewhat smaller than reo has occurred, the
velocity change bv in the steep region and the tail
should be determined primarily by the exponential
decay of the peak velocity. Therefore,

be(s) = —bep exPL(s sp)/vpT5, —for s(sp (49)

where zo is the leading point or peak of the steep region
and where bvo is determined at this peak. In other
words, we assume the velocity is insignificantly affected
by the field in the tail region. The rate at which a
point z is catching up with the front of the steep edge
is given by

M =sp s= pep be = —pep—L1 ——exp( hs/epr) 5, (5—0)

which has the solution

Az= vpT lnI 1+ e'xp( bepht/epr) [exp(—+Esp/epr) —15},
(si)

where esp =sp —s at ht= 0. For values of Asp/epr((1,
the decay is always exPonential; for Lhp/epr»1, hs
decreases linearly with b,t for hzo))boost. More impor-
tantly, however, for all positive esp/epr, s decays expo-
nentially for large Dt's with a time constant epr/Bep. If
tl»r, the ratio ep/pep is roughly the ratio of duration of
the pulse time t~ to the time t, for a shock to develop, so
that the time constant is approximately t,r/tl. Thus, in
the regime where t,& tg& r the pulse sharpens expo-
nentially with a time constant which is intermediate in
value between t, and v . If the initial width of the pulse
or length of the modulation cycle is less than epr (i.e.,
r» tl), then the nonlinearity responds very little to the
pulse during the intensity buildup and steepening
occurs with a time constant epr'/3epp, tl or approxi-
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mately l,r'/tP Neglecting dispersion, we see that expo-
nential decay of the nonlinear index indicates an
infinite time for infinite steepening.

We can include the combined effects of relaxation
and dispersion in an estimation of the thickness of the
steep region by noting that relaxation reduces the non-
linear velocity change through a shock front of thickness
d by a factor (1—exp[ d/—zor j) . In the limit in which
the distance do given by (23) is much larger than the
relaxation length (i.e., d,»z,r), the thickness reduces
to (39) and the frequency spread is given by (40).
However, when do((zor the thickness is d=(vordo)"'
Relaxation can thus markedly increase the thickness.
The frequency spread is also modified so that hvz=
(Avq, /r)'~'. For CS2, r=1.7 X1 0" sec and since from
the previous section do 10 ' cm, we have v07)&do. The
modified thickness is approximately 10@ and the fre-

quency spread is 1000 cm '. This is the maximum
frequency spread which can occur due to steepening.
The degree of steepening and hence spreading depends
strongly on experimental conditions.

The steepening of specific pulse profiles has been
investigated by solving (43) and (7a) numerically
using a modified Runge-Kutta technique. Results are
shown in Figs. 3—6 for index changes expected to occur
in small-scale trapping (zzpo/zp 0.1).

The evolution of a short pulse in a trapped beam
can be approximated by the behavior of an intense
pulse penetrating the nonlinear trapped region from
a linear region. This is shown in Figs. 3 and 4 for two
different ratios of the relaxation time to the shock time.
In Fig. 3 this ratio is about 0.016 and in two shock
times an amount of steepening occurs which is approxi-
mately equal to the steepening which occurs in eight
shock times for Fig. 4, where the ratio is about 0.25.

The shape taken by a periodically modulated optical
pulse depends upon the ratio of the relaxation time of
the dielectric to the modulation period. In Fig. 6 this
ratio is relatively large, in which case the dielectric
relaxation from one period of modulation can cause a
continued dielectric constant fall o8 into the region
occupied by the leading edge of the next cycle. This
causes steepening on both the front and back edges of
the modulation cycle. If, on the other hand, the above
ratio is small, as is the case in Fig. 5, only the lagging
edge of the periods steepen appreciably. In Figs. 5 and
6 the boundary conditions for the pulse were taken to
be that of an initial sinusoidal spatial distribution at
3=0. With this condition the distortion of a single cycle
after moving a distance z is nearly the same as that
which occurs when the cycle moves a distance z from
an input boundary provided the steepening distance is
much longer than the length of a modulation cycle.

As is seen from the results in Figs. 5 and 6, as well as
Eqs. (7a) and (43) and the discussion above, the
distortion for a given z is strongly affected by the ratio
of the relaxation time to the modulation frequency. The
phase and frequency spectrum will also be affected;

the spectrum spreads less as the relaxation time in-
creases in agreement with the results of Lallemand. '

APPENDIX A

We examine in this Appendix two of the over-all
features of the pulse described by (15), specifically the
behavior of the center of energy and its spatial dis-
persion. For t&], and for a pulse whose energy density
tends to zero as

~

z
~

' for
~

z
~

~~, where z&1, we
shall show the following:

(a) The center of energy

(z) = zpdz pdz

travels at uniform speed;
(b) The spatial dispersion of a symmetric pulse

o'= ((z—(z))') increases quadratically with time.
Consider first the following lemma: The integral

I„= p"dz (Al)

is constant in time if e&1. To see this we differentiate
(A1) with respect to time:

itI./Bf =e u" '(~~/~~) «, (A2)

and using (13) we have

BI„/Bt=3z,m p" (Bp/Bz) dz. (A3)

If time is held constant then we may rewrite this as

p(&=+u )

aI„/Bt =3z,e p dp
p(z—~)

=3z,n(n+1) —' p"+'

=0.
C (z=+")
p(s = —~ ) (A4)

Now consider the motion of the center of energy

d (z)/dt=I~ —' 3V2
z (ap/at) dz = —

zp (Bp/Bz) ds
Ig

3vq 1 ~ 3'
zp

Ig 2 ~ 2Ig
p2dz. (AS)

The first term is zero from the assumption above con-
cerning the dependence of p for large

~

s
~

while the
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second term is constant from the lemma. Therefore, APPENDIX 8

d, (s)/dt = 3v—pIp/2l&, (A5') Ke examine here the development of an E wave
[the asymptotic solution to (15)].We will assume at
s =0 an Ã wave of the form

(s ) = —(3v2I,/2Ii) t+ (sp ); (A6)

the center of energy moves backwards in the moving
frame linearly in time.

Next consider the function

p =vpt/3vp(t+tp),

=0)

0&t&tg

elsewhere

(s') =Ii ' s'pdz;

differentiating with respect to time we obtain

(A7) where ti=t/vp. Here t is the initial pulse length in the
medium at ti, tp t/bvp ——ti, an—d bvp=3vop, (ti) .

The solution for p is

Bp 3'V2

d (s' )/dt =Ii ' s' —ds = —— sp'ds (As)
Bt Ij

and differentiating once more we have where

=0
7 elsewhere

p= (vpt —s)/3vp(t+tp), 0&vpt —s&sp(t)

(83)

Using initial conditions, we then find for (s')
tt = (p)p/3vp) (s vpt) in{1——[s/vp(t+tp)]},

(A10)
0& vpt —s(sp(t)

(s') = (3vP/Ii) Ipt'+At+ (sp')

where

sp(t) =[tbvp(t+tp)]' '. (84)
'=) "''& ') f '"' =t '") ') ' ) ) From (td) and the boundary condition, the solution

for the phase is

3p2 c)o

Sp'dS
I] —co t=p

elsewhere.=0,

The frequency shift at the peak p,„is

(85)

Therefore the dispersion is given by

tr'= ((s—(s))') =3vpIpt'/Ii+rit+ (sp') —( 3vIpp/2I )i't'

+3 (sp )vpIpt/Ii (sp ). (A12)

If we take the pulse symmetrical at t=0 and further
take (sp)=0, then we have

bp) (s) = Btty/Bt—

= ~Mp ln
z

vp(td)r+tp)

(86)
vp(tp+ti)tr) {vptp+sp(ter) I

o'(t) = (9vpp/4Iip) ( pIiIp Ip2) t2+)y'(0) .—(A12') where t~ is the solution to

One can show using the Cauchy-Schwartz-Boniakowsky
relation that I~I3—I2'& 0; therefore, For vptp)&s,

vpt s=zp('t) .—

a'(t) )p'(0), (A13) b pd (s)~—p)psvpptnttx/vpt ) (88)
and the dispersion increases quadratically with time. which is in agreement with the result of Ref. 7.


