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The curve of QE as a function of lnE (see Fig. 18),
is not really applicable to this process since the Born
approximation predicts an E ' dependence of cross
section for charge exchange. The curve does, however,
show that the energy decreases less rapidly than the
prediction of the Born approximation. The energy
dependence of the cross section is approximately E ".

The change in the slope of the curve of cross section
as a function of energy, for hydrogen-atom impact
(Fig. 12), implies that more than one process contrib-
utes to the excitation of the 2p state. One possibility is
a process A, for which the cross section decreases very
rapidly with energy, dominating at the low energies,
and a process 8 for which the cross section is nearly
independent of energy, dominating at the high energies.

Experimental data for basic atom-molecule inelastic
cross sections are not adequate for making a quantitative
analysis of the processes involved in producing Lyman-
n emission. On the basis of this work some observations
can be made, however. For energies above 45 keV the
cross section for Lyman-n emission due to hydrogen. -

atom impact is almost independent of energy. This
behavior is very similar to the stripping cross section
in Fig. 13,where the electron is removed from the atom
instead of remaining in an excited state. Further, the
energy dependence of the cross-section curve plotted in
terms of QE as a function of lnE shown in Fig 18 se.ems
to be approaching the prediction of the Born approxi-

mation for a simple dipole excitation. Process 8 could,
therefore, be identified with a simple excitation of the
hydrogen atom without specifying the 6nal state of the
nitrogen molecule. Below 45 keV the rapid decrease of
cross section with energy is indicative of an electron-
exchange mechanism. Process A, therefore, could be
thought of as involving electron exchange.

Comparing the Lyman-n results for hydrogen-atom
impact with the emission cross section for the second
positive system of N2 due to hydrogen-atom impact,
one notes shapes that are similar for energies less than
45 keV. From Figs. 15 and 18, it is also noted that the
breaks in the two hydrogen-atom curves occur at about
the same energy. One possible explanation for the break
in the cross section for excitation by hydrogen atoms of
the N& second positive system (Fig. 18) is the conserva-
tion of probability. One supposes that this excitation
process is coupled via a charge-exchange mechanism to
the excitation of Lyman-n in the projectile. At an energy
of 45 keV, process 8 begins to dominate the Lyman-e
channel, which in turn aQects the N2 channel. The effect
is rather small because of the great number of alternate
inelastic channels in the collision.
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A new perturbation procedure for calculating interatomic interaction energies in which the wave function
is expanded in terms of product functions is presented. The method is used to discuss various difhculties
which can arise in such calculations and these are illustrated by considering the problem of the interaction
of two hydrogen atoms. It is found that (a) the inclusion of continuum states in the basis set of functions is
of vital importance; (b) the inclusion of charge-transfer states or of antisymmetrical product functions in
the basis set can lead to ambiguous results; (c) in general, exchange integrals cannot be neglected relative
to Coulomb integrals; and (d) only when the basis functions are products of the individual atomic wave
functions is it possible to make a priori estimates of the magnitudes of the higher-order terms in the per-
turbation expansion.

I. INTRODUCTION

'HE energy of interaction between atoms, mole-
cules, and magnetic ions has long been of interest„

since it provides the cohesive energy of rare-gas atomic
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tion.
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and molecular crystals, the spin-dependent energy be-
tween sublattices in insulators containing magnetic
ions, the mechanism for enhancing forbidden optical
transitions, etc. Nevertheless, since the classic paper of
Eisenschitz and London, ' there have been few attempts
to treat the problem in a more or less rigorous fashion,
most authors having restricted their discussions to the

' H. Eisenschitz and F. London, Z. Physik 60, 491 (1930).
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situation in which 'exchange" is,neglected. ' As one of
us discussed previously, in certain special cases, among
which is that of two interacting ground-state hydrogen
atoms, it is not exchange which is neglected in the usual
calculation of the London-van der Kaals energy; the
"approximation" made is rather the expansion of the
perturbation potential in inverse powers of E, which is
at best valid in some asymptotic sense. 4

The present paper develops a theory of weak. inter-
atomic and intermolecular interactions —both from a
secular equation and a perturbation-theoretic view-
point —based on the expansion of the system wave func-
tion in the complete set of simple products of wave func-
tions of the noninteracting components. ' The formal re-
sult can be related to that of Eisenschitz and London,
who expanded in an over-complete set of antisym-
metrized product functions and whose expansion coefB-
cients are not unique, as discussed recently by van der
Avoird. ' The procedure employed is essentially different
from that of the several authors who have recently re-
vived interest in the problem of interatomic and inter-
molecular "forces."' '4 It divers from the work of
Murrell, Salem, and Musher and co-workers in that it
obtains an antisymlnetric wave function without re-
quiring the complete set of functions to be themselves
antisymmetric, a requirement which in the past has led
to the use of an overcomplete set and an energy expres-
sion which is incorrect, order by order, to powers of a
numerical factor. It diEers from the very interesting
studies of Herring and Hirschfelder and Silbey in that

s See the classic review of (a) H. Margenau, Rev. Mod. Phys.
11, 1 (1939), and the more recent review of (b) A. Dalgarno,
Advan. Atom. Mol. Phys. 2, 1 (1966}.For a recent discussion of
some of the difhculties see (c) J. I. Musher, Rev. Mod. Phys. B9,
203 (1967).' J. L Musher, J. Chem. Phys. 42, 2633 (1965).' F. C. Brooks, Phys. Rev. 86, 92 (1952).' A preliminary communication of some of the results has been
given in A. T. Amos and J. I. Musher, Chem. Phys. Letters 1,
i49 (1967).

6 A. van der Avoird, Chem. Phys. Letters 1, 24 (1967).
~ C. Herring, Rev. Mod. Phys. 34. 631 (1962); C. Herring and

M. Flicker, Phys. Rev. 134, A362 (1964); C. Herring, 3EagneHsm,
edited by G. T. Rado and H. Suhl, (Academic Press Inc. , New
York, 1967), Vol. IIB; L. P. Gor'kov and L. P. Pitaevski, Dokl.
Akad. Nauk SSSR151,822 (1963) /English transl. : Soviet Phys. —
Doklady 8, 788 (1964)j.' J. N. Murrell, M. Randic, and D. R. Williams, Proc. Roy.
Soc. (London) A284, 566 (1965).

' L. Salem, Discussions Faraday Soc. 40, 150 (1965).
~ J. I. Musher and L. Salem, J. Chem. Phys. 44, 2934

(1966}.
"M. Alexander and L. Salem, J. Chem. Phys. 46, 430 (1967)."J.N. Murrell and G. Shaw, J. Chem. Phys. 46, 1768 (1967).

This paper describes an expansion in the set of simple product
functions (6) in a way which is somewhat less transparent than
the discussion presented here."J.O. Hirschfelder and R. J. Silbey, J. Chem. Phys. 45, 2188
(1966); R. B. Hake, R. J. Silbey, and J. O. Hirschfelder (to be
published).

'4 See, e.g., P. W. Anderson, Solid State Phys. 14, 99 (1963);
R. N. Stuart and W. Marshall, Proc. Phys. Soc. (London) 87,
249 (1966); J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood,
Proc. Phys. Soc. {London) 88, 13 (1966); N. L. Huang and R.
iOrbach, Phys. Rev. 154, 487 (1967); R. Silbey, J. Jortner, M. T.
Vala, and S. A. Rice, J. Chem. Phys. 42, 2948 {1965);R. Silbey,
S. A. Rice, and J. Jortner, ibid 43, 3336 (1965); and R. ef. 8.

it solves for the eigenfunctions directly rather than the
sums and differences of eigenfunctions belonging to a
single "configuration" and hence does not run the risk
of losing information when a perturbation-theoretic
procedure is applied.

In order to illustrate explicitly certain important im-

plications of the formal procedure for calculations on
weak. ly interacting atoms and molecules, we treat the
classic problem of two interacting hydrogen atoms in
some detail. When the magnitudes of the various terms
are examined critically, we 6nd, among other things,
that the principal contribution to the second-order en-

ergy is the sum of Coulomb and exchange contributions
with the contribution of the latter, contrary to much
earlier expectation, eclat to that of the former. We also
are able to show that many generally accepted proce-
dures' of quantum chemistry and solid-state physics
which employ wave functions which are not all eigen-

functions of the same Hamiltonian such as ion-pair (or
charge transfer) con6gurations often required to be
antisymmetrized, are inherently dangerous, and the re-

sults obtained using those procedures are likely to be
misleading and deceptive. To our knowledge, the brief
discussion we present here is the 6rst serious indication
in the literature of the potential weaknesses of these
procedures, and we hope in the future to examine one of
the many explicit calculations in an attempt to justify
the assumptions on which it is based.

In Sec. II the formal description is sketched, a suit-
able complete set of wave functions is constructed, and
the error introduced by the use of overcomplete sets is

discussed. The dependence of the individual terms in

the perturbationlike expansion on the basis set employed
is pointed out and its signi6cance and. the convergence
of the different expansions are discussed. The simple

system of two interacting hydrogen atoms is discussed
in Sec. III using as 0 0 the Heitler-London functions of
correct symmetry and as the complete set of wave func-

tions the remaining simple product functions. The
second-order "spin-independent" energy correction,
which gives the London-van der Waals energy plus a
sum of polynomials times exponentials, is examined and
the e6ect of the latter is shown to be extremely impor-
tant. The second-order "spin-dependent" energy correc-

tion, contributing to the so-called. exchange splitting, is
examined and a diEerential equation from which it can
be obtained directly is derived. While no computation is

carried out, an argument is given to indicate the likeli-

hood that this term dominates the 6rst-order term at
large interatomic separation, which would serve to cor-
rect the erroneous behavior of the Heitler-London
zeroth-order solution that places the singlet below the
triplet. ' In Sec. IV, the use of several types of approxi-

mate functions is examined critically and in Sec. V an

equivalent perturbation-theoretic procedure for evaluat-

ing the interaction energy from the direct solution of

partial dj'LIferential equations is developed, and com-
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parison is made to the recent theory of Hirschfelder and
Silbey. "

@A ++8 + ' ' '+~N (2)

the sum of the energies of the ground states of the in-

H. GENERAL THEORY

A. The Expansion Procedure

Consider a system built up of E weakly interacting
elements which may be atoms, molecules, ions, etc., but
vrhich we will henceforth refer to as atoms.

The wave functions for the interacting system can be
expressed as a linear sum of any complete set of func-
tions {4„}and the energy eigenvalues of the interacting
systems can be found by diagonalizing the secular
determinant

deter „—ZS (=0,
where H =(m~H~e) and S =(m~n), with B the
total Hamiltonian for the entire system. Because this
procedure is not in general tractable, it is desirable to
take advantage of the fact that the atoms are vreakly

coupled, so that the interaction changes the energy
levels only slightly from those of the noninteracting sys-
tem. For example, if the ground state is to be considered,
a good approximation to the lowest root of (1) will be

dividual atoms. It is thus sutiable to take as the ground-

state vrave function

4'o=NCL{AoBo .}, (3)

vrhere Ap, Bp, etc., are the exact ground-state vrave func-
tions for the individual atoms containing disjoint sets
of electrons, S is a normalization constant, and 8 is the
antisymmetrizing operator which normalizes 4'o in the
limit of in6nite interatomic separations (and if neces-

sary projects out the eigenfunction of desired, spin).
Since in this limit Hpp is exactly Eq. (2), it might have
been thought that instead of the%'p of (3) we could have
taken the simple product wave function

4'p ApBp.——~ ~

This, however, is not possible, except when (1) is solved

directly, since in a perturbative procedure there is no
guarantee that an antisymmetrized total wave func-

tion, and hence an allovred approximate energy eigen-

value, vrill result unless 0 p itself is antisymmetric. Note,
however, that since H is totally symmetric, the complete
set of states +„need not be antisymmetric; the only
contributions to the matrix elements (0~ V~I) arise
from the antisymmetric part of 4„.

Adopting this 0 p, the energy in the vicinity of Hop is
given by the well-known expansion of the secular de-
terminant (1) as

[&o~—&oAoo~' (&o —&oWoo)(& —& Woo)(&o —~o &oo)
@=&op+& + P

neo Qpp —Ir„„m,ego (Zpp —H )(Hpp —B „)

which is formally exact but vrhose convergence proper-
ties depend greatly on the particular choice of the ex-
pansion functions 4„, n&0, where the set {4'„}is not
necessarily orthogonal. Different, and generally greater,
rates of convergence can be obtained by the selective
summation" of the terms on the right side of (5), such
as in the Feenberg" iteration procedure, which ap-
proaches the Fredholm solution, and the partitioning
technique used by Hirschfelder and Lovrdin. "An ex-
ample of such a selective summation would be obtained
by making a linear transformation among the +, so
that the C „' are all orthogonal, with %p' ——0 p, for which
there would. be no overlap terms in (5) when the matrix
elements were written in terms of the nevr functions.
Notice that in the special case for which all the 0 „are
eigenfunctions of some H p, Eq. (5) reduces to the usual
perturbation-theory expansion. This, hovrever, almost
never occurs, as discussed elsewhere, " because of the
fact that a legitimate +p must contain all the electrons
equivalently and so must be an eigenfunction of a
Hamiltonian which includes the interatomic interac-

"E. Feenberg, Phys. Rev. 74, 206 (1948)."J. O. Hirschfelder and P. O. I,owdin, M01. Phys. 2, 229
(1959).

tions, just the type of problem we had considered in-

tractable at the start. The term Hpp will be referred to as
',he zeroth-order energy, the erst summation as the
second-order energy, 82, etc. The concept of order vrill,

however, be applied loosely since any of the selective
summation procedures just referred to will change the
absolute value of a term of given order. Thus, for ex-
ample, we will generally refer to any expression for 8~
which differs from that of (5) only by small terms, i.e.,
of the order of the higher-order terms of (5), as being
the second-order energy. %e vrill emphasize, however,
that while order in this sense may be only a theoretical
construct, there is generally justi6able ordering in ab-
solute size of contributing terms which enables cutting
off the expansion when the desired accuracy has been
reached.

It remains to de6ne the choice of the functions 4'„,
e/0, which together with +p are to form a complete set.
Each of the E interacting systems has associated vrith
it a complete set of states which we denote by {A;},
{B;},etc. These may or may not be the eigenstates for
the isolated system although, as we show below, we pre-
fer Ap, Bp, ~ . , Fp to be the exact ground states. A com-
plete (and not overcomplete) set of functions for the
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E-atom system is obtained by taking products of these
functions, i.e.,

where the single index e replaces the ordered set of in-
dices i, j, . LThe ordering here is most important. If
the atom A contributes n electrons, B contributes P
electrons, etc. , and the coordinates of the electrons are
xi . x,+p+,+..., then by the product

l n) we mean

A, ( ~ )B,(, p)C (X „p„,
This is, of course, to be distinguished from, for example,

B,(xi xp)A;(xp+i. xp+„)

This set does not contain 0'0 as a member but we can re-

place looo . ), i.e. , the product ApBO, by 4o of (3)
without changing the completeness of the set or making
it overcomplete.

Since the 6nal wave function must be antisymmetric,
it has generally been thought appropriate to choose the

as being totally antisymmetric themselves. '" '
However, aside from the fact that antisymmetry of the
0&0 is not at all necessary, as noted above, the particu-
lar set of antisymmetrized wave functions generalh
cInployed 4:=E.A{A,B,CI, ),
obt, ained by antisymmetrizing the functions of (6), «e
in fact, overcomplete. This set is Q = (n+P+y+ . )!/
e!P!y!. .-fold redundant or contains Q independent
complete sets, as 6rst noted by Kisenschitz and London, '
who showed how to correct for the redundancy in their
pseudoperturbation expansion, although the importance
of this has been, in general, neglected by subsequent
authors.

This argument of Kisenschitz and London' can be ap-
plied exactly to our Eq. (5), giving

l
Ho„—SO„HO()

l

'
a=HOO+Q- P + (8)

nw() Hop —H„„

for the set @ ' of redundancy Q. It can be seen that the
energies obtained order by order in (5) and (8) will be
equal up to higher-order terms, and thus as long as Q is

included correctly either basis set can be used. The 1:1
correspondence between the states V„and 4'„' of (6)
and (7), respectively, is probably what has led to the
general confusion on this point. ' "However, it is easy
to see that. by symmetry all the permutations of 4"„wiH.

contribute equally, and hence the set of + is equiva-
lent to a Q-fold redundant set of functions. The rela-

tionships between the explicit expressions for the hrst-
order coeS.cients and second-order energies are given in

our previous paper. '

3. VQ.X'jOU8 EXQQXl81OB FQIKtj.ODS

Since the rate of convergence of (5) is critically de-

pendent on the choice of expansion functions 4„, /be

various possible choices should be examined carefully.
The choice of products of exact eigenfunctions of the
isolated system Hamiltonians, although rarely obtain-
a.ble in practice, is particularly desirable since it is the
only choice for which the degree of convergence of (5)
can be estimated a priori.

Denoting the isolated system Hamiltonians by Hp,
II~, etc. , a,nd the eigenfunctions by 3,, 8;, we find that

HgA, =E,~A;,

Hx&&;=E ~~

etc.

The product functions
l
xjk ) are eigenfunctions of the

noninteracting Hamiltonian

with eigenvalues A;; q. ..=—E„.In addition, since the func-
tions A;, 8;, etc. , are orthonormal, so are the product
functions 4'„, m&0. However, the functions 0'„are not
orthogona, l to 0'0.

If the total Hamiltonian of the interacting system is
written as

H=HO+ V,

then thc matlix elements can bc written

(mlHln)=(ml vln) ~e ceo.
(~IHl 0)=z„(~l0)+(NI vl 0

= f;,(~ l
0)+!v(ii

l
O.v

l
000),

while (olH l 0), which is the first term in (5), is

s,+iv(ol evloo )=z,~+""
+J @+i'(ol o,vloo" ),

so that using the eigenfunctions A;„8;,etc. , leads to an
explicit expression for the interaction energy as a cor-
rection to the sum of the isolated atom energies.

The rate of convergence of the expansion (5) depends
on the ratio of terms of the form (H„—S„Hoo) to the
energy denominator. From (12) we have

H„„—s„„H.,=(~l Vln),

which has simply the form of an interatomic potential.
Thus, for example, the third-order term in (5) is of third
order in the interaction potential. and should be small,
and will be vanishingly small in the limit as the atoms
cease to interact.

In practice, however, one rarely obtains exact eigen-
functions of the isolated system Hamiltonian, so that
(a) Hoo does not approach the exact energy in the limit
of noninteracting atoms, and. (b) the expansion of (5) is

not only in terms of the interaction between the atoms
but also in terms of the difference between the exact
Hamiltonians and the Hamiltonians of which the pro-
duct functions are eigenfunctions. In other words, we

have a multiple perturbationlike expansion, and we have
no clear argument for the rate of convergence, as ha, s
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been emphasized previously" ""Thus if instead of the
functions (9) we use, say, the Hartree-Fock functions
A;HF, B,HF, which are eigenfunctions of

then

and

HFA . g,A, HFA .

HFB . g.B,HFB,

II HF —H HF+H HF+. . . (15)

II=H0HF+H1" F+ V, (16)

where H~ is the sum of the correlation Hamiltonians
for each of the isolated atoms, A, B, etc. The expansion
of (5) then involves terms analogous to (13);

H. —5'. Hpp=(ml V+HtHFI~&, (17)

and hence mixes the interatomic interaction V with the
intra-atomic II~ in every order. Because the correla-
tion Hamiltonian H&H is likely to give term. s at least as
large as the interatomic potential V, this makes it im-
possible to obtain even the leading part of the second-
order interaction energy without having to deal with
H~ explicitly. One can improve on this situation,
through at least second order, if the states Ap, Bp, etc. ,
although not A;, B;, etc., i, j&0, are known exactly,
since the argument of Eq. (9) still applies for matrix ele-
ments connecting %p to the other states. This is equiv-
alent to partially summing to in6nite order a set of
terms of (5) involving these matrix elements, but there
still remain intra-atomic eRects in the third- and higher-
order terms. An example of this type of error is given
below for the case of two hydrogen atoms, in which the
Lowdin-Shull orbitals are used instead of the hydro-
genic orbitals.

It has been standard practice" to calculate perturba-
tion-theory energies by adding a finite number of con-
figurations which are chosen because of their physical
signi6cance, as in charge transfer wave functions, be-
cause of their symmetry, as in antisymmetrized product
wave functions, or for convenience, as in ad hoc d orbi-
tals in magnetic ions due to the unavailability of real
eigenfunctions. It turns out, as can be seen by the above
discussion and the illustration to follow in the next sec-
tion, that all of these procedures are fraught with diffi-
culties, or more generally stated, any procedure which
does not deal with the set of functions (9) in the expres-
sion (5) must be subjected to serious analysis before its
conclusions can be accpeted. In Sec. IV we give a brief
but explicit indication of the kinds of errors involved in
three types of calculations —where the use of Lowdin-
Shull orbitals is demonstrated as an analog to pseudo-
eigenfunctions in the magnetic-ion case. This is not
meant to imply at all a necessary invalidity of many
common procedures, but merely to illustrate the kind of
errors that can appear when such calculations are per-
formed uncritically.

'7 J. I. Musher, Opt. i Spektroskopiya LEnglish transl. : Opt.
Spectry. 20, 442 (USSR)j 20, 793 (1966).

5,,= a;(1)b;(1)dr,

where ot(1,2) and o 2(1,2) indicate the normalized spin
eigenfunctions of 5=0 and 5=1, S,=O, respectively,
the 5, value of the latter being chosen arbitrarily.

The remaining members of the complete sets for the
triplet functions will be

+„s=a,(1)b, (2)o,(1,2)

+.T= a, (1)b,(2)op(1,2)

(19)

for i and j not both equal to zero. Note that the {11 s}
and {1'„T}are normalized. and orthogonal except with
respect to Cp and%p .

The total Hamiltonian for the problem is

t i 1 1 iq 1 1
H = —21(vtpy v22) —

l

~rlA r1B r2A rpa~ r12 R

HA(1)+HS(2) (1/r2A+ 1/rtH)+ 1/r12+—1/R

=HA(1)+HS(2)+ V (20)

with the obvious notation. Since the total energy of the
interacting atoms will differ little from that of the two
noninteracting atoms at values of R greater than the
singlet state minimum, i.e., R&1.4ap, the perturbation

III. I5'TERACTION OF TWO HYDROGEN ATOMS

A. Energy Expression

To illustrate the points made in the previous section
and to serve as a prototype study for more complicated
systems, we consider the interaction between two hydro-
gen atoms A and B separated by a distance R. For this
problem, the complete sets of functions for the indi-
vidual atoms will be one-electron functions which are
products of a space function and. a spin factor n or P.
For the ground state there are, therefore, two possibje
choices for each of the functions Ap and Bp, which are
degenerate;

Ap(i) = ap(i)n(i) or ap(i)P(i),

&0(j)= bp(j)n(j) or bp(j)P(j).

When the antisymmetrized products (1) of these are
formed there are four possibilities for the zero-order
wave function +p, the proper choice of which must be
made according to the prescription of perturbation
theory for degenerate states. This amounts, in practice,
to choosing the four zero-order wave functions which are
eigenfunctions of the total spin, giving one singlet state
and three triplet states. The singlet and one of the
triplet states, +p and +p, can be written

11f S,T (2~25' 2)
—1/2

XLap(1)bp(2)+bp(1)ap(2)]o'1, 2(1,2), (18)
with
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, I&/r bolI"lii'b'&I'+l&«boll'lb'~/&I'
2

I/ 2Ep—E —E.

expansion can be used with the basis functions +p ~, written, when small terms are neglected, as
S,T

S T
The 6rst term in (5), Ppp' and Hpo' are the Heitler- @o=-,(ho +&o )

London energies for the singlet and triplet levels which
we do not write out explicitly. The second-order terms
can be written as

(23)

L+ooii+ It ooii+5 pi5 pi+opl
(21)

'/' &oooo+I'oooo —&i/'i/(1+&oo )

where the prime refers to the exclusion of i= j=0 and

Jopi; —— ap(1)bp(2) Ha;(1)b/(2) drip,

(22)

Igloo;/=

ap(1)bo(2)Hb;(1)u;(2)drip.

The expression (21) which differs by the factor of io

from that of Ref. 11 contains two types of terms, those
which contribute equally to both singlet and triplet
states and those which have di6erent signs for the two
states. The contributions to the average energy, which
can be shown to dominate for all ~, j, give the London-
van der Waals energy in R o (at all values of R) and the
contributions to the energy difference give rise to the
exchange splitting. The relative sizes of these terms can
be seen from a comparison of the best calculated poten-
tial curves, ' which show the error in the Heitler-London
estimate of the singlet-triplet splitting to be generally
an order of magnitude less than the error in the respec-
tive energies at usual values of E. Thus, for example, at
R=S, the zeroth-order calculated splitting is

&po' —IIpp'=3. &2X10 ',

which is in error by 0.20X10 ' from the exact

h —8 =3.32X&0-,

as compared with the error in the zeroth-order calcu-
lated singlet energy

Boo'—8'= ~.54X10 '

and that in the triplet energy

Hpo' —&'=3.38X&0 '

which is the sum of Coulomb and exchange terms. While
it has often been argued that the exchange integrals may
be neglected relative to the Coulomb integrals, it can,
in fact, be shown that both of these terms are of equal
size, up to terms of higher order, so that (23) can be
written as

, I&~oboII'l~ b &I'
ho=2'

2Ep E. E.
(24)

where the symbol P includes an integration over the
continuous index of the positive-energy states and the
sum is over all k and l. The sum over the exchange terms
can be written as

&«bo I

I"
I «bi&&~-b- I

v
I «bo&

5;„S,,S,„S;„, (25)
jj7clmn 2E, E, E,.

where the prime still refers to the exclusion of i= j=0
in the sum. By expanding (2Ep—E;—E,) ' as a series
in (2Ep—Ep—Ei) ' for b, l&0 along the lines developed

by Musher" in another context and noting that
P, 5;oS,i= boi, the leading term in (25) is found to be
exactly

x Q/
2Ep—Ea—Et

with the remaining terms (including the term of b = f=0)
being of the same form as higher-order terms in the
perturbationlike expansion.

The nonsymjnetrical singlet wave function'

+p= «(1)bo(2)~i(1,2) (26)

can also be used to demonstrate this equality. When the
first-order correction to +p is expanded in the complete
set a,(1)b;(2)o i(1,2), ordinary perturbation theory gives
the second-order energy as

This is demonstrated as follows. Since the set of pro-
duct functions a;(1) b;(2) is complete we can write

b,(1)a, (2) =P S,,S,,«(1)b,(2),

B. Average Second-Order Energy

It is convenient to examine separately the average of
the singlet and triplet second-order energies, 8~, and the
difference of the two second-order energies Ah2. From
Eq. (21) and using the interaction potential V defined

by (20), the average second-order energy may be

' K. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

g/ g/
2Ep —E;—E;

(27)

where the V is the same as in (20). If instead one had
used the complete set («(1)bp(2); b;(1)a,(2)) (i and j
not both equal to zero) in the expansion, the second-

' See, for example, H, gilverst. one. J. Ch|;m. Phys. 45, 433&
(1966),
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order energy becomes

, I("bol vlb;;)I2=
2Eo—E;—E. (2g)

l(cobol 1/~»I~A) I'
g2= P

2Ep —E—E.
I( obol vI~'b. )I+2P-

o—
. (29)

plus terms of third and higher order. As the third- and
higher-order terms are neglected in both procedures it is
consistent to neglect them here, and because the matrix
elements H are the same and small in both basis sets,
all such terms will be truly higher order, so that 82™ust
equal 82" with an error of only higher-ord. er terms.

Energy upper bounds on the magnitude of these in-
tegrals are also equal up to terms which decay expo-
nentially. Thus, using (27), or equivalently twice the
Coulomb term of (23),

I
@2'I ~~ minl2Eo

X{(cobol Vol oobo) —(cobol Vloobo)2)

while, using (28) or twice the exchange term of (23),

l@2"I~minl2Eo E»'I '

X{(cobol V'lesbo) —(cobol Vlbooo) )

where the complete set for the summation of the latter
is chosen to be the orthogonal one b;(1)a,(2), all i,j

This discussion does not mean to suggest that term
by term the Coulomb and exchange integrals are the
same, but that the sums of these integrals divided by
the energy denominators will be. It is known that the
major contribution to the Coulomb integral sum arises
from the discrete states while the contribution from the
lowest discrete states to the exchange integral sum is
relatively small. Thus it is surmised that the greatest
contribution to the latter comes from the continuum
states, a natural consequence of the fact that when a
function centered on one atom is expanded about
another the major terms arise from the continuum
states. (It should be possible to demonstrate this be-
havior by taking the asymptotic forms of 5; and u; for
i and j in the continuum and integrating over the in-
dices i and j before integrating over the electron coordi-
nates. ) One can see, therefore, that neglect of continuum
states in the expansion is likely to lead to an 82 which
is too small by a factor of 2 since only the 6rst term of
(23) will give an important contribution. On the other
hand, the inclusion of the continuum —or equivalently
the use of Lowdin-Shull orbitals and higher-order en-

ergy corrections" —in the calculation of Alexander and
Salem" only leads to the correct result for 82 because
the neglect of all the exchange terms of (23) exactly
offsets the neglect of Q '=2 in their Eq. (9).

The expression (24) for 82 can be written in terms of
single-and double-excitations as

It is easy to show" that for the discrete states

and
(cobol 1/r»la b;)=c/R"—Z(R) e~ qR—

(a,b, l Vlo;b, )=P Z, (R) exp —7R,

where m=1'+l;+1, q= i+us; '+e;—', with I;, l; and

n;, l; the respective quantum numbers of states i and j,
the various P(R) are Gnite polynomials in increasing
powers of E., and c=0 if either or both of the states u;,
b; is an s state. Since similar expressions can be obtained
for the integrals over continuum functions and the en-

ergy denominators of (29) are independent of R, the
82 is thus of the form

82——Q (kg.R-2&'+'+'&++ p."'(R) exp —ng Rj

+P ps(R) exp —PR, (30)

where the individual terms in the Grst summation arise
from summing all the terms of (29) of given t and l'~0,
while the second summation is simply the collection of
terms arising from either t or /' or both equal zero, in-

cluding the single excitations.
Note that the terms in E '&'+'+'& are precisely the

terms which arise when the potential V is expanded in
inverse powers of R, on the assumption that r~~ and
r~~ are both less than R, and the London-van der %aals
energy is, in fact,

,R—2(2+2'+1)

l, l'gp
(31)

The leading term of this expression was calculated by
Kisenschitz and London using the summation method,
the result being —6.47R '. Of this, —4.0R ' arises from
both i and. j in the discrete spectrum —2.2R—' from one
state discrete and one in the continuum, and. —0.3E ~

from both states in the continuum. This term has been
calculated by numerous researchers and most accu-
rately by Hirschfeld. er and Lowdin, " who obtained.
—6.499026K 6. The first eight terms in the expansion
have been given by Bell,"the 6rst few terms of which
are

Eg= —6.50R '—124R '—3290R "—122000R ". (32)

Since it is impossible to express the coeKcients kll' in
closed form it is not possible to prove whether or not the
series for EI convergesfor E greater than some Ro.
However, when particular numerical values of R are
used in the series (32), the contributions of the various
terms rather than decreasing eventually become almost
equal in size,"which, together with the fact that the

"R.J. Bell, Proc. Phys. Soc. (London) 87, 594 (1966).
"See, e.g., the tables given by Dalgarno and Lewis (Ref. 22).
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upper bounds to these terIDS form a divergent series, "
suggest that I"I, is, in fact, in6nite at all I'. The expres-
sion EI. is sometimes a useful approximation to h2 since
lt hRs thc RppcRI'Rncc of bclng thc Rsyn1ptotlc cxpRDslon
for h2, though this cannot be proven without knowing
b2 itself analytically. In any case, the difference between
hs and. Ei„ the terms of the form p(R)e N~, are not at
all negligible despite their "exponential decay" and their
sum is, in all probability, infinite. This is so, since h~

itself is 6nite as we now prove, and although we do not
agree with Brooks' argument' that 8~ is asymptotically

equal to El, we agree that the likely divergence of EI, is

due to the expansion of V, and we do not agree with the
criticism of Dalgarno and Lewis, 22 which claimed that
this divergence was due to the neglect of exchange. In
fact, their discussion of the asymptotic behavior of the
energy bound in H2+ can be said. to prove the argument
of Brooks for this case.

That the expansion of 82 is indeed convergent is easily
demonstrated. by determining the upper b~und to

I @sl

which is obtained by a procedure analogous to that of
Eisenschitz and London. ' Thus,

I~sl =2'(Eo+EI 2Eo) 'I&&lof'ol Vltt f'&&I ™n(Es+E&2Eo) 'L&&lof&ol V'I&Iof'
& &&Iof&ol VIIIof'o& j

=min(Es+ E,—2E,)-'(—7/12+1/R'+ e
—'~LEi(2R) jL—11/16R—11/8+-', R+~R']

+e LEt'( —2R) jL11/16R—11/8——'R+.—'R.'j}, (33)

(neglecting bounded terms dominated by exp —2R)
and the bound is finite everywhere except at E.=O, so
that

I Ssl ls bounded at all finite R. A bound to the lead-

ing term in the asymptotic expansion of b~ is obtained
by using the asymptotic expansions

e ~eI
Et(a) =Et(*)=—2—

to give as a leading term

(6/R') min(Es+EI —2Eo) '= 16/R' (34)

as compared with the exact value of 6.508 6, Kisen-

schitz and London, who had a Slightly di6erent" ex-

pression for 82, obtained the same leading term in the
bound except that they took the minimum energy de-

nominator to be that of the double excitation and hence
obtained SR . This is not legitimate, as can be seen
from the fact that if only double excitations are in-

cluded —let us say on the grounds that the single excita-
tions give contributions proportional to exp( —nR) —-
tllcll V 111 Eq. (33) call bc replaced by &rts

&
so thRt tllc

single excitations are consistently neglected and the
leading terms of the bound are

ss 'I 2R '+15R 'j,
ln which thc term ln E ls spuI'ious Rnd would bc cRD-

celled out by the bound to the single excitations which is
also in E. 4 despite the exponential behavior of the exact
solution.

It ls important, howcvcl, to note thRt thc asymptotic
expansion of (33) cannot be applied through terms of
R 8, as necessary to give h2~E. 6 unless E. is large
enough that

'~ A. Dalgarno and J. T. Lewis, Proc. Phys, Soc. I'London) 69,
5'/ (1956).Notice that A. Dalgarno and N. Lynn LProc. Phys. Soc.
«',London) 70, 223 I'1957)g have demonstrated that the inverse
power series in R is the asymptotic expansion for the Gg of the
rather difkrent problem of a proton interacting with a hydrogen
atom.

is satisfied. Hence the energy bound for the values of E
of pllyslcal 1Iltclcst cQttttot bc expressed by (34), and ls,
in fact, the value obtained by direct substitution into

(33), several of orders of magnitude larger. This is per-

haps surprising since at E.=8, 8~ is very well approxi-
mated by the term in E ' alone —it gives 2.7& 1.0—' as

compared with the best value of 3.54&10 ' of the total
correction —but it. illustrates weH the fact that energy
bounds are not necessarily good approximations to the
cDcI'glcs themselves.

When the potential V is expanded in inverse powers
of R as

V= R-'(xtxs+y&ty. —2stxs)+0(R '),

the bound to London's result is

I
El(R ')

I
&min(Es+EI —2Fo) '6R o=SR '

since here the single excitations give a zero contribution
to the sum and can be neglected in determining the
minimum-energy denominator. The bound therefore
dif'fers by a factor of 2 from that determined by (34) and

is closer to the correct solution, a fact merely due to the
vagaries of tl1c crude bouDdlng proccduI'c.

The labor involved in obtaining 8~ explicitly using the
summation of (30) is clearly prohibitive and a more

satisfactory procedure is to rewrite (29) in terms of the
solution to a partial differential equation. %e do not do
this here because this is equivalent to the perturbation-
theoretic procedure of Sec. V, and in any case, the de-

tailed CRlculRtlon of hp ' ls not pI'opeI'ly part of thc
present study.

C. The Exchange Energy

The difference in the triplet and the singlet energies

is often called the exchange energy„although this usually
refers only to the Heitler-London or. zeroth-order energy
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di6erences. This was first calculated by Sugiura" to be

&oo'—JJoo'= {56/45—(4/15)(y+lnR)}R '
Xe '"+terms of order R'e 'a (.36)

This expression becomes negativev for E&50 a.u. , a
physically impossible result, so that the second-order
contribution to the exchange splitting should be positive
to correct for this. When certain small integrals are
neglected, the second-order splitting becomes"

ASo ———-'g'(2Ep —E —E) 'Jpo"
u

X [4&op'; g&oP—o; Eo 2L oo';—~oo'j, (3&)

where Lpp;, —Jpp, ,J;,;,—(E~+E, 2Eo) '. U—nfortunately,
the terms in square brackets have different signs, so
that it is dificult to make an a priori estimate of the
sign of their sum. However, the Mulliken approxima-
tion for exchange integrals and the work of MurreQ
et al." suggest that the first two terms for i and j be-
longing to the discrete spectrum are roughly propor-
tional to Sp;SpjR . If this is correct then at large R this
term will dominate and

c,jSp;Spj
a8,=P

g ls+l )+2

If the value at R=8 for i and J being 2pp states is ex-
amined, the term corresponding to 2po states will be
positive and vary as E. 'e ~. This will clearly be su%-
cient to dominate the logarithmic term in (36) and to
insure that 68 is positive in the limit of large R. How-
ever, the terIns arising from states of higher principal
quantum number decrease even less rapidly, Sp; going
as exp( —R/n;), so that unless all the terms are of like
sign this argument breaks down. Furthermore, the size
of the continuum-state contributions, although here
likely to be small, appears even more problematical.
Notice that the argument which showed the total ex-
change and Coulomb contributions to 82 to be equal
cannot be applied here since the transformation coeK-
cients Sp; do not appear quadraticaHy. In fact, 682 can
be argued to be small relatively to 8~ precisely because
these Sp,. appear linearly. We intend to investigate this
problem explicitly in the future.

At the present the best that can be done with the
present formalism is to use the Unsold "approximation"
to obtain an arbitrary estimate of 68~, giving a leading
term proportional to

(4/15)RP lnR exp( —2R) Xmin
I
2Ep E; E;I——

= (32/45)R' lnR exp( —2R), (39)

but this cannot be considered as a very convincing
result. ~ Herring has devoted a considerable effort to
obtain an estimate to the true exchange energy using an
ingenious perturbative method which is quite diKerent

23 V. Sugiura, , Z. Physik, 45, 484 (19&7),

than the one given here but which does manage to cor-
rect the erroneous behavior at large E..We have not suc-
ceeded in finding an appropriate way to relate the work
of Herring to our own but this shouM be, in principle,
possible. There is however, we believe, a legitimate
question, arising from our discussion of the effect of the
continuum wave function and exchange integrals, con-
cerning the physical arguments Herring used to justify
his approximations, but this is a subject for further
study.

682 can, however, be evaluated explicitly by writing
(37) in terms of G(1,2), the solution to a partial diGeren-
tial equation, which gives the same result as the pertur-
bation-theoretic procedure of Sec. V when the term in
Spp' is neglected. Thus, neglecting the latter term
fol simplicity —lt ls ln fact important Rnd ls eRslly
included—

~@ =2 Z (G(1»)l '(1)b(2)&
ij+0

X (u;(1)b;(2) I
P—2Eo

I bo(1)«(2))

=2L(G(»2) I V'Ibo(1)«(2)&

-«(1,2) I "(»b.(2»

X(ao(1)bo(2) I VIbp(1)ap(2)&j, (40)

~he~e G(1,2) is the solution to the partial differential

equation

(JJo—2Eo)G(1,2) = (hi —V)«(1)bo(2), (41)

~~=(«(1)bp(2) I VI«(1)bp(2)&,

and with V'=E~oV. The two electron-equation (41) is
the same equation that has to be solved in order to de-
termine the average second-order energy ho, if the ex-
plicit expansion in 4„ is to be avoided. Thus when an
approximate solution for this G(1,2) is found, it can be
applied to the problems of both b2 and 68~.

The di6iculties of convergence encountered when
eigenfunctions of the exact Hamiltonians of the non-
interacting systems are not employed as the expansion
functions were discussed in Sec. II. These can be illus-
trated very well by examining the two-hydrogen-atom
problem of the preceding section when I owdin-Shull
oribitals and charge transfer functions are employed.

A. Lowdin-Shull Orbitals

Consider the complete set of radial atomic orbitals

R(r) =C,g(2r)'L"+' +~&(2r)exp —r,
which diGer from the hydrogenic functions in that the
exponential factor is always exp —r instead of exp—(r/n). These functions are eigenfunctions of an opera-
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tor which differs from the hydrogen-atom Hamiltonian,
although the lowest states ao', bo', etc. , in this basis are
identical with that in the hydrogen basis, ao, bo, etc., and
thus Hoo is the same for both sets of expansion functions.
The second-order energy correction, however, differs,
since only the states composed of 2po' and 2pm.

' atomic
states have nonvanishing matrix elements" (apbp

~
1/rqp (

)&a;b;) contributing a total of

—6/Ep+p(E)e '"

to the energy when the denominator is expanded. The
exact leading term —6.508. ', which arises from the
second-order term in the hydrogen basis set, is only ap-
proximated by the second-order term when the Lowdin-

Shull set is employed, the remaining contribution aris-

ing from what have been labelled higher-order terms,
which illustrates the arbitrary and dangerous nature of
the terminology. Hirschfelder and Lowdin have ob-

tained this exact result by using Lowdin's partitioning
techinique, for which

Hpp+ Z (Hpn HppSpm)
m, n+0

X (HppSg —Hg) '„(Hp„—HppSp„),

where Sq and H~ are those parts of the S and H matrices
which remain when the rows and columns connected to
the state %0 are removed, a procedure which is precisely
equivalent to summing all the higher-order terms of (5)
which are bilinearin (Hp HppSp ) and (Hp —HppSp ).
It can easily be seen that both of these terms will give

leading contributions proportional to R ', so that
higher-order terms in R—' can only arise if a basis set is

used which has matrix elements 8 „—S Boo contain-

ing terms independent of R. By Kq. (11)this clearly does

not occur for hydrogenic functions, but does indeed oc-

cur for Lowdin-Shull functions for which the leading

term of H „, (a b, ~
H~+He

~

ap'b~'), is independent of

R and can be appreciably large. When the coefficients

of g-6, g 8 are considered for the second-order contribu-

tion of (5) using this basis set, and comparison is made

with the best known values of these coeScients, it ap-

pears that in this particular case the agreement for the

several coefficients is quite good. This is, in a way,
heartening since these results are much easier to obtain

than the solution of Sec. III. This would indicate that if

a single atomic excited state is to be added perturba-

tively to describe the interaction between atoms or mag-

netic ions it might be better to iricreuse the effective

charge on the nuclei rather than screen it as is usually

done, i.e., the 2po' states are 2po states in the Geld of

a nucleus for which Z= 2. Unfortunately, however, there

is no way to ascertain a pnori the goodness of a particu-

lar screening or antiscreening parameter and thus there

appears to be little justihcation for the procedure of add-

ing a single con6gur ation perturbatively, so often used

ia solid-state physics, because the results obtained de-

pend critically on an arbitrary and capricious parameter.

B. Charge-Transfex' States

The use of charge-transfer or ion-pair states which
supposedly are of importance in the interpretation of
molecular spectra, '4 as well as in the theories of anti-
ferromagnetism, "should now be considered of skeptical
validity in view of the contribution of the matrix ele-
ments IJ analogous to the case of the Lowdin-Shull
orbitals. There is also the additional problem that when
charge-transfer states are included in the set of func-
tions the set becomes overcomplete, with the resulting
arbitrariness and instability of the 6nal answer we have
referred to earlier. The overcompleteness can, in fact,
be dealt with by removing from the set 0 „one function
for each charge-transfer state, thus giving a mixed set
of product functions and charge-transfer states. Pro-
vided that each charge-transfer state overlaps the prod-
uct state it replaces, the mixed set will be complete and
not overcomplete. However, the almost unlimited choice
of which product functions to disregard in such a proce-
dure, and the accompanying variability of 82, must be
considered a demonstration of its arbitrariness. As differ-
ent choices are made, the value of 8~ will change, and
this implies that there will be large correcting terms
from 83, 84, etc. These terms actually arise from the
charge-transfer states and the product functions which
will be, for example,

(a,b;~a,a,)=S;,,

whereas the overlap between product functions is zero,
and they can be estimated by orthogonalizing the
charge-transfer states to the~roduct functions which
has the effect of bringing the overlap terms into 82.
For example, suppose we consider a three-member basis
set 4'p, 4'~, %p where %p, 4~ are members of the set (2)
and %p is a charge-transfer state, with (0~ 1)= (0~ 2)=0
but (1~2)=S.The second-order terms in (5) will be

Hpl /(Hpp Hll)+Hpp /(Hpp H22) ~

Suppose we now define a new function

42 = 'I12—S'ky,

(42)

so that (2'~ 1)=0. In terms of 4p, 4~, 4p', the second-
order terms are

HpP/(Hpp Hu)+ )Hpp —SHps~ /(Hpp Hp p) ~ (43)

So long as S&0 the two expressions will be different,
with (43) including the higher-order terms in S in the
expansion of which (42) is the second-order term. For
the expansion implicit in substituting the more accurate
expression (43) by (42) to be valid, the inequality

/SHpg f« fHpp[

must hold. Since 5 for charge-transfer states can be
quite large it is dificult for this condition to be satished. .

24 J. N. Murrt:ll and J. Tanaka, Mol. Phys. 7, 363 (1964).
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Presumably it would. be argued that the choice of
which product functions to replace by which charge-
transfer states will be made so that 83 and 84 are small
and. the total energy will be just Sp+ hs. However, there
seems to be no way of making such a choice a priori.

Alexander and Salem" calculated the contribution of
the charge-transfer 2pog'2pog' state to the energy of
singlet II2 at E.=8 to be 2.26&(10 .They also observed
that the significant third-order term was just that aris-
ing from the overlap with the isolated-system state
2pog'2prrn' as in the case above, and that inclusion of
this term reduced the contribution to 1.42)&10 '. We
suspect that by including fourth-order terms, the energy
contribution is reduced. even more. "Thus, a large ma-
jority of the second. -order effect of charge-transfer states
is cancelled out by the higher-order terms and it is
diKcult to escape the conclusion that results obtained
based on the use of charge-transfer states are likely to
be extremely deceptive and misleading.

C. Antisymmetrized Functions

Almost exactly the same criticism made again. st the
inclusion of a limited number of charge-transfer states
among the basis functions can be made if antisym-
metrized functions are included. We have already
pointed. to the fact that when the full set of antisym-
metrized functions + replaces the product set 0 „the
second-order term must be divided by Q (in the case of
Hs, Q=2) to correct for the overcompleteness. But
exactly as for charge-transfer states, it is possible to use
a mixed set in which each of a firsite number of the prod-
uct functions is replaced by an antisymmetrized com-
ponent. Such a set will rot be overcomplete, and so the
Eisenschitz-London argument for dividing by Q will not
hold. On the other hand, it is quite easy, by judicious
choice of which product functions to replace, to change
the value of considerably. For example, if the 2po~2p~~
hydrogenic product function is replaced by the anti-
symmetrical product 82po~2pos, then the contribution
of these states to the h2 term to the London-van der
Waals energy is doubled while the overlap terms, which
will only appear in higher order, will eventually subtract
off this extra factor of 2. Thus as in the case of charge-
transfer states, results obtained by the inclusion of a
limited number of antisymmetric functions and the
truncation of the perturbation expansion after two terms
cannot be accepted as satisfactory.

A procedure for simulating the continuum functions
which appear in nonsymmetrical formulations of the
electron-hydrogen scattering problems —and the re-
moval of an awkward singularity —by using such anti-

"By orthogonalizing the charge-transfer state to the non-
charge-transfer state along the lines of the example given in this
section the energy contribution is reduced to about 20'P0 of the
originai value. Note, however, that in this example the states are
antisymmetrized functions, and not product functions as assumed
in the text.

symmetrized products has been given by Castillejo
et a/. ,"who have noted the nonunique expansion coeK-
cients, and has been discussed. further by Burke and,
Schey" among others. The diKculties with such expan-
sions have also been discussed by Herring in Sec. V of
Ref. 7c, who points out, among other things, theinter-
esting apparent ambiguities one obtains when the wave
functions are expanded about a third point in space at
which there is no nucleus whatsoever.

XO', (Ho+XV)A pBo +(Ho+XV)(Xe,+Zoos+ )
= (so+&pi+ ' ')(+o+&%+ ), (44)

which coincides with the Schrodinger equation for our
problem when the smallness parameter P =1 for which
+ and e are given by the power-series expansions in X.
The equations, order by order in X, are

HpAoBp = egApBo

(Hp —ep)@i=PS(et—V)A pBp ~

(Ho—ep)+s= esto+(s1 —V)+t, etc. ,

(45a)

(45b)

(45c)

where the constants e~, e2, etc., are determined by multi-
plying the respective equations on the left by A p8 p

Note that whereas 4'p is antisymmetric in an obvious
way, the fact that 0 & and 0 2 are actually antisyrrunetric
must be demonstrated, since the Eisenschitz-London
expansion of

4t——P c.O,%. (46)

is not possible due to the presence of the nonsymmetric
operator Hp.

To illustrate the behavior of Eqs. (45) we write out
the 6rst-order equation for two hydrogen atoms with

"L.Castillejo, L C. Percival, and M. J. Seaton, Proc. Roy. Soc.
(London) A254, 2S9 (1959).

~~ P. G. Burke and H. M. Schey, Phys. Rev. 126, 147' (1962).

V. PERTURBATION EQUATIONS

Ever since the early work of Kisenschitz and London, '
it has been of interest" ' "'~ to obtain a hierarchy of
perturbation-theoretic equations which can treat the
problem of weakly interacting atoms; it was the in-
ability to Gnd such a set of equations that led to the
expansion method of Sec. II and its predecessors' 'P.

Recall that most of the calculations on cohesive energies
of solids were restricted to determining the expectation
value of Bover the zeroth-order antisymmetrized wave
function. "

In actual fact one can write down such a procedure
with little di%culty once one realizes that the perturba-
tion corrections to the wave functions need not be ex-
plicitly antisymmetric as in the London-Eisenschitz-
van der Avoird expansion. Thus, if we use the notation
of Sec. II, with %p de6ned by (3) and Ho and V defined
by (10) and (11), we can write
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4'os r of (18) and oo-—-2Eo. Thus we have

as in the Heitler-London case. %bile 0 ~~ 7' can be solved
for directly or variationally, " the expansion in the set
of eigenfunctions (19) of Hp enables examination of the
symmetry of 0'&~ ~. Thus we write

4 "=Z' c',"o'(1)b, (2), (49a.)

(Hp —op)%ps r ——(1~P)(og—U)

X(2&25pp ) ~ Gp(1)bp(2) (47)
with I'—=I'~2 and

o's r=(1+Sooo) 'L(aoboI VIaobp)

+(aoboI VIbpao)] (48)

whence

':,'r=(2~25oo') '"(o;b, I(1aP)(V—og)Iapbo)

X(2Ep—E,—E,) '. (49b)

Now, the argument (although none was given by Lon-
don and Eisenschitz) for expanding in terms of anti-
symmetrized functions (46) is apt to have been based on
the supposition that these 4'~8 ~ do not have the proper
symmetry since electron 1 seems to be located on 3 and
electron 2 on B.This supposition is false, however, and
in fact 4'&~ and &I &~ are, respectively, symmetric and
antisymmetric spatial functions up to terms of higher.

order, as can be proven immediately by the same argu-
ment that showed Coulomb terms to equal exchange
terms. This is done by writing

~P&o%'& ' =~(2+25po') Q c;qb~(1)a, (2)

= ~(2+2~op') '" 2 ~~p~'6'g-~'. (2~o ':, L;—)—
ij/p limn

=(2a2Sop') —'" Q (u'-b&I (1aP)(V—og) Iaobo)
X(b a I(1+P)(V—ox) Iaobo)az(1)bt(2)

X(2&o—~o—Ei) 'ao(1)b~(2)+higher order terms=%'~s r (50)

The perturbation theory is therefore seen to lead to
no inconsistencies and the hierarchy of equations can be
used, to find the singlet and triplet wave functions and

energies to any desired degree of accuracy. For example

the second-order energies are given by an expression
which differs from (21) only by terms of higher order

(which are partially summed in the secular-equation

procedure) and the exchange energy can be determined

by an expression similar to (37) or (40). When the equa-

tions are solved variationally the Lowdin-Shull expan-

sion can, of course, be used without the ambiguities re-

ferred to in Sec. IV.
It is interesting to note the resemblance between these

equations and the equations of the nonsymmetrical

perturbation procedure of Hirschfelder and Silbey. For
the example of H2, these authors would try to solve for

functions A* and 8*, respectively, the sum and the

difference of the non-normalized +~ and 0'~, in a per-

turbation expansion with

A p* up(1)bo(2)——
and

Bo*=bo(1)~o(2) =P~o*.

They then obtain an equation for A &*,

(Ho —oo)~i*=(-'.ox+—V)~o*+-,'os-&o* (51)

where e~+, e& are the sum and difference of e&~ and &&'I'

and a similar equation for Bj*=—PA~ which can be ob-

tained by multiplying (51) on the left by P. The function
A~* is then essentially the same as the sum of +i8 and
+&r of (47), but 8'* is not the same as the di6erence in

28 J. I. Musher, Ann. Phys. (N. Y.) 32, 416 (1965).

these functions as I'Bp+Hp. In other words,

+i'-+i'"P(+"+%').
Since the two equations for A &* and 8&~=PA &* are not
sufficient to define e~~ and e~'—the determinant of the
coefficients vanishes —Hirschfelder and Silbey have
argued that an additional condition,

(a,*IH,—., I w, *)=0, (52)

must be satisfied. Ke find it extremely suggestive that
in our expansion this condition (52) is automatically
satisfied, and we wonder whether, in fact, the expansion
procedure de6ned by (44) and (45) when the perturba-
tion equations are added and subtracted order by order.

is not the one sought after by these authors rather than
the one they have actually used.

It was hoped that the comparison of the explicit ex-
pression for the second-order energy" of the nonsym-
metrical wave function with that of the singlet energy
in the scheme discussed here would shed some light on
the ability of the expansion of the former to converge to
the correct singlet or triplet energies. Similarly, it was

hoped that the comparison of the corresponding wave
functions would show the possibility of the convergence
to a function of one symmetry or the other. However,
the examinations of the symmetry of (50) show that
when higher-order terms can be neglected the non-
symmetrical 6rst-order wave function wiH only be the
sum of the singlet and the triplet function and will not
possess the proper symmetry. In other words, only for
values of R at which the second-order wave function is
of importance can the perturbation expansion of the
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nonsymmetrical wave function converge to a solution
of a particular symmetry. This is, of course, what was in
some sense expected, because at large R the lowest sing-
let and triplet are virtually degenerate, so that the per-
turbation procedure has no way to pick out either of the
two solutions. What we have still not succeeded in dem-

onstrating explicitly is that at sufficiently small E the
procedure will converge correctly, even though it seems
most reasonable to assume that will be the case. Of

course, a direct solution of the secular equations using
the compete set {a;(1)b,(2)),all i, j, must pick out
automatically the solutions of correct symmetry.

VI. SUMMARY

The major portion of this paper has been devoted to
a development leading to Eqs. (24) and (37) and their
perturbative analogs of Sec. V for the interaction en-

ergy between weakly interacting systems. Although our
interest has been for the most part directed toward this
rather academic problem, whose solution has apparently
eluded previous workers in the field, there are several

places at which our discussion has touched upon points
of real practical importance. Ke would like to sum-

marize here the implications of our research for practical
theoretical problems in molecular and solid-state physics
without expanding the discussion to a comparison of
literature calculations.

1. The inclusion of continuum states in a basis set-
or linear combinations thereof —is of utmost importance
since without them the interaction energy will be in-

correct by a factor of 2. Thus, the use of a 6nite number

of basis functions can lead to misleading results, e.g.,
convergence of a perturbation-theory sum in such a
basis set can be deceptive.

2. The inclusion of charge-transfer states, or other

states which are not good approximate eigenstates of
the isolated system Hamiltonians, in a basis set will only
lead to unambiguous results if the entire secular determi-

nant is diagonalized, and not if it is to be solved merely

to lowest order in a perturbation expansion.

3. If antisymmetrized functions are used for a finite
number of elements of a basis set in a perturbation ex-

pansion, care must be exercised to orthogonalize the
continuum functions to these functions, since otherwise
there will be a large continuum contribution to the
second-order energy which will be cancelled out by
higher-order terms. It is probably better, therefore, to
use this Gnite number of antisymmetrized states and
leave out the continuum.

4. In general, exchange integrals cannot be neglected
relative to Coulomb integrals since, in fact, the totality
of the two contributions are equal.

5. The perturbation correction to the exchange en-

ergy, because of the fact that it is considerably smaller
than the average energy correction to the same order, is
particularly sensitive to the choice of basis functions and
the type of perturbation procedure used. Before con-
clusions are made as to ferromagnetism or antiferro-
magnetism of a particular ionic configuration, the effect
of the limited basis set, the use of pseudo-eigenfunctions
and the other approximations generally made should be
thoroughly investigated using an expression such as
given by Eq. (40).

6. Since unambiguous second-order results in terms of
an interatomic potential obtain only for an expansion in
exact atomic wave functions, it is not meaningful
to assume an orbital approximation for the atomic
wave functions and describe the interaction between
atoms as sums of Coulomb and exchange interatomic
contributions.

7. The results of the present study indicate that
repulsive exponential terms, as in Eq. (30), occur in the
exact expansion for the van der Waals attractive energy
and are of importance at all values of E, contrary to
common belief. Thus when attempts are made to fit
experimental interatomic interaction curves, in the at-
tractive region, with paramaterized expressions going
beyond the R ' term, exponential terms should be
included as well as the higher inverse powers of E.
This shows that corrections to the simple R ' law are
apt to be exceedingly complex.


