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Variational Calculations on Liquid He' and He't
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Assuming a I.ennard-Jones 6-12 potential with the de Boer—Michels parameters, the ground-state energies
of systems of liquid He4 and He' are calculated by a variational procedure in conjunction with the method of
correlated basis functions. Comparisons are made with the results of McMillan and of Schi8 and Verlet.
These comparisons shed some light on the validity and adequacy of the Jastrow- and Jastrow-Slater —type
wave functions in the description of helium liquids.

s(r) =«L(~/r)" —(~/r)'7 (2)

We choose for e and 0- the values determined by
de Boer and Michels: e=10.22'K and o=2.556 A. A

Jastrow-type trial wave function is assumed:

HE ground states of liquid He' and He' have been
the subject of many theoretical studies. The more

realistic calculations for liquid He' and the hypothetical
boson He' system are frequently variational, whereas

the treatment of liquid He' requires more elaborate
procedures. Recent work' has shown that a perturbation
theory based on the method of correlated basis functions

(CBF) can start from a variational calculation and

lead to encouraging results for the ground state of

liquid He'. In earlier papers' ' we reported on calcula-

tions of the ground-state properties of liquid He' and
He' using variational methods in conjunction with CBF.
In those calculations we used a two-body Lennard-Jones

potential s(r), with the strength and range parameters
~ and 0 determined by Massey' in a self-consistent

manner which forced the calculations to give the correct
ground-state energy and equilibrium density for liquid
He4. In this paper we give the results of a new calcu-

lation using the de Boer—Michels values for e and 0-.

This new calculation enables us to compare our results

with those of other authors. In turn, such a comparison

sheds some light on the validity and accuracy of the

approximations used in these various calculations.
We first discuss the variational calculations for boson

systems. The Hamiltonian of such a system is given by

given by

(T)=N p g'(r)u'(r)dr,
SM

1
(V)=N p

— g(r)s(r)dr,
2

where p is the number density and g(r) is the radial
distribution function defined by

p'g(r) =N(N 1) ~$3~~3—dr3 drN/I

The evaluation of (H) can be carried out by methods
of two general categories. In the first case one assumes

a parametrized form of u(r) and evaluates approxi-
mately the many-body integral for g(r) directly from

its definition, according to Eqs. (5) and (3). McMillan

(M) performed a Monte-Carlo integration to obtain

g(r) in this manner, while Schiff and Verlet' (SV) took
advantage of the mathematical analogy with the
classical theory of Auids and applied the technique of
molecular dynamics. Our work (MW) belongs to the
second category in which one uses an approximate
integro-differential equation to relate g(r) to u(r). De-

pending upon the approximation chosen, this equation
can take on one of several forms. We choose the
BBGKY equation in which the three-particle distribu-
tion function

N

Ps (ri, ,r~) =exP(s Q 33(r,;)). (3) p&')(rt, rs, r3)=N(N —1)(N—2) )p, ~'dr4 dr&/I
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The expectation value (13r) of the energy is then is approximated by the Kirkwood superposition form

p (rl rs r3) p g(rts)g(r23)g(r13) ~
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TAnLE I. Comparison of iTl, iU), and iB), in units of
K/S, for He4 at two densities.
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The equation appears as

u'(r) =g'(r)/g (r) p—g(")u(r')
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FIG. 1. Comparison of g(r) for He' at p p0 ——0.0218 atoms/A3.
Solid curve MW; solid curve with crosses SV.

for the trial functions. Note that'

XLg(~ r—r'~) —1]cos(r, r')dx'. (6)

Our calculation further diRers from those of the First

category in that we start out with a parametrized form
for g(r) instead of u(r). The g(r) chosen has the follow-

ing form:

Thus,

lim u(r) lng(r).
r~o

lim gMw(r)~e (d(")",
r—+0

lim uMw(r) f)/r(s;
r—so

(10)

g(r) —(c+1)s—(d)r)&0 cc—((+z)(d/r)&s

6 (d 8

+g 8 ((+S) (dlr)~S
ff~ C

—(t+q) (dlr)&o

r kr (7)

d'= )I/2s p,

c= L (1.155574/q) —1/1 —(1+s)"],
8=1'(0 3)(1+q)"/F(0.5) (1+y)s s

where p, 2', A, y, and q are all variational parameters.
u(r) is obtained by solving Eq. (6) numerically. The
reasons for choosing this form of g(r) and details con-
cerning our method of calculation are given in an earlier
paper. '

The trial wave functions chosen by M and SV are
much simpler in form:

whereas for SV one has

lim usv(r) c/r', —
e~0

lim gsv(r) e')"'.
rm

This disagreement for small values of r shows up clearly
in Fig. 2 where u(r) obtained by M, SV, and MW are
compared (at p~ps). The r ' dependence of the M and
SV correlation functions is in agreement with the solu-
tion of the two-body equation near r equal to zero. '

-0.2—

-0.4—

u(r) = c/r"—
Both M and SV found m to be about 5 over a large
range of densities.

Figure 1 shows g(r) calculated by SV and MW at
p~p()=0.0218 atoms/A'. The two curves are in very
good agreement. The disagreement at small r, 1.9 A(r
(2.2 A, is a consequence of the different forms chosen

TAsLE II. Comparison of equilibrium density and energy ('K/Ã).
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FIo. 2. Comparison of N(r) at p pp. Solid curve MW; solid
curve with crosses SV; solid curve with open circles M; dashed
curve, Wu fF. Y. Wu and E. Feenberg, Phys. Rev. 122, 739
(1961)],solution of the BBGKY equation using the experimental
g(r) of Goldstein and Reekie.
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Flo. 3. Comparison of 5{k) for the boson He' system at p =0.'/5,

po =0.0164 atoms/A'. Solid curve MW; solid curve with
crosses SV.

The somewhat longer range of our 44(r) is inconse-
quential: This is evident from the quick approach of
g(r) toward unity, and has also been verified by our
test calculations which compare (2') evaluated with
diAerent long-range cutoffs. The further discrepancy
between the N(r), s at intermediate values of r probably
results from the fact that 44(r) depends more sensitively
on the variational parameters than does g(r). (See
Ref. 2, Figs. 6 and 9.) The energy expectation values
obtained are compared in Tables I and II. Table I
exhibits the comparison at two densities, p po. Since
the cancellation between (T) and (V) is strong, the
comparison of numerical results becomes very delicate.
It is di%cult to compare our results at high densities
with those of SV, whose (T) and (V) when plotted
against density exhibit large fluctuations. Table II
compares our minimum energy and equilibrium density
with those of M and SV and with experiment. On the
whole, the results of the various calculations are in

strikingly good agreement. They share a common deficit
of about I'K/E in comparison with the binding energy
found experimentally. This suggests that further in-

vestigations should be directed toward our common
assumptions: (1) the Jastrow trial wave function, and

(2) the de Boer—Michels potential. On one hand, the
inclusion of higher-order correlations in the trial wave
function may decrease the discrepancy between theory
and experiment. On the other hand, we should point
out the very sensitive dependence of (II) on tt(r). In our
earlier work, ' it was shown that the experimental energy
could be obtained with a mere 3%%u~ shift of the de Boer-
Michels potential well toward larger r, without changing

Tanxz III. Comparison of boson He' results (energies in 'K/E).
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the strength of the interaction. Also, using the potential
determined by Haberlandt, SV obtained an energy
which is actually lower than the experimental value.

Table III gives results on the hypothetical boson He'
system. Rows j. and 3 show results at the calculated
equilibrium densities. As evidenced by the comparison
of row 2 with row j., the major discrepancy between
MW and SV lies in the evaluation of (2'). There are
two obvious sources of inadequacy in our calculation:
tile Kllkwood sllpel'posltloll apploxllllatloll fol' pt I and
the incorrect behavior of u(r) in the limit of small r.
Both a8ect (T) directly. Since (V) explicitly depends
only on g(r), it is clear that neither inadequacy should
affect (V) in 6rst order. It should be possible to estimate
separately the effects of these two approximations:
Our calculation is now being extended to incorporate
in N(r) all the expected features; this will then isolate
the error due to the remaining superposition approxi-
mation. On account of the difference in (T), the total
energies (H) of SV and MW are quite different. This
difference enters directly into the fermion calculations,
as will be seen below.

The variational calculation for liquid He' begins with
the trial wave function ppCs, where lk, is taken from
the above boson He3 calculation and assumed to be
exact, and 4 0 is a Slater determinant of plane waves and
spin functions, with momenta filling a pair of Fermi
spheres of opposite spins. The energy expectation value
E(0& is obtained with the aid of a cluster expansion,
resulting in the series
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and (H) is the energy expectation value calculated
above for the hypothetical boson He~ system. Figure 3
shows S(k) obtained by SV and MW at p=0. 'ISps, the
experimental equilibrium density. Again the agreement
is excellent. Table IV compares the calculated equi-
librium results. Actually SV varied their Pss in this
calculation and obtain EtoI= —1.35'K/X. What we
have quoted in Table IV are the results they would
have obtained had they used our approximation that
Ipp is the exact solution of the boson He' problem. This
approximation is seen to be very good. Note the domi-
nating effect of (H) on EtsI. Note also in our calculation
that as the Fermi statistics gets "turned on, " the equi-
librium density drops (from 0.72ps to 0.64ps), an
obvious consequence of the Pauli repulsion.

In Ref. 1 we worked out Rn extension of this varia-
tlonal cRlculRtlon to include R pcI'tulbRtlon colTcctlon
in second order. The correction depends solely on p and
S(k), and amounts to —0.33'K/X. Since the SV calcu-
lation offers ps and S(k) very similar to those obtained
by us, we expect the second-order correction to their
variational energy to be of roughly the same magnitude.
In other words, starting with their Its, we can con-
struct a correlated basis Rnd obtain a perturbed energy
of roughly —1.7 K/X, III IIIIlcll bcttcl agleclllcll't WIt11

experiment than all previous calculations. The remain-
ing discrepancy of about 0.8'K/IV may again be a
consequence of the absence of higher-order correlations
in the trial function and the uncertainty in the two-
body potential v(r).
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Order of the He' ll-Hes I Transition under Rotation
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Purely thermodynamic considerations show that the volume discontinuity at the He4 II ~ He' I transition
under rotation reported by Andronikashvili and Tsakadze cannot correspond to a transition between
thermodynamic equilibrium states if {M'/BT'q)„&0. Experimental results are presented which show that
at the transition )rIP[ &~6X10 ' I/mole and )aV~ &~3X10 ' cc/mole at a&=30 sec '. Thus, within these
limits, the transition is of higher than 6rst order.

INTRODUCTION

QYCNOMETRIC measurements for rotating He4 II
reported by Andronikashvili and Tsakadze (AT)'

showed that the molar volume V(HC4II) decreases
with increasing angular velocity ~, In somewhat later
communications, ' AT presented measurements which
Indicated that V(Hc I) Is Illdcpclldcllt. of (o~ RIld 'tllat.

at co& 0, the molar volume is discontinuous at the tran-
sltlon tcmpclRtuI'c T),. Very lcccnt attempts by Smith
et il.,3 and by Andelin' to reproduce AT's results below
the transition temperature by slightly di6crent tech-
niques were unsuccessful. In a brief previous com-
munication' this author reported on thermal measure-
Incnts whlcll lcvcRlcd no dependence of thc cntlopy of
He4 II on angular velocity.

' E. L. Andronikashvi/i, and J. S. Tsakadze, Phys. Letters 18,
26 (1965);Zh. Eksperim. i Teor. Piz. , Pis ma v Redaktsiyu 2, 278
(1965) t English transl. : JETP Letters 2, 177 (1965)).

2 E. L. Andronikashvili and J. S. Tsakadze, Phys. Letters 20,
446 (1966); Zh. Fksperim. i Teor. Fiz. 51, 1344 (1966) LEnglish
transl. :Soviet Phys. —JETP 24, 907 (1967)j; E. L. Andronikash-
vili, in Proceedings of the Tenth Internatiowal Conference on, rom
Temperatgre Physics (Atomizdat, Moscow, 1966), Abstracts.

3 E. Smith, R. Walton, H. V. Bohm, and J. D. Reppy, Phys.
Rev. Letters 18, 637 {1967);Bull. Am. Phys. Soc. 12, 551 (1967).

4 J.Andelin, Ph s. Rev. Letters 18, 483 (1967);Bull. Am. Phys.
Soc. 12, 552 (1967 .' G. Ahlers, Bull. Am. Phys. Soc. 12, 551 (1967).

No quantitative conclusions can be drawn regarding
the dependence of the internal energy of He4 II upon m

from AT's earlier measurements. ' However, at the
transition the Clausius-Clapeyron relation yields a large
entropy discontinuity from AT's latter measurements.
Therefore„ the absence or presence of the reported
6rst-order contI'lbutlon to thc tlRDsltlon ls paltlculally
important, because the corresponding entropy discon-
tinuity indicates a dependence of the internal energy
of He4II, immediately below the transition, upon ~
which exceeds the angular momentum contribution
expected for solid-body rotation by three orders of
magnitude.

lVote added &t proof. Very recently Pobell et al. )Phys.
Letters 25A, 209 (1967)] reported on measurements
somewhat similar to those reported here. However, they
attempted to relate changes in entropy wither to changes
in volume with co at temperatures mell below T~. There-
fore, it seems worthwhile to emphasize that with avail-
able experimental information, '2 this is possible only
in the immeChutt. ~icAsity of T&,. The conclusion that
Ap/p& 2&10' for the measurements of Pobcll ct aL at
1.80'K and co=110 sec ', which is based on thermal
measurements, is thus not justified.

It is the purpose of this paper to present the results
of thermal. measurement, particularly in the immediate


