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Phonon-Quasiparticle Interactions in Dilute Solutions of He in
Super6uid He': L Phonon Thermal Conductivity and

Ultrasonic Attenuation~
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Department of Physics, Un& ersity of Illinois, Urbane, Illinois
(Received 19 May 1967)

Expressing the interaction between long-wavelength phonons and He' quasiparticles in dilute solutions
of He' in He4 entirely in terms of macroscopic observables, we calculate the attenuation of erst sound due
to the He' viscosity, and the rate of scattering of phonons from the He'. The results for the attenuation are in
excellent agreement with recent experiments. In addition, we calculate the thermal conduction due to phonons
for T 0.6'K; the conductivity is limited at very low temperatures by ultrasonic attenuation, while at higher
temperatures it is predominantly limited by elastic phonon-quasiparticle scattering.

I. INTRODUCTION

'HE transport properties of dilute solutions of He'
in He' at temperatures below 0.6'K are the

result of a number of competing scattering mechanisms
involving He' quasiparticles and phonons. Khalatnikov
and Zharkov" initially considered the transport theory
of this region; however, recent experimentap ' and
theoretical ~" work has now provided more complete
knowledge of the nature of the He'-He' and the He'-
phonon interactions in the solutions. It is the purpose
of this paper to apply this information to a description
of the thermal conductivity and ultrasonic attenuation
as determined by these interactions.

The structure of the thermal conductivity illustrates
very clearly how various interaction mechanisms come
into play in determining the transport properties of the
solutions. First of all, transport by the He' quasipar-
ticles and phonons occur in "parallel"; thus the thermal
conductivity K is of the form

K =KS+Kpb,

think of boundary and quasiparticle scattering as
impedances in "series."Thus if K3 b is the He' thermal
conductivity when only boundary scattering is con-
sidered, and K& 3 is the He' thermal conductivity when
only quasiparticle interactions are taken into account,
then

&s = Irs,b +&s-s

Phonon transport is similarly limited, below 0.6'K, by
boundary scattering and by scattering and attenuation
of the phonons by the He' quasiparticles; thus we have

—1 —1 —1
Kph Kph, b +Kph, qy )

where K,h,b
' is the resistivity due to boundary scatter-

ing, and Kph gp that due to interaction of the phonons
with the quasiparticles.

At the lowest temperatures both He' and phonon
transport are limited only by scattering from the walls
of the container. Phonon and quasiparticle mean free
paths are then of the order of the container size d, so
that

Ka,b C3't)yd

vrhere K3 is the He' thermal conductivity and K„h is
the phonon thermal conductivity. K3 is limited either by
boundary scattering or by scattering from other He'
quasiparticles; below 0.6'K, scattering from phonons
has a negligible effect on He' heat transport. One may

Kph, b Cphsd )

where C3 T is the He' specific heat per unit volume,
C„h T' is the phonon specific heat per unit volume,
v~ is the Fermi velocity, and s is the first sound velocity.
The exact coeKcients in (4) and (5) depend On the
nature of the scattering from the walls, specular reflec-
tion having much less e8ect than diffuse reflection on
the heat current. The coefficient in Kph, b is expected to
decrease with increasing temperature, since the shorter
the wavelengths of the thermal phonons the more the
average reflection will be diffuse. "On the other hand,
one expects the coefIIcient in K3,b to remain fairly con-
stant with temperature,

Since C3))C» at the lowest temperatures K3,b is
much larger than Kph, b thus K Ka,b 1'. As the tem-
perature is raised, the first effect to change this picture
is He'-He' scattering. The consequences of this inter-
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action can be found via the usual Fermi-liquid expres-
sion" '3 for as 3'.

4or' (hat)'

32' ttt*{W sin'(8/2)/cos(8/2))

where ttt* is the He' effective mass; W(8, io) is the quasi-
particle-quasipartide transition rate per unit time from
an initial state where 0 is the angle between the momenta
of the particles (lying on the Fermi surface) to a final
state where the plane of the two momenta is rotated by
angle q. The brackets denote an average over the 4m

solid angle swept by 0 and y.
The change from the predominantly T behavior of

x3, from boundary scattering, to the T ' Fermi-liquid
behavior occurs when tcsb=tts 3. For the 5% solution in
a tube 2 mm in diameter investigated in Ref. 4, the
temperature at which this occurs is 02 m'K a tem-
perature in the decade beyond the range of current
research. Thus for temperatures in the millidegree
region II.3 is proportional to T '. The phonon contribu-
tion is of the form rc~h, b T' and it rapidly becomes com-
parable in magnitude to tts. For the 5% solution in
Rcf. 4, the crossover occurs for T 20m'K. For higher
temperatures ~3 is negligible and the phonon contribu-
t1ons to hcRt transport dominate.

As we shall see, the phonon thermal conductivity has
the following structure. The 6rst interaction eRect that
enters as T is raised is the absorption of phonons via the
He' viscosity; this is the mechanism that attenuatcs
first sound. The phonon Incan free path l for this process
is proportional at low temperatures to T ' and is inde-
pendent of the phonon wavelength X. Thus If:,h= —3cphsl
changes from the roughly T' from characteristic of
boundary scattering, to a form linear in T. At still
higher temperatures, Rayleigh scattering of phonons

by quasiparticles comes into play; this mechanism leads
to a mean free path P'. If it were the only mechanism
limiting the phonon thermal current, one might expect
the effective mean free path to be T 4. However, for
very large X, Rayleigh scattering clearly becomes very
weak, and so long-wavelength phonons will continue
to be attenuated primarily by the Hca viscosity mech-
anism described above. As a result, temperature be-
havior somewhere between I ' and T 4 emerges for
the average phonon mean free path. This explains the
observations of Fairbank and Sandiford'4 and Nicls-

~ A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, S29 (1959)."The average in Eq. (6) may be evaluated by using the eRective
interaction between Hes quasiparticles, as proposed by BBP; the
results are 30 to 50% smaller than the measurements reported
recently in Rd. 4. The discrepancy, we suspect, is due to in-
accuracies in the solution of the Hes kinetic equation that le~ds
to (6};a detailed investigation of this point is in progress and the
results will be published shortly.

'4 D. J. Sandiford and H. A. Fairbank, in ProceedirIgs of the
Severrth Internatiorla) Colference oN I.om Temperature Physics
(University of Toronto Press, Toronto, 1961), p. 641.

Hakkenberg et a/. ,
" in studying the propagation of

temperature pulses in dilute solutions, of a X ' to 1
behavior for the phonon mean free path.

Above 0.6'K, scattering of phonons by phonons and
rotons begins to become important; these mechanisms,
as well as conduction due to diffusion of therma1. Cx-

citations, important above 1'K, have been analyzed by
Khalatnikov and Zharkov, and we do not reconsider
them here.

We turn now to a detailed description of the inter-
actio~ of phonons with He' quasiparticles.

II. SCATTERING OF PHONONS BY
He' QUASIPARTICLES

In this section we calculate the cross section for the
scattering of a long-wavelength phonon by a slowly

moving Hc quaslpartlclc. Thc exact, form of thc cou-

pling between these cxcitations is determined by thermo-

dynamic and Galilean-invariance arguments. The der-

ivation of this CRectivc interaction and the calculation
of the cross section are done in the spirit of Landau and
Khalatnikov. "The details of our interaction, however,
diRer from theirs; in addition, wc are able now to relate
all the parameters of the interaction to independent
macroscopically observed quantities. In the following

derivation, we shall neglect the concentration de-

pendence of the Hea-phonon interaction.
According to Landau and Pomeranchuk" the energy

of a slowly moving quasiparticle of momentum p in

supcI'Quid Hc Rt. rest ls simply

eo= eo+P /2ttt i

in the limit of zero concentration, &0 is the chemical

potential p, s of the He' in He', and the effective mass m

is approximately 2.34m3, where m3 is the bare mass of
a He atom.

The long-wavelength low-frcquency deviations of the
He' from equilibrium may be described by a density
variation pt(r, t), which is the local particle density
minus n4, the mean density, and by a superQuid velocity
v, (r,t), given by the gradient of the phase of the con-

densate wave function. To 6nd the interaction between

R long-wavelength phonon and a quasiparticle, we must
determine how the quasiparticle energy (7) depends on

the local He' density and supcrQuid velocity.
The dependence of e„on v, can be determined by the

requirements of Galilean invariance. Suppose that there
is a uniform superQuid velocity in the liquid. Then in

the frame in which v, =0, the energy of a quasiparticlc
of momentum p is given by (7). In the laboratory frame

Is C. G. Niels-Hakkenberg, L. Meermans, and H. C. Kramers,
in I'roceedirtgs of the Eighth Itttermatt'ortat Comferersce ol I ow Tera
perature Phd cs (Butterworths Scientific Publishers Inc. ,
New York, 1963),p. 45.

'6 L. D. Landau and I. M. Khalatnikov, Zh. Eksperim. i Teor.
Fiz. 19, 637 (1949); 19, 709 (1949); I. M. Khalatnikov, jbjd.
2S, 8 (1952)."L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk.
SSSR 59) 668 (1948).
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the momentum required to create this quasiparticle is
p+mev„while the energy required to create it is

eo+p vs+mevs /2.
Thus the energy-momentum relation in the laboratory
frame is

eo+„„,[v,]= e,+p'/2m+p. v,+my, '/2
or

e„[v,]= op+ p'/2m+ (bm/m)y v,
—(8m/m) (mtv '/2), (9)

(a)

P P

(c)
P

where 8m= m —me, the [v,] denotes the v, dependence
of the quasiparticle energy in the laboratory frame.

The quasiparticle energy depends on p4 through the
dependence of ep and m on the He' density. The de-
pendence of m on p4 can be neglected since it leads to
corrections of order (sr/s)' 0.01 in the cross section
for phonon-He' scattering. The dependence of ep on
p4 can be written to second order as

ep[p4]=eo+(Bee/Bn4)p4+2(B ep/Bn4)p4 . (10)

The partial derivatives are at constant He' density.
,The point now is that to a quasiparticle, a long-wave-

length phonon looks like a uniform motion of the He4
with a local velocity v, and a local density n4+p4. Thus
the change in the energy of a quasiparticle of momentum
p, due to the presence of a long-wavelength phonon,
is, from (9) and (10),

Be„(r,t) = (Bee/Bn4)p4(r, t)+(8m/m)p v, (r,t)
+-', (B'eo/Bne') p4(r, t)' ', (Bm/m) m—tv,—(r,t)', (11)

where r is the position of the quasiparticle. This form
of the coupling is exact up to terms of second order in
the small quantities p4, v„and p.

Since ~p is the He' chemical potential at zero concen-
tration, we have'

(Bop/Bne) &= (mes'/n4) (1+u), (12)

where a=0.28 is the fractional excess molar volume of
He3~in He'. Thus

(e)

I'io. 1. Interactions of phonons (wavy lines) with quasipar-
ticles (solid lines). (a) Phonon absorption; (b}, (c), and (d); three
processes leading to scattering of phonons by quasiparticles; (e)
and (f); "phonon-induced"scattering of phonons by quasiparticles.

terms of phonon annihilation and creation operators,
b~ and b,~. In a box of volume Q, these expansions are"

q'n4
(r) —p (b eig r+b te—ie r)

2m4M~Q

o),
v, (r) =P j(b,e'i'+b, te 'i'). (16)

e 2m4n4Q

co, is the frequency of the He' elementary excitation of
wave number q; at long wavelengths ~~= sq.

Substituting (15) and (16) into (11)we find that the
first two terms in (11), denoted by Vi, correspond to
absorption or emission of a phonon by a quasiparticle.
In quantizing (11), the p v, (r) term must be syrn-
metrized as ie[p v, (r)+v, (r) p], since the position and
momentum of the quasiparticle fail to commute. The
matrix element for a quasiparticle of momentum p
to absorb a phonon of momentum q, and end up with
momentum y", as in Fig. 1(a), is then

1 Q 2— —1 1$4 (13) t7n4
(y"

I viI y, q) =&,-, ,+~
2m4SQ

The "derivatives in this expression, experimentally, are"

n4Bu/Bni= —1.4, (n4/s) (Bs/Bne) =2 7, (14).

and so the square bracket in (13) is approximately 4.2.
In order to calculate the amplitude for phonon-quasi-

particle scattering we quantize the interaction (11) by
replacing p and r by the quasiparticle momentum and
position operators, and by expanding pi(r) and v, (r) in

86p Sms
X + (e,-—e.) . (17)

BS4 %4q

Similarly, the final two terms in (11), denoted by V2,
correspond to the scattering of a phonon by a quasi-
particle, as in Fig. 1(b); they lead, in addition, to
two-phonon emission or absorption processes. The
matrix element for the scattering process illustrated in

'8 The derivative of n has been measured by C. Boghosian and
H. Meyer, Phys. Letters, 2SA, 352 (1967); that of s by K. R.
Atkins and R. A. Stasior, Can. J. Phys. 31, 1156 (1953).

"L M. Kha1atnikov, An Introduction to the Theory of Super-
PcÃity (W. A. Benjamin, Inc. , N' ew York, 1965).
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Fig. 1(b) is
(qq')'N4

(I'q'I V Iw&=~,+. +
2m4$0

&lS 5$3$
q. q' . (18)

-Bn4 5$ n4

The total amplitude &1I'q'I Tlpq) for phonon-quasi-
particle scattering is the sum of the matrix elements for
tile five pl'occsses 111 Figs. 1(b)—1(f). Tile first till'cc
processes 1(b), 1(c), and 1(d) are analogous to those in
nonrelativistic scattering of photons by free electrons;
their contribution, denoted by (p'q'

I
Tg

I yq&, to the total
scattering ampHtude is calculated analogously. The
resulting matrix element, evaluated on the energy shell
L62»+sq= E2» +sq ]» ls

m4$ bm 'q q'
&p'q'IT. lw&=~+ +

2m4Q(qq') I" m4 m

88$

+ 1+n+—s qq
—+

IB „+z»—~ —z» —g)—

+&II'q'I V2lw&. (»)
In deriving (19) we have neglected the exclusion prin-
ciple in the intermediate states of Figs. 1(c) and 1(d);
analysis shows that at the higher temperatures where
this scattering process is important, the statistics of
the He' lead to a decrease in the scattering rate on the
order of 10% for a 5% solution, and are negligible for
R 1.3% solll'tloll.

The "direct" scattering amplitude (19) can be con-
siderably simplified by noting that I»f/s«1; hence each
of the energy denominators in (19) is dominated by the
sg an(I lt ls SUKcicnt to expand, them to terms plopol-
tional to (sq)-'. Furthermore, in the temperature region
where this scattering mechanism is important the
relevant phonon energies are much smaller than
m4$'=27'K. It is easy to verify then that, on the energy
shell, quasiparticle-phonon scattering is essentially
clRstlc» I.c.» q= q to tcl'IIis of lelRtlvc order ET//tNS ol

I»f/s. Thus (19) reduces to

sg 6m 'mg Bm
&p'q'12'

I 1q&=~, , 1+ +-
2n4Q 524 5$ Pl 4

&&cosg+, (20)
m4$ Bn4

where 0 is the angle between g and q'.
Tile two proccsscs lll Figs. 1 (c) Rnd 1 (f) Rl'e thc

scattering of a phonon by a quasiparticle through the
exchange of a virtual phonon; they constitute the

phonon-in(iucecl. lntclactloQ between a phonoQ and
a quasiparticle, analogous to that between two elec-
trons in a metal. In order to calculate their contribu-

tion, denoted by (p'q'IT~I, I1Iq&, to the total scattering
amplitude, we need to 6nd the three-phonon vertex,
as it occurs in Figs. 1(e) and 1(f). In the limit in which
all three phonon wavelengths are long, the three-phonon
interaction is given by"

8 PE4$
V3= « -2~ 4~. (r)~ 4(r)~.(r)+- — -- ~4(r)', (21)

6 Bn4 n4

where v, and p4 are given in terms of phonon annihila-
tloll RIld clcatloll opclRtoi's by (15) Rlld (16).Tile till'cc-
phonon matrix element in Fig. 1(e) is then

qq'ks
(q'I V, lq, l &=~,„,,

Sm4n40

—1+q q'+q k+q' k (22)

while that in Fig. 1(f) is (q', —k
I
Va

I q& = (q I Vg I
q', —k&.

The scattering amplitude due to phonon exchange,
(p', q'I 2"~I,

I p,q&, is simply evaluated on the energy shell
when the scattering is elastic; then the Snab term in (17)
vanishes as does q k+q' k and the result is

&p q I
T'.~ I 1 q&= —~,+, , +, (1+ )

Sg

2n40

n4 8$
X 2—— —»+t:Os»). {22)

s Bn4

Adding (20) and (23), and using (13), we find that the
total phonon-quasiparticle scattering amplitude is'o

&p'q'I T
I IIq& = &P'q'I 2'.

I pq&+ &a'q'
I
2', 1

I pq&

sg BQ!
=by~, , +,. n4 + (1+n+{Im/III4)

2n40 Bn4

X (1+n rIIg/n—z4)cos8 —. (24)

The rate at which phonons are scattered from q to
q' by the He' is given by

2 p 22rb(e„+sq e„sq'—)l&p'—q'ITlpq&l'
P»P

&& L1+~(q')]f(p) L1—f(p')];

the initial factor of 2 accounts f«HC' spin. f(11) ls the
quasiparticle and N(q) the phonon distribution function.
Por the purpose of calculating the phonon contribution
to thermal conductivity, it is sufhcient to assume the He'
to be in thermal equilibrium' and to neglect the ex-
clusion principle for y'. Then multiplying (25) by

'0 Since the eGective interaction (j.i) is in terms of completely
renormalized vertices, the result (24) is exact in the limit that s
is much larger than typical He' velocities.
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8(cos8—q. q') and summing over all q' we find finally The matrix element for absorption of a phonon of
that the rate at which phonons of momentum q are momentum q, with the He' going from initial state li&
scatteled by allgle 8, divided by III(q'), ls to final state

l f), is then

'I ssq 8rr
I'(q, 8)= I, +(1+~+8m/m, )(m, /m)

8~4' Bn4

( F4 )'"
&fl I'.I',q&=

I

&2m,sO&
dj gf g'I

X (1+n—ms/m4)cos8

XS

(—1.4+0.69 cos8)'.
SXÃ4 (26)

This scattering rate has the q' dependence characteristic
of Rayleigh scattering. Consequently its importance in
limiting phonon-transport phenomena increases rapidly
with temperature. For very long wavelengths, however,
and consequently at very low temperatures, the absorp-
tion of phonons via ultrasonic attenuation, i.e., through
the He' viscosity, plays a more dominant role in limiting
the rates of phonon transport phenomena. Ke turn now
to a discussion of this absorption mechanism.

86p sbm
&&

— (fl~s(r) ls)+ q &fl js(r) ls& (»)

From conservation of He' atoms, or quasiparticles, we
can replace tl ~ (f l js(r) l z) in (2g) by (rol ro) (—f l ps(r) l s&

=sq&fl ps(r) li&, where re; and d'or are the energies of the
states

l s& and
l f).

The absorption rate is found by squaring (28) and
summing over ail

l f& consistent with energy conserva-
tion. Using

8(~)= e—'"'do~/2s-,

passing to the Heisenberg representation, and averaging
over a thermal ensemble of initial states, we And

III. ABSORPTION OF PHONONS DUE
TO He' VISCOSITY

At very low temperatures (&0.2'K in a 5% solution)
the attenuation of first sound is due to viscosity of the
He', which are carried along in the sound wave. The
theory of this attenuation has been given in Ref. 10.
Since very long-wavelength phonons are simply 6rst
sound waves, ultrasonic attenuation is the dominant
mechanism for limiting transport by such phonons. To
make contact between the theory of Ref. 40 and the
phonon-quasiparticle interaction derived in the pre-
vious section, we rederive the amplitude attenuation
coefficient otr, this time from the interaction (11).

%e ask then for the rate at which phonons of mo-
mentum q are absorbed by the He' quasiparticles. At
very long wavelengths only Vy, the erst two terms in
(11), is significant for absorption. However, in calculat-
ing the absorption we cannot neglect the quasiparticle
interaction and assume that the quasiparticles are
simply in plane-wave states. The reason is that, since
vf &s, energy and momentum conservation forbid the
absorption of a phonon by a noninteracting quasi-
particle. It is convenient, therefore, to write the inter-
action (11) between the He' and the phonons in terms
of the He' particle density operator ps(r) and the He'
particle current operator js(r). In this language the
interaction becomes

86p I 8 6p 1 &8
dr p, (r)+- p, (r)'—— mse, (r)' p, (r)

-864 2 Bs4 2 sf

g5$4$
I',b. (q) = (1+n+8m/m4)s dr e-'s'i' "i

2s4

«e'"" "'& s(«)us(r'&')) (29)

The Fourier transform of the density-density correla-
tion function in (29) equals twice the imaginary part of
—

&psps&(q, ro=sq), the Fourier transform of the retarded
He3 density-density response function. Thus

—g524$I'.b.(q) = (1+n+bm/m4)' Im(psps)(q, sq). (30)

&~vs&(q, ~)= (31)
mtos+4sqstori/3ns(1+ r„'ro')-

y, the Hea first viscosity, is given in terms of the He'
relaxation time r, for viscosity" by

rl= E(T)r„=s'merslsr„F(T), -(32)
where P(T) is the pressure, at temperature 2', of an

Noting that the amplitude attenuation coefficient nz
equals I',b,/2s we see that (30) is the general result of
Ref. 10 for nl, to lowest order in x.

In the Appendix we evaluate &psp, )(q,to) by solving
the He' kinetic equation including He'-He' collisions
by means of a relaxation-time approximation that
includes conservation of quasiparticle number, mo-
mentum, and energy. The result, for ao»ejq and
Aao&&XT, is

21 It is not difBcult to show that at low temperature r„ is the+8mJs(r)'vs(r) ~ (27) same for longitudinal and transverse viscosity, i.e., the second
viscosity of the He' is negligible.



240 G. BAYM AN D C. EBNER

ideal Fermi gas of the same effective mass and number
density as the He' in the solution, and"

~~1 TT~ ~ ~T
I'(T) =E(T)/P(0).

For T&&T~, the He' Fermi temperature,

5Ir' T ' m4/T
I'(T) = 1+ ———

i

—+
12 Tf 16(Tf

(33)

(34)

lo2

x 5.05

In Eqs. (31) and (32) we have omitted IJll terms of
relative order x, such as the concentration dependence
of the He' effective mass. Combining (30)—(32) we
find

4 ey'm4
P.b. (q) =2s =———x(1+ +8m/m )'

15s' m
GO T

&&I'(T), (35)
1+My Tg

IO
.Ol

I I I I I I I I

O. I

TEMPERATURE ('K)

where ~,=sq. The only difference between this result
and that of Ref. 10 is the corrected formula for V(T).

The lifetime 7.„ is the one undetermined quantity in
(35). Roach" has calculated this lifetime for T«Tr
from the empirical interaction between He' quasi-
particles derived by BBP;the results for two representa-
tive concentrations are

r„= (17.8&(10 "/T') sec, x=5%
r„= (15.0&&10 "/T') sec, x=1.3%.

(36)

A similar calculation can be performed in the high-
temperature regime, T&2', where the He' obey clas-
sical statistics, by using the extension' of the BBP
interaction to higher momenta. In this regime the
scattering time 7-„ is determined by solving the classical
Boltzmann equation for the viscosity z to lowest order
in the effective quasiparticle interaction, and using the
relation (32). The calculation is standard'4; the results
for 5 and 1.3% solutions are drawn as dashed lines in
Figs. 2 and 3. Unlike at very low temperatures, ~„
is here inversely proportional to the concentration.

Lacking a solution of the Boltzmann equation in the
intermediate-temperature regime, we must interpolate
between the very low and very high temperatures to
obtain r„ for all T. One can deduce the lifetime in a
5% solution for T«Tr from the measurements of first
sound attenuation in a 5% solution by Abraham et al. '
Their data, shown in Fig. 4, have fairly well-defined
low-temperature peaks for 20 Mc/sec at T=0.055'K

2'%e take this opportunity to point out that theformulafor I'(T)
given in Ref. 10 is wrong. The error lay in solving the Boltzmann
equation without including energy conservation in the collision
term, and in an algebraic mistake. With the present formula (33)
for I {T) all of the results of that paper are valid. Note that the
present p is, by de6nition, smaller by a factor of 4 than the q of
Ref. 10.

2' W. R. Roach, dissertation, University of Illinois, 1966, p. 57
(unpublished).

'4 J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular
Theory of Gases aed I.iquids {John Wiley I Sons, Inc. , New York,
1954), Chap. 8.

I'zG. 2. Lifetimes for viscosity, 7-„, and spin diffusion, 7&, in a 5'po
solution of He' in He4. The dashed line is the form of 7 „for classical
statistics.

and for 60 Mc/sec at T=0.121'K. The locations of the
peaks are independent of the absolute normalization of
the data. Theoretically one expects the corrections to
the T ' dependence of r„ to be even powers of T/Ty. We
then write

(37)

and determine 3 and 8 empirically by requiring that
the attenuation (35) peak at the two experimentally
determined temperatures; the result of a numerical

lo' I I I I I I I I I I I I I

CIJ
hC0

I
4

OJ

l O2
C4

g

lo I I I I I I

O.l

TEMPERATURE ~'K)

l.O

FIG. 3. Lifetimes for viscosity, v„, and spin diffusion, v&, in a
1.3 jz solution of He' in He4. The dashed line is the form of v„
for classical statistics.
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calculation is that

A =20.5&&10 "sec('K)' and 8=2.3. (38)

ar ——(0.57&& 10 s) P'(T) 2o& ssr„/(1+a& s'r„s) . (39)

The agreement with experiment is striking; the under-
estimate for the 20-Mc/sec data at higher temperature
is due to residual attenuation from phonon-phonon
interactions. [One should expect for a 5% solution no
better than 10% agreement between Eq. (35) and
experiment. ] The lack of a systematic deviation of the
theory from experiment con6rms the absolute nor-
malization of the experimental data.

For comparison with r„, the lifetime rD for spin
diffusion in a 5% solution is given in Fig. 2; we have
extracted the lifetime from the measurements of the
spin-diffusion coefFicient D by Anderson et al. ,' by
using the relation

ar(T)q

an, ), (40)

which is derived by solving the He' kinetic equation in
the relaxation-time approximation. In Fig. 3 we simi-
larly plot 7n for a 1.3% solution.

Comparing this value of A with the theoretical value
(36), we find that the latter is 14% too small; this
corresponds to an average inaccuracy in the BBP po-
tential of 7%, which is entirely within reason.

The 7-„we shall use, drawn as a solid line in Fig. 2,
is obtained by interpolating smoothly between the
results (37) and (38) for T«Tf, and the calculated r„ in
the classical region.

In Fig. 4 we recalculate the attenuation for a 5%
solution using Eq. (35) and the r„ in Fig. 2; numerically

For concentrations other than 5% no experimental
information on z„ is as yet available. We have therefore
constructed a 7„ for use in calculations on a 1.3% solu-
tion as follows. A curve is drawn between the very low-
temperature value (36) and the calculated classical r„
assuming in this interpolation that v„ is proportional to
7 D at low temperatures. v.„and 7'D should be propor-
tional at low temperatures and small concentrations to
the extent that one can neglect the momentum de-
pendence of the quasiparticle interaction. We expect the
interpolation to be accurate to within 20%.

In Fig. 5 we present the theoretical attenuation O.z

for a 1.3% solution, calculated using this r„.Because of
the sharp rise of v,T' from its very low temperature to
its classical values there is no peak in either the 20-
or 60-Mc/sec attenuation. Measurements of these atten-
uations should provide detailed information on the
behavior of 7.„ for intermediate temperatures.

For T&2T~ the lifetime 7 „becomes inversely
proportional and I'(T) becomes proportional to the
concentration. Thus at high temperatures, where

~r„&&j., the attenuation due to He' viscosity becomes,
for small x, independent of x. Furthermore nz is then
proportional to ~' and decreases roughly as T '.

The lifetime used in the Boltzmann equation when

calculating phonon attenuation is that appropriate to
viscosity, r„, only when II.T))Ace„' this is the normal
situation in ultrasonic-attenuation experiments. How-
ever, for thermal phonons Ace, &~T, and thus, in order
to use Eq. (3S), r, should be replaced by the more

7 I I I i I

60 Mc/sec

I I I I I I
60Mc/sec

A
MG/SEG

E

z'
O
I-

I.O—

60 MG/SEG

O.I

20Mc/sec

20 MG/SEG

O.l

0.01 QI
I ~ I I I~~

Tf I.O

TEMPERATURE ( K)

Fzo. 4. Calculated attenuation of first sound in a 5%& solution
of He8 in He'. The solid lines are the calculated attenuation at 20,
60, 100, and 140 Mc/sec. The data points are those of Abraham
eI aI. (Ref. 5).

O.OI
O.OI O. I Tf

TEMPERATURE ( K)

FIG. S. Calculated]attenuation of first sound in a
1,3% solution of He' in He4.

I.O
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general expression

r =r„[1+(ka)/2~~T)'] —' (41)

heat current. The net scattering rate 1'.,(q) for thermal
con.ductivity is thus an average of the rate (26) times
1-cos9:

This can be shown by direct consideration of the colli-
sion integral; the details are given by Abrikosov and
Khalatnikov. "Generally then

4 m4E(T)
r,b. (q) =- (1+n+ bm/m4)'

3 ss 64
q'r„[1+(ksq/2~) T)']

X (42)
[1+(&sq/2~~T)'3'+ s'q'r„'

For thermal phonons at very low temperatures, ~v.„ is
))1, in which case F,b, is proportional to r„' T' and
the phonon mean free path is proportional to T '.

IV. THERMAL CONDUCTION BY PHONONS

The principal results of the last two sections are that
phonons of momentum q travelling through the solution
are scattered by the Hes at a rate given by (26) and are
absorbed by the He' at a rate given by (42). In this
section we combine these two results to calculate the
thermal conductivity of the phonons, as limited by the"
He'. We ignore boundary scattering effects, relevant at
very low T, and phonon-roton scattering, relevant for
T&0.6'K. Phonon-phonon scattering leads to no loss
of heat current in the approximation that the phonon
dispersion curve is linear; we do not include its effects.

An elastic scattering of a phonon by a very small
angle does little to change the heat current of the
phonon, whereas large-angle scattering reverses the

Io'
I I I I I I

1'-(q) = dcos9(i —cosg)F (q,8)

Ss /m4
1

—(1+n+8m/m4) (1+n—majm4)
12~n4 km

S4 2 84

0.23xsq'/m4.

10

IO
tsJ

010
0
Q

IsJ

O
LJJ

~~10
IsJ

(43)

0
CP
0)
lh

LI
rL

t4
0"I-
0
I-
BIO
Oz0

CL
IsJ

0
0

IO

0.01 1.0

"The He' heat current that is produced in the collision of a
phonon with a quasiparticle is negligible since He' veloci. ties are
much less than s.

O. l

TEMPERATURE { K)

FIG. 6. Phonon thermal conductivity in 1.3% and 5'P& solutions
of He' in He4. The data points are those taken by Ptukha (Ref. 26}
in a 1.36/& solution, while the dashed line is the theory of Khalat-
nikov and Zharkov for a 1.36 jz solution.

IO

0.01 O.l

TEMPERATURE ( K)

I.O

FIG. 7. Effective phonon mean free paths for thermal conduc-
tivity, in 1.3% and 5% solutions, neglecting scattering of phonons
from boundaries and thermal excitations of the He4.

To this scattering rate must be added the absorption
rate (42) due to ultrasonic attenuation. The effective
mean free path for a phonon of momentum q is therefore

I (q) =
1'-(q)+1'. .(q)

c(q)l(q),
3 (2m.)'

In the absence of phonon-phonon interactions the
phonon thermal conductivity ~» is simply a sum of the
conductivities of each mode q; thus (as may be shown
from the phonon Boltzmann equation),
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where

c(q) = As'
gT' ekeq/aF

(46)

is the contribution to the phonon specific heat of the
mode q.

At very low temperatures, where thermal phonons
have long wavelengths, the ultrasonic attenuation
mechanism dominates the scattering mechanism; at
higher temperatures (&0.1'K in a 5% solution) scatter-
ing is predominant. It should be noted, however, that
the integral (45) diverges linearly at long wavelengths
if scattering ~q4 is the only mechanism limiting trans-
port; ultrasonic attenuation is still important at higher
temperatures for long-wavelength phonons.

The integration of (45), using (42) and (43), reduces
to a single complicated quadrature, which we have calcu-
lated numerically for 5 and 1.3% solutions between
0.01 and 1 K. The v-„'s used are those shown in Figs. 2
and 3. The results for Kph are shown in Fig. 6; they are
characterized by a very broad maximum roughly in
the neighborhood of the region where the effective
scattering and attenuation rates are equal for a thermal
phonon. We emphasize that, with the exception of the
v-„, the calculated Kph contains only known parameters.

Ptukha" has measured the thermal conductivity of a
1.36% solution above 0.67 K; his data are indicated in
Fig. 6. These fall below our calculated 1.3% curve, a
discrepancy which is certainly due in part to the values
of ~„used in the high-temperature region. For com-
parison we indicate as a dashed line the fit below 1'K
of Khalatnikov and Zharkov' to Ptukha's data. There
are as yet no detailed measurements of Kph below 0.6'K.
The present calculations appear, however, to be in
reasonable agreement with preliminary, unpublished
work of Abel, Johnson, Wheatley, and Zimmermann"
on the thermal conductivity below 0.5'K of 1.3 and
5% solutions of He' in He'.

It is illuminating to de6ne an effective mean free path
l ff for thermal conductivity by writing

1/
Kph 3~phSleff q (47)

where C,h T' is the phonon speci6c heat per unit
volume. Figure 7 shows l,.fg as a function of T; numerical
values of l,«are given in Table I. Note that they do
not scale with concentration.

One can expect boundary scattering effects to become
important when l,ff becomes comparable with the
sample size. We note that below 30 m'K the calculated
phonon mean free paths are substantially larger than
2 mm; the data of Abel et ul.4 on the thermal conduc-
tivity below 30 m'K of 1.3 and 5% solutions in a 2-mm
cylinder indicate effective mean free paths between 4
and 2 mm decreasing with T; thus the phonon thermal

' T. P. Ptukha, Zh. Kksperim. i Teor. I~iz. 40, 1583 (1961)
)English transl. : Soviet Phys. —JETP 13, 1112 i1961l]."J.Kheatley (private communication).

TABLE I. Calculated values of the effective phonon mean free path
in thermal conductivity, neglecting boundary scattering.

r (m'K)

10
15
20
30
40

50

70
80
90

100
125
150
175
200

225
250
275
300
350

400
450
500
550
600

650
700
750
800
850

900
950

1000

le ff (5%) (cm)

5.6
2.5
1.35
0.56
0.30

0.18
0.115
0.079
0.056
0.042

0.032
0.018
0.0110
0.0073
0.0051

0.0037
0.0028
0.0021
0.001.7
0.00108

0.00072
0.00050
0.00036
0.00026
0.00020

0.00015
0.000117
0.000092
0.000074
0.000060

0.000049
0.000040
0.000034

l, ff(1.3%) (cm)

36.
16.
92
4.2
2.35

1.5
1.04
0.74
0.54
0.40

0.31
0.17
0.105
0.067
0.046

0.032
0.023
0.017
0.013
0.0078

0.0050
0.0034
0.0023
0.0017
0.00123

0.00093
0.00071
0.00056
0.00044
0.00036

0.00029
0,00024
0.00020

conductivity in their experiments is limited practically
entirely by scattering of phonons by the walls.

APPENDIX: SOLUTION OF He' BOLTZMANN
EQUATION IN THE RELAXATION-TIME

APPROXIMATION

We calculate the density-density response function
which appears in Eq. (30) by solving the linearized Hes
Boltzmann equation in the presence of a potential of
the form Ue'q' ' ' in this case the induced He' density
fluctuations are given by

~p =(p p )(rj )U (A1)

The linearized He' Boltzmann equation, neglecting

ACKNOWLEDGMENTS

This work grew out of several discussions with Pro-
fessor David Pines, Professor John Wheatley, and
Dr. William Abel. Dr. Bernard Abraham and Dr. Yakov
Eckstein have kindly provided us with detailed infor-
mation about their sound-attenuation experiments.



G. BAYM AN D C. EBNER

Fermi-liquid effects, is
dp 1 dp 3i r~

(~ q—v)bf»+Up vBf /Br»= i—(8f» 8—f»)/r, (A2) (1 i—rate) v,zbf»= - vzbf„v — P(T)bpz, (A9)
4x3 3 4m3 mn3

Bpz= P 8f» PB——f»,
P P

(A3a)

where v=p/m and 8f» is the deviation of the quasi-
particle distribution function from equilibrium:
f»= f»'+Sf»; r is the time for the distribution to
relax to a local equilibrium distribution f»+Bf» with
the same number, momentum, and energy as f, Th.us

where
dp mv2

P(T) =
m' dp Bn'

4

15 4'' 86p

is the pressure of an ideal Fermi gas of density n3 and
mass m at temperature T.

From (A3c), J'v'bf„=J'v'Bf»; thus we may solve
(AS) and (A9), to find

mBjz ——P pbf»=g pl f„
P P

and from energy conservation in collisions

(A3b)
dp / 4 ir(u )5P(T)

v, 'bf»=
~

1——
~

— Bp, , (A10)
47rz 4 5 1 i re/3 m—ez

Z O'Bf.=Z O'Bf' (A3c) dp
v'8f „=

4m'

5P(T)
— -SP3.

mn3
(A11)

g= 5$%8pz/qez i (A5)

n3 is the equilibrium He' density.
The next step is to combine the continuity equation

with the momentum-conservation equation which is
derived by multiplying p into (A2) and then summing
over all momenta; the result is

dp,
tozbpz q» —— v,—»8f»

=qze»U/m.
4+3

(A6)

Thus to find (p,pz) we need to determine J' v,'bf„ in'

terms of bp3. Since e((s we are concerned only with

o»&vq; then it suKces to determine J'v„'Bf» to lowest
order in qv/co. We see from (A6) that to lowest order
ln gq

q'U = mcuzbpz/ez, (A7)

and from (A5) that qg=mcApz/ez. Thus it is necessary
to keep terms of order q 8f»', qg, and q'U. Taking
moments of the expanded bf, with respect to v' and
v,', and using (A5) and (A7), we discover

dp
(1—zrM) 'v bf»=

4X3

dp 5'Lr~
v'b f„» P(T)B—pz (AS)

4m' mn

The function f»+Sf» is a spherical distribution
slightly displaced from the origin, and therefore is of
the form

Bf,= b f»' (Be„'—/Be„)gv„

where bf„ is spherically symmetric about the origin,
and where the s axis has been taken along q. The con-
stant g is determined from Eqs. (A3a) and (A3b),
together with the continuity equation; one finds

The latter equation is the statement that the energy
variation is given by

(A12)

(p» )(q,~)
g n

(A13)
mes» —L5P (T)/3ez]qz (1—

54 Lira)/ (1—i'))]}
Equation (31) is determined by dropping the q' correc-
tions to the real part of the denominator, and using
P (0) =mv~'e, /5.

A word of caution: (A13) appears, for cur((1, to have
a pol.e at

5 P(T)
co = —

q (1—vzrM),
3 mn3

(A14)

corresponding to a wave propagating at the adiabatic
sound velocity. The attenuation of this wave seems to
be a factor ~3 less than one normally finds" for such a
wave in a weakly interacting monatomic gas. The reason
is that Eq. (A13) is vahd only for cu'»v'q', in the region
where the pole of (A13) occurs, the q'/co' correction
increase the attenuation by a factor ~3."

's L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts,
1959), Eq. (77.6)."L. P. KadanoQ and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963},Eq. (54}.

where S is the entropy per particle, and E the energy
per unit volume.

Substituting (A10) into (A6) and comparing with

(A1) we finally derive


