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parjatjon principles for obtaining lower bounds by means of density matrices are applied to a number
of many-body problems. This is done by means of restrictions derived from the study of exacly solvable
models. Two classes of problems are considered: {a}obtaining a lower bound to the ground-state energy of
a system of particles, and (b) obtaining a lower bound to the Helmholtz free energy. For the erst case an
exact lower bound is obtained for the ground-state energy of the particle-conserving Bogoliubov Hamiltonian.
Of particular significance in the nonzero temperature case is a rigorous lower bound to the free energy of the
Ising model with small external held at low temperatures.

I. INTRODUCTION

A I.THOUGH variation principles have been used
for some time in obtaining energy levels for the

quantum mechanical many-body problem, the syste-
matic application of variational principles involving

density matrices (to be defined) has only developed

very recently. To illustrate the basic idea involved, we

recall that in obtaining a lowest-energy eigenvalue

Pp for some Hamiltonian II, one tries to minimizefP*(1,2, , N)8$(1,2, ,N)d1, d2, , dN by vary-

ing this expression over all normalized symmetrized

functions P(1,2, ,N). For two-body interactions, this

is equivalent to minimizing trH(2)I"&'), where

H &"= -'N [T(1)+T(2)]+-,'N (N —1)s (12),

provided I' ~'& (1',2'
I 1,2) is an N-representable normal-

ized density matrix, i.e., it comes from integrating

some function of the form P, X,P,*(1',2', 3, ,N)
)&P,(1,2,3, ,N) (X;&0,P, X,= 1) over the coordi-

nates 3 to g.' If the latter restriction is disregarded, then

minimizing trH"'f@' over all functions f"'(1',2'I1,2)

of four arguments satisfying trf &2' = 1 (which is a larger

set of functions than the set of E-representable density

matrices I'&" and includes I'&'& as a subset) results in

obtaining either Ep exactly or a value less than Ep.2

Usually one will not be so fortunate as to obtain

precisely Ep except for the most trivial cases.

If all the conditions needed to guarantee that a
function f&"(1',2'I1,2) of four arguments is an N-

representable density matrix were known, then we

could simply minimize subject to f~'& satisfying these

restrictions and obtain Ep exactly. However, a usable

set of restrictions has yet to be found. Minimizing

subject to no restrictions on f"' will give a poor lower

bound in many problems of interest.
In Sec. II of this paper, density-matrix methods are

used on some models to see just how well these methods

work. Section II A starts with an explanation of some

of the properties of density matrices and includes a
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II. DE&SITY MATRIX METHODS

A. Properties of Density Matrices

It will be convenient to distinguish between density
matrices and Ã-representable density matrices. Two-
particle density matrices f&" (1',2'I1,2) are functions
of four arguments which satisfy the following conditions:

Non-negativity of f"& as an operator;

(g,f"'g) &0 for any g(1,2).

Hermiticity;

f"'(I',2' I1,2) = (f"'(I» I1',2'))*.

Symmetry;

f (1,2 I 1,2 ) =~j& (2,1 I 1,2 )
=~f"'(1,212', 1')

(2)

(3)

(This is for quantum systems, the plus sign for bosons
and the min. us sign for fermions. )

Normalization;
trf'2~ =1.

The normalized E-representable two-particle density
matrix I'&»(1',2'I1,2) is a function which comes from
integrating some function of the form

Q; &,f; (1',2',3, ~ ~,N)P, (1, ~ N)
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variational principle which involves minimizing subject
to an inequality constraint. Section II 8 reviews the
method of minimizing subject to inequality constraints
and in Sec. II C this is actually carried out for the
Ising model. A less accurate but much simpler varia-
tional principle is then derived in Sec. IID and is
applied to the Ising model for comparison with the
results of Sec. II C. Section II E describes how these
principles can be applied to the infinite-boson problem.

Section III has to do with statistical mechanics at
finite temperatures. The quantum variation principle
mentioned above is actually the zero-temperature limit
of a more general one in statistical mechanics. Section
III JI contains the derivation of a variation principle
for obtaining a lower bound to the free energy. This
principle is then applied in Sec. III 3 to the Ising model
with a small external magnetic field.
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over the coordinates 3 to E, where the functions f; are
symmetric or antisymmetric under interchange of a
pair of particles for bosons or fermions. Not all of the
density matrices f&" will come from integrating over
such functions, so that f"' is a larger set than I'&", and
includes the latter as a subset.

In estimating the lowest energy eigenvalue for some
Hamiltonian IJ, one obtains the correct Eo if F(" is
varied so as to minimize the expression trB(') I'&'). Thus,
1f tlH&'&f"' is varied over f(" minf(2& trH&'&f&'& will
not be greater than E(&, i.e., ming(~& H(2'f(2)&E(&, and
one obtains a lower bound.

Restricting f(2) further by conditions satisfied by
I'(:2) can improve the lower bound. Any E-representable
two-particle density matrix I'(') will satisfy the condi-
tion trQ~, d(: )P()&go ' where Eo~' is the ground-
state energy corresponding to the Hamiltonian H, &.

When this condition is combined with the others, the
variational principle takes the form

to by any inequalities which are imposed. Furthermore,
when the region is convex (the average of two density
matrices is a guaranteed density matrix), the minimum
must occur at an isolated point (or line segment, etc.,
in case of degeneracy). There are no additional relative
minima, and so the only question is whether the mini-
rnum of trH&'& f(2) with nonnegative f('& already
satisfies g&0 or whether it occurs on the boundary
g=0. We shall adopt the terminology (i) the minimum
of F satisfies g) 0; g is inactive; (ii) the minimum of F
is at g(0: g is active, and we must then choose the
minimum of Ii subject to the restriction g=0.

Thus, when we wish to minimize trH&"f&'&;over all
pair density matrices subject to trH, d(2) f(2)) E(&mod

(i) and (ii) become, respectively,

(i) () tr(H(') —X)f")=0; E,)X,

(ii) () tr(H&'& —yH d&'& —X)j(2)=0,
subject to

min trH(2) f(2)&E(&,
f(2)

(5) d(2)f(2) —E mod. E2)g++E mod

where
d(2)f (2))E mod (6)

and f(2) satisfies conditions (1) through (4).
We might well expect that if H, d. is a good approx&-

mation to H, then the lower bound will be very close to
the exact ground-state energy. Model Hamiltonians
exist in the theory of spin waves, the theory of the
electron gas, and of superQuidity, which are supposed
to approximate the exact Hamiltonians. The latter
case will be discussed in Sec. IIE; however, it is
appropriate to choose a special test case (the Ising
model) to see how the lower bound obtained by this
method approaches Eo as B,d begins to look like
H. It is of course clear that if H,d")=B(') and
thereby Eo 'd=E(&, then (5) and (6) yield correctly
trH") f()=E0, but this is a singular situation with a
very high degeneracy in f"'.

Here we consider all variations 6 maintaining the
characteristic properties of a density matrix except for
normalization. It is to be noted that in general there
will be just one E-representable density matrix f,(2)

which satisfies trH, d(')f,("=E(&m' and many which
are not 1V-representable. When (ii) is active, one of the
latter will in fact be obtained (unless H, d happens to
coincide with H).

C. Lower Bound for the Ising Model
using Density Matrices

We shall go through the details for obtaining a lower
bound for the E-particle Ising model ground-state
energy in a nonaxial magnetic field 8. The Hamil-
tonian is

N N N
H= 4 Q 0'k Ok+1 Bz p (rk +z Q (rk

& (8)
k=1 1 I(:~1

B. Minimizing Subject to Inequalities

In general, suppose one wants to And the minimum
of some function F(x,y, ) subject to the condition
g(x,y, ))0.Assuming that F and g are continuous,
as are their erst derivatives, we Q.rst 6nd all relative
minima of Ii subject to no condition; those relative
minima which satisfy g(x,y, . )&0 are discarded.
Next, we find the relative minima of F which are on the
boundary described by g(x,y, .) =0 (e.g., by use of
Lagrange multipliers). The smallest of the relative
minima of the two procedures is then the solution to
our problem.

In our case, the problem is intrinsically simpler,
because F=tr Hf(i(s a linear function of f(') satis-
fying linear equalities (normalization, symmetry,
Hermitian condition). F can therefore only achieve its
minimum on the boundary of the region it is restricted

where 0. and 0' are the Pauli spin matrices. Here, we
can restrict our attention to the nearest-neighbor
density matrix f(2), which may be expanded in a
complete set of two-particle wave functions

f"'(»
I
1'2') = & f' f'v*ly'(»))(P((1'2') l. (9)

The coeKcients have been written so as to ensure
nonnegativity of f(2) as an operator. For the com-
plete set we can use the following: l&2)=ff, i&2)
=-:&2(tl+ lt), le2) = », -d le4) =-'~2(»- ln. The
expression

trH&"f&"=EL—
d tr01*02'"'(1,2l1', 2')

8, tr(72'f &'& (l2
l

—1'2') —8, tr(T1'f ('& (12
l
1'2')) (10)

may now be evaluated in terms of the coeKcients b;;.
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(We have intentionally handicapped ourselves by
working with a non-symmetric Hamiltonian. If the
symmetric form of the two-particle Hamiltonian is
used instead of (10), f&'& can be taken as symmetric
and. an improved bound is obtained. ) The normalization
for f&'&(1,2I 1'2') gives

Minimization is performed by Lagrange's method of
multipliers by forming F= try&2) f&2) —XIX p I I;;I' and

minimizing this over the cocScicnts b,, Solving the
resulting 4&4 determinant for X~ gives

XI——+((a&8 )'+8 ')'".
Now minr &» trIII&'&f&'& =minlV&&I is a lower bound to the
exact ground-state energy E2 of II, so we obtain (for e

and 8, positive)

E&&)—$((2+8,)2+8,')'/'.
Tllc 1csllltlllg density IIlatllx f & ) llas tile fol'111

f"'(1,2I1',2') = I+(1,2))(+(I',2') I,

Ie(1,2))= (B.'+ 0&+2+8 )') '"
&&LB.I»)-0+ +8)l»)j

(8 2+ (~+8 )2)l/2

and f&'& is not in general an lV-representable density

matrix, if only by virtue of not satisfying in general the
relation

trlf&2)(1, 2I1',2') =tr2f&'&(2, 3I2',3').

Ke next consider applying the equality-inequality
restriction on the density matrix with a mode]. Hamil-

tonian for which the lower bound to the X-particle
system of Eq. (8) approaches Eo as B,q~Z. For
thc ITlodcl Hamiltonlan we choose

N—8 ' Z ~2' 8' 2—~ = Z (&mod "')
k~1 k J. Jg ].

Since we have already obtained the minimum for
procedure (i) Lsec. II 8], we now evaluate

min/V tr{Lal& ) —q(a .,& )),—),Ilf& &(1,2I1',2')]

min{ —/[I (2—y~')~(8, —~8,')P
+ (B.—yB.') ]'2]/2=—/1$.

Thc parameter y may be found by solvjng

S&2)f&2) —E mod

using the results of (11) together with the appro-
prlatc substltutlons e —+ e—y~, 8,—+3,—pj's, , j9,—+

8,—yB,', and P ~ p, . The roots of this equation are
found to be

y = —{K2 (xx'+ ss') —(zs' —x') (Jts—x)]/
{(Its' —x')' —E2 (x"+s")}+{LE2 (xx'+ ss')
—(Es'—x') (Es—x)]2—

L (Ks' —x')' —l).2 (x"+s")]
y L (+s x)2 +2 (x2+22) )]1/2/

{(Ks' —x')' —E'(x"+s")j, (12)

whcrc s—e&B„s—e &8, , x—8~, s —8, and

8,'~[B,"+f—E2 's/X+2'+8, ']Pe'+8, '
E&& "/X]]I/2—

I
—E&) "/E—2' —8,']

(13}

with the signs being chosen so that y satisfies

&2)f&2) E mod

Q,nd 1Tlinimizcs p,. Knowing 6) 8~) 8~ ~ Bg) Bg RDd

E&&mo~, one may obtain y from (12) and (13).Denoting

the solution to procedure (ii) by E;;, then

E;;=qE2 " N[(~ q2'aB.W7—8,')2—
+ (B.—vB*')']'" (14)

If one lets e'~ e, 8 '~ 8, and 8,' —+8„ then y
reduces to 1, Rnd since I/O '~ —+ Eo, E;;—+ Eo.

Numerical results have been obtained for the case
K=3. Of course Eo '~(e', 8,',8.') must be known to be

able to use the variational principle. The solution to
Rom'~ for X=3 has been found in the appendix by the

use of exact wave functions. For &'= & and 3,'= 8„
/II = —E[(c+8,)'(1—7)'+ (8,—78,')2]I/2.

Putting in the values, '/8, =,/8, —2 8 /8
8*/Bo=3 5 and evaluating E;; from (14)

,'/8, close to 3.5, E;; is the lo~e~ bound
ELp, and a graph of the lower bound for this problem
is shown in Fig. 1. The lower bound approaches Eo
(= —12.7848,) linearly from both sides of 8,'/8, = 3.5.
Fig. 2 shows the exact levels of H.

D. A Second Variational Principle for Obtaining a
Lower Bound to the Ground, -State Energy

In this section we derive a variational principle
which turns out to be the limit as the temperature goes
to zero of another variational principle developed later
for thc frcc cnclgy. %c prcscnt lt iD this scctloD 1D

order to make a comparison with the previous varia-
'tlollal pl111clplc (5) aIld (6).
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FIG. 1. Lower bound to the ground-state energy of the Hamil-
tonisn H in units of B, t

= zgmaX (2 component of magnetic Geld),
where xrs is the Bohr magnetong versus B,' $=-2,gv2sX (x com-
ponent of the external magnetic Geld for the model Hamiltonian
B' ~)g in units of B, for X=3.

To start, let F"' be an E-representable 2-particle
density matrix which comes from the ground-state
wave function of II. Then

-8

-I2

-I6

-20

-24

B,

7 8 9

E = tre&»r&»&tr(a~2& —a d&2&)r&»+E)min( jg(2) + (2))f (2)+g mod

f(g)

so that our variational principle becomes

g )mtn tr(+(2) 8 izl)f(2)+g mod

f(2)

Applying this to the example of the previous section,
we obtain minr&~& tr(H"' —H d"')f&"= E~IB, B,'~——
(for e=e'=2, B,=B,'=1), so

A graph of this result is represented by the solid
line in Fig. 3. For comparison, the result of the previous
section is shown dotted. For this example, the first
variational principle gives a better bound than does the
second one, but the latter is definitely simpler to apply.
It can be shown that a suitable application of the
weaker principle for the full class of models {)B,d}
is equivalent to the strong prirlciple for the single
model H, d.

E. Lower Bound for the Particle-Conserving
Bogoliubov Hamiltonian

By dropping certain terms in the exact Hamiltonian
of a many-boson system in second-quantized form,

A' 1
H= = p k rzstrzs+ Q Q v(q)Gatsa~tGg+ssa~ s

2m i 2V kk' qp'-0

1 X(1V—1)+- v(0), (16)
2 V

Fro. 2. Energy eigenvalues (in units of B,) for the Hamiitonian
B versus B, (in units of B,) for N =3

+ 2 v(k)(Attr-attrsoo+trst~sttrstr —~)
2V &w

1+Q + v(k) )'
82rGg (17)

&w 2m V

-15

-16

-17

2,0 3,0

FIG. 3. Comparison of the energy lower bounds (in units of Bg}
versus J3,' (in units of I3,) for the two variation principles.

where v(q)—=J'e '2'v(r)dzr, one obtains the following
reduced Hamiltonian:

1 E(X 1)—
H .d v——(0—)

2 V
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where Xp ——ap~ap. We call this the particle-conserving
Bogoliubov Hamiltonian. The terms which have been
deleted in going from Eqs. (16)—(17) are those with
n.o zero momentum annihilation or creation. operators,
and those which contain only one ap~ or one ap.

Suppose we minimize the expectation of (17) using
only the condition of (normalization and) positive
definiteness of I'('). Since

I'l'l(mal loI) = (aitaita a )

in the ground state, which therefore does not saturate-
i.e., does not correspond to an extensive system.

Blatant failure of the minimal criterion E/N —& con-
stant as E ~~ in the ground state is typical when the
model used accomplishes only the requirement of
positive definiteness. There is, however, another simple
basically kinematical condition. Classically, it is the
stability condition gi,)—1/e which prevents unphysical
density Quctuations. Here it exploits the simple model
relation

this is clearly equivalent to the simple model condition (P f~«~"aiZ f. a 'a.)&o, (23)

(E fs«s'ait Z f- a a.)&o,

1 1V(N—1)
(2) = v(0)

2 V

N pi'+ps'
+— + (N-1)v(r —r )I(1)I(2)

2 2m

+ (N —1)I(1)I(2)8 (ri—rs)

(owing to the fact that AtA is a non-negative operator)
a rudimentary form of the "Q-condition" of Garrod
and Percus. A.s we have previously observed, the lower
bound for Ep is then precisely the ground-state energy
of the effective 2-body Hamiltonian IIi'l. For (17), II"l
is given by

and hence the positive definiteness of the matrix
(ai,taia ra„). This is the "G-condition":

G (kl; rim) —= (usta„taia„)+ Bi„(a„ta„) (24)

is positive definite. In particular, consider only the 2& 2
submatrix or Schwarz inequality condition

ap ap aIra

=
I (ai,ta—i,taoao)

I
& ((Noai tai )+ (ai,tas))'"

X ((1Vo -" —.)+(N ))'" (25)

Minimizing (II .s) of (17) by using only (25), indeed
weakened by replacing (No) by N, we find (assume
v(k) &0)

E=P([n(k) Ti,+pv(k))p(k) —pv(k) [1+n(k)/N)' s

X[p{k)(1+p(—k)))"'}+-,'(N'/V) (o), (26)

where

+ (N —1)(v*(1)I(2)+I(1)v*(2)), {20)

8(r) =v(r) —v(0)/N, I(1)f(ri) =— f(ri')dr, ',
V

where

Ti,——6'k'/2m, p= N/V, p(k)1V= (ai,tai, lVo),

n(k) p(k) =—(ai,"ai,) .

1
v*(1)f(ri) =— v(ri —ri')f(rl )drl'.

V

1 N(N —1)II'= —v(0)-
2 V

1V p'
+ —+ (N—1)(v(r)I+»(r)) (21)

2 ns

II' of (21) is separable in k space, and we readily find
the energy dispersion for E=E ', [N(N 1)/V)v(0), —-—

E 1 N 1' v(k)'—

4 V i ~ E/N h'ks/2m—(22)

It is clear that for this bound, E/1V rr. Ni~s as N —+—oo

' C. Gsrrod, Phys. Fluids 9, 1764 (1966).

But Garrod' has proven that the lower bound ground-
state variational problem for such a translation in-
variant system may rigorously be degraded to that of
its relative coordinate, and so we may choose instead

This still must be varied over the independent quanti-
ties p(k) and n(k). Varying over p(k) by setting
BE/Bp(k)=0 [and noting that p(k)=p( —k) in the
ground state),

E(n) = —
o 2 {T~n(k)+ pv(k) —[(T~n(k)+ pv(k))'

—p'v{k)'(1+n(k)/N))'"}+s (N'/V) v(0). (27)

But (ui, tNoai, )/(ai, tui, )&N—1, so that n(k)&1, and
since BE(n)/Bn(k) & 0, the minimum occurs at n(k) = 1.
A lower bound to the ground-state energy of H, q is
then given by the Bogoliubov energy

Ev = —s Z {T.+pv(k) —[(T~+pv(k))' —p'v{k)')"'}

+-', (N'/V)v(0), (28)

which now satisfies E/N ~ const as 1V —&oo at fixed p.
Even Eq. (28) is not the best bound available from

the present elementary viewpoint, for the obvious
condition Pigs (ai, ai, )&N may fail to be satisfied

(granted, the Bogoliubov model is not very suitable
under this circumstance). Of course, one may expect
to do much better if the full |"-condition is utilized.
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III. LOWER BOUNDS TO THE FREE ENERGY where m and e refer to the row and column of a].attjce
USING DENSITY MATRICES site, For a model system we choose the Geld-free case

A. Variation Prinriples for the Free Energy

There exist a number of variation principles giving an
upper bound to the free energy. Peierls's variational
principle bounds the partition-function Q by the
following inequality

Q&P e
—e&@~ rrc'~&

where [C„j is an arbitrary orthonormal set of wave
functions. This in turn puts an upper limit on the free
energy.

A variational principle due to Gibbs is the following:

F&tr(p(H+kT lnp)},

where p is an arbitrary normalized density, and F
kT ln tr5—exp( —PH)]. This principle reduces in the

limit of T=O to the standard quantum-mechanical
variational principle

Ep& trpb.

It is quite easy to show that Gibbs's variational
principle is equivalent to what is known as Sogoliubov's
variation principle, which is

F&F .a+«((H —H„.a)r„.a },
where I',d and F,d are the statistical density matrix
and free energy corresponding to some Hamiltonian
+lIlod'

If the two systems are interchanged in (29), then
there results after rearranging the inequality

+mod & ~ gm, n &m, n+l
m, n=l

This system has for its free energy

~N
g zgm, n g~l, n ~

m, n=l

Fm.a(o')/cV= f ma(o') = —kT ln(2 cosh2Po')

kT
dp 1n-', $1+ (1—«' sin'p)'~'g

2' p

where
i&(o') = 2 tanh2Po'/cosh2Po'.

It can be shown that

f a(o ~)
= fm, a(o)+6 coth2PoL1+(2/~)K'Ei(«)], (32)

min trDH H.a)f—"]/N= 2A 8—, 6)——P/4
f

=26,
where A=a —e' and we consider only positive B. A
lower bound to the Helmholtz free energy is given
according to (30) by

Fi.„=F .a(o—6)—2h —8, 6& 8/4—
Fi, =F,a(o —6)+26, 6( 8/4—

valid for all e—6&0. This expression may now be
maximized over A. We consider only the case 8/o«1.f,a(o 6) can th—en be expanded to first order to
obtain

F&tr((H —H .a)l'"}+F .a
& min( (H H, a)f~}+F,a—,

fN

where

«'= 2 tanh'2Po —1 and E', («) =
m'/2

(1—«' sin'y)'"

F&mintr((H&'i —H, a&'i) f&"}+F
f (2)

(31)

where trf"i=1.
Note that in the limit that T= 0, (31) reduces to (15).

B. Lower Bound to the Free Energy of the
Two-Dimensional Ising Model

The Ising model in a magnetic Geld in two dimensions
has the following Hamiltonian:

so that a lower bound to the free energy is given by

F&mintr((H H,a)f~}+F,—a, where trf~=1, (30)
fN

or by

If one further considers this expression for very low
temperatures, i.e., Po))1, then

fi.~= fm. a(o) F g&e 'e',—&—& F/4—
fi.w= fmoa(e)+46 She 'e', 6& 8/—4—

and the maximum occurs at 6= F/4. Our result is-
fiow=fmoa(o) &(1 2e '—e'), 8—/e«1, po))1,

to first order in 8/o, keeping only the leading terms in a
low-temperature expansion. Setting 6= —8/4 and
evaluating —(Bfiow/BB) a ofor expres=sion (32) then
gives an upper bound to the spontaneous magneti-
zation, and for Pc))1, one obtains

lope

2e—SPe
7aa op

&rm, n &r m&.im
tSo noel

m, , n=l m, n=l

~N ~N
m. 'e~iO,

keeping only the two leading terms in the expansion.
Yang' has calculated the magnetization (see the article

' C. N. Yang, Phys. Rev. 85, 809 (1952}.
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by Schultz, Mattis, and I,ieb' for comments on this functions
calculation) to be

(I+ x') (I—6x'+x')'" "' eg(1,2,3)=P C,g, (1,2,3),
i=a

(I—x')'
T&T,

where x=e 24" and sinh24/kT, = I. The two leading
terms (at small temperature) of this result are in
.agreement with our result. At higher temperatures, the
difference between the two magnetizations is consider-
able. The variational principle (30) is more suited for
lower temperatures in this case because it emphasizes
the energetic contribution of the applied field, as
opposed to its entropic contribution.

where

It 2= (+++),
f2= (++—),
A= (+—+),
It 4= (—++),

A= (——+),
A=(—+—),
A= (+——),

8

Then minimizing is equivalent to solving

.APPENDIX: ENERGY EIGENVALUES FOR %=3

For X=3, we may expand the eigenfunctions
of 8 in a complete set of 3-particle wave which results in the determinantal equation

X+3(J+8,)
8*
8*
8*
0
0
0
0

8,
(X+8. J)—

0
0
0
8
8*
0

8*
0

(X+8, J)—
0
8
0
8
0

8.
0
0

P.+B. J)—
8*
8*
0
0

0
0
8.
8,

P,—8,—J)
0
0
8,

0
8
0
8*
0

(X—J—8,)
0
8,

0
8
8.
0
0
0

(I —J—8,)
8*

0
0
0
0

Bg
8
8

X+3(J 8,)—
Four roots can be factored out of this equation,
namely,

'A2 ——X2——J+ (8,2+8.2)'",

X2=X4=J—(8,'+B.')'",

leaving the quartic

X,'+4JX;2—2[5(8,2+8.2)+J2jX,2

+12J(8,'—J'—38,')X;
+9(J2 8 2 8 2)2 0 i=5, 6, 7, 8

'T. D. Schultz, D. C. Mattis, and E. H. Lich, Rev. Mod.
Phys. B6, 856 (1964}.

to determine the remaining roots. The ground-state
energy E2 corresponds to the smallest X, (i= I to 8).


