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If we assume Ao'&A, ', then A. must be near A, and we
have approximately

K= e exp'

Thus for power levels above threshold, i.e., Ao'&A, ',
the amplification factor E increases exponentially with
Ao' but always remains finite for 6nite Ao'.

7'. DISCUSSION

The inclusion of self-consistency requirements for the
pump 6eld is thus suQicient to mak. e the three-mode

parametric model finite. However, nonlinear longitudinal
mode coupling cGects which we have neglected will un-

doubtedly reduce (perhaps greatly) the steady state
amplitude which can be experimentally attained. The
principal mode coupling effects are probably further
three-mode couplings of the type responsible for the
parametric CQect itself. The parametrically excited
plasmons can themselves act as a pump which couples
to another plasma mode and another ion acoustic mode.
These secondary processes will not be as strong as the
original parametric coupling since the pump energy is
now spread over a number of spatial (k) modes and
since the frequency-matching conditions for the
secondary pump plasmons will not be optimum.

A complete treatment of the effect, of longitudinal
mode coupling on the saturation level has not yet been
carried out.
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The dynamic form factor S(E,~) for a classical Quid is calculated from the linearized Vlasov equation.
Following Percus or Zwanzig, the effective interatomic potential is taken as —he (r), where c (r) is the direct
correlation function. The result for S(E,co) is a simple closed expression with no free parameters except for
the static structure factor S(E). Using Ashcroft and Lekner's hard-sphere Percus-Yevick results for S(E),
we calculate the inelastic neutron scattering from liquid lead. The resulting scattering law shows a strong
qualitative similarity with experiment. The narrow quasielastic peak observed experimentally is not, how-

ever, given by the calculation. The reasons for this discrepancy are discussed. An extension of the calculations
to include a phenomenological collision term is also presented.

I. INTRODUCTION

ECENT slow-neutron inelastic-scattering experi-
ments have shown a surprising persistence of

~~ ~

~

~ ~~ ~

phononlike excitations in the liquid state. The dynamic
form factor S(K,&o) exhibits a structure associated with

propagating sound waves in a variety of liquids in-

cluding liquid helium above and below the lambda
point Rs well Rs classical liquids. This naturally sug-

gests that a mean 6eld theory would provide a useful
phenomenological description of such experiments. ' In
the present paper we present some simple calculations
demonstrating that this is in fact the case for classical
fluids.

*Work supported by the U. S. Atomic Energy Commission
under Contract No. AT(30-1)-3326. A preliminary report of this
work was presented at the ¹wYork meeting of the American
Physical Society, January 1967.' A. D. B.Woods, Phys. Rev. Letters 14, 355 {1965).

~ P. A. Egelsta6, Rept. Progr. Phys. 29, 333 (1966).
3 D. Pines, in Qmultuet Ii/aids, edited by D. F. Brewer (John

Wiley k Sons, Inc. , New York, 1966).

The familiar classical limit of a mean 6eld theory is
the Vlasov equation. This equation has long been used4

to calculate the dynamic form factor associated with
electron density Quctuations in a plasma. To use the
Vlasov equation in neutral Quids we must replace the
actual interatomic potential by an appropriate CGective

potential. The desired substitution is v(r) ~ —ItTc(r),
where c(r) is the direct correlation function. This re-

placement was first suggested by Percus and Vevick. '
When used in a self-consistent way it leads to the well-

known Percus-Yevick integral equation for the radial
distribution function. The same replacement has been
obtained by Zwanzig' from consideration of variational
cxplcsslons for cigcnfunctlons of thc Liouvlllc equation.
Within the context of the Vlasov equation, the replace-

' E. E. Salpeter, Phys. Rev. 120, 1528 (1960). {There is a large
body of subsequent literature on this subject. )

J. K. Percus, in The Bftlilibriges Theory of C/assjca/ F/gods,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin,
Inc. , New York, 1964); see in particular Appendix A, p. II-142.

s Robert Zwanzig, Phys, Rev. 144, 170 (1966).
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ment of v(r) by kT—c(r) can be derived very simply
from sum rule arguments, as we show in Appendix A of
this paper.

The modiied Vlasov equation leads to a form of
collisionless sound which has already been discussed by
Zwanzig. ' This sound is strongly damped by thermal
motion. Its dispersion relation is not suf6cient to
describe neutron-scattering experiments. Ke require
an explicit solution for S(E,&o), the frequency spectrum
of density Quctuations with wave number E. This
solution is well known in the plasma problem, 4 and can
be directly transcribed to the Quid.

In Sec. II we present the basic result for S{E,co)

LEq. (I3)) and examine some of its properties. The main
interest of the result is its simplicity. The only input
quantity needed. is the static structure factor

5{E)= S(E,M)da).

For S(E) we use the analytic expression obtained by
Ashcroft and Leknerv from the Percus-Vevick equation
for hard spheres. This is known. to give a fairly good 6t
to the measured structure factors of liquid metals.
Applying our result to liquid lead at 352 C a surprisingly
good qualitative description of the observed' scattering
law S(E,~) is obtained. The main features of the struc-
ture due to excitation of highly damped collective
oscillations are given in a way similar to the experiment. ,
but the calculation does not contain any of the observed
narrow quasielastic peak.

The results have been extended to include a momen-
tum- and energy-conserving collision term. This leads
to a sensible, though not exactly correct, hydrodynamic
limit. With a reasonable choice of collision frequency,
however, the behavior of S(E,&e) in the regime currently
explored by neutron-scattering experiments is not ap-
preciably changed by the inclusion of collisions. The
extension to include collisions is discussed in Appendix
H.

We conclude in Sec. III with a discussion of the physi-
cal nature of the approximations made. In particular
the choice of kTc(r) as an—effective potential in the
Vlasov equation is further examined.

Through the use of linear-response theory and the
Quctuation-dissipation theorem the equilibrium time-
dependent density fluctuations which determine slow
neutron scattering are simply related to the relaxation
of an externally induced density disturbance. We are
thus concerned with a perturbed one-particle distribu-

' 5. %'. Asheroft and J. Lekner, Phys. Rev. 145, 83 (1966).
s P. D. Ra~dolph and K. S. Sing i, Phys. R.ev. 152, 99 (1966).
9 L. KadanoG and P. C. Martin, Ann. Phys. (N. V.) 24, 419

(j.963).

tion function

where no is the equilibrium density,

p') pn exp( —v«/vp«)

is the equilibrium Maxwellian velocity distribution,
and vp'=2kT/m. The appropriate initial condition is

f~'&(K,v,0) =qbpr(p)S(K),
where

(2)

f&'&(K vt)= p
—«K rf (l)(r v t)d«r

and S(E) is the structure factor of the Quid. This corre-
sponds to an initial density disturbance 8{r)+««pg(r)
associated with localizing an atom at the origin at I,=o.
The dynamic form factor S(E,&o) is given by

S(E,co) =2 Re lim Z(E, «co+ p),
e—+0+

f~'&(K,v, t)d«ddt.

As an approximation for calculating f&'& we use the
linearized Vlasov equation. Letting u be the component
of velocity along K, and integrating out the other two
components, this equation is"

8 dp(o)—+«Eu F&'&(E,u, t) —«E««pV(E)
8$ dN

where

X F&'&(E,u, t)du=0, (6)

F&"(E,u, t) = f&"(K,v, t)d'v„

F"'(E,u, 0) =F&"(u)S(E),

F ' (u) = qbu(p)d'pg ——(«rvp') '" exp( —u'/pp') .

In Eq. (6), IV(E) is the Fourier transform of the
eGective interatomic potential. Following Percus' or
Zwanzlg we set

V(E)= ——,'p p'C(E),

'DD. C. Montgomery and D. A. Tidman, E4snsu E&setic
Theory (MeGravr-Hill Book Company, Inc., Near York, 1964),
Chap. S.

where C(E) is the Fourier transform of the direct
correlation function. Within the context of the Vlasov
equation, Eq. (9) can be derived more simply than in
the literature by considering the short time behavior of
F~"(E',u, t). This is done in Appendix A.
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where

S(E)io(s)

L1/S(E) —im'"rspC(E) nv (s)$Kvp 1~

w(s) = isr
—' exp( —t') (z—t)-'dt

and

s = ip/Epp.

10 we have use e
' ' '

d the initial condition
l t.

'
fo th dioq q.f,E . (2), and the de&ning relation or

lation function'

12
S(E)—1

S(E)
rtpC(E) =

lt4, 11d the familiar result ~Using Eq. I,4~ an

—x') 1+2pr '"i exp(P)dtlim m (x+ep) = exp( —x' pr
g ~p+

we 6nally obtain

S(E,co) =
Eve

A (x)

[1/S(E)+rspC(E)xB(x) j +LrtprtpC E)xA(x) j'
whei'e x= pe/E'op, and

A (x) =sr'I' exp( —x'),

frst calculate Z(E~P) aTo calculate S( ~ ) .
L lace transform othen use Eq & ~ .E ) and integrating over +E (6) dividing by (P+e

gives

~=(1+2')'/(1 —'I»
p 6„(1+le)'/(1—

&
'

1y= ~'gQ ~

~

d. the packing fraction 0e hard-core 'ameter fT an
1 tructure factor.be chosen to 6t pthe ex erimenta scaIl

352 C thechoiceo q=For liquid lead at
A gives a reasonab y g1 ood 6t.

With this choi'ce for C(E, t e va
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FIG. 2. S(lf.,co) is plotted against x (=co/lyso) for
various values of E.

served' "dispersion relations" for collective modes in
simple liquids. It should be recalled in this connection
that neutron time-of-Qight experiments' greatly exag-
gerate the peaks associated with these modes compared
to the rather modest protuberances that appear in
plots of S(K,&o) versus to.

One feature of Fig. 2 is in gross qualitative disagree-
ment with experiment. For values of E where the inelas-
tic peak is prominent our calculated S(K,re) has a broad
minimum near or=0. Experimentally there is a narrow
quasielastic peak for small ao which is completely missed

by the present calculation.
The present calculation can be made more realistic

by the phenomenological addition of a collision term
to Eq. (6). The results of an extension to include col-
lisions are presented in Appendix B. The behavior of
S(K,ce) at small K is qualitatively changed by collisions.
The familiar hydrodynamic limit of the Landau-
Placzek theory of light scattering is obtained. This
contains a quasielastic peak associated with the dif-
fusion of entropy Quctuations at constant pressure.
With a reasonable choice of collision frequency, how-
ever, the effects of collisions on S(K,&o) in the region of
existing neutron-scattering experiments is small. We
must therefore look elsewhere for the quasielastic peak
missing from Eq. (13).

III. DISCUSSION

is small. This shows up clearly in Percus's' derivation
of Eq. (9), which asks "for that potential e*(r) whose
eGect at the origin oe a Sneer basis is to produce the
same forced density fluctuation ttsg(r) —ts which the
true interparticle potential v(r) due to the arrival of a
particle would produce. " In Appendix A we see that
the same result is obtained by requiring a linearized
Vlasov equation to give the correct short time behavior
to order 3'. In both derivations the essential approxi-
mation is to neglect the large dynamical e6ects associ-
ated with the motion of the originally localized atom. At
3=0 the structure of the Quid is taken into account
properly through the construction of the effective po-
tential v*(r) = —kTc(r), but at later times, the structure
is not taken into account correctly.

We thus ignore the fact that the density disturbance
whose propagation we are studying is to a substantial
extent tied to the originally localized atom. The single-
particle diffusive motion known to be important in
inelastic neutron scattering is entirely omitted. This is
probably the reason that we do not obtain a quasi-
elastic peak.

Although the true equation of evolution for ft(r, v, t)
cannot be linear, the use of linear-response theory as
expressed in Eqs. (1)—(5) is correct. The problem is not
in the formal use of linear-response theory, but in

formulating reasonable approximations for the evolution
of a highly localized disturbance. We defer detailed
discussion of this point to a later paper, but perhaps
Eqs. (1)—(5) are more plausible in the light of the follow-

ing result.
Consider a Quid in equilibrium with a weak gravi-

tational potential C (r). At t= 0 this potential is shut off
and the initially inhomogeneous density relaxes to a
6nal uniform value eo. It is easily shown that the evolu-
tion of the density is given by

e(r, t) —ms= (es/kT) dsr'C'(r')fG(r t', t) n—7, —

where G(r, t) is the double Fourier transform of S(K,ts)
and is the familiar space-time correlation function
introduced by Van Hove. This expression is readily
checked to be correct at t= 0 since (Ref. 5, Eq. 5.1)

Rts(r)/hC'(r') = (tte/kT) $h(r r')+nsg(r r—')7—
= (tto/kT)G(r —r', 0).

There are no formal limitations in the above result on
the degree of localization of C(r).

Finally we consider the relation between the pres-
ent' calculation and the recent work" "on elementary
excitations in classical fluids. We have calculated S(K,co)

directly at a level of approximation corresponding to

In the preceding calculation we have assumed that
the eBect on the fluid of localizing an atom at the origin

~ Robert Zwanzig, Phys. Rev. 156, 190 (1967}.
1' Ralph glossal and Robert Zwanzig, Phys. Rev. 157, 120 (1967}.
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the simple eigenfunction considered in Ref. 6. The
dispersion relation in this approximation is obtained
by examining the zeros of the denominator in Eq. (10).
The results of such an examination have been discussed
by Zwanzig. ' Because of the large damping due to
thermal motion there is no simple way to relate the
dispersion relation to the neutron scattering as given
by S(E,cp). At this level of approximation, however,
this is not important since the direct calculation of
S(IS,cp) is straightforward.

Recently, Nossal and Zwanzig" "have obtained more
realistic variational eigenfunctions and studied the dis-
persion relations for the elementary excitations. It
remains true that dispersion relations and S(K,cd) are
not simply related. In contrast, however, to the earlier
results we do not yet have a way to calculate 5(E,co)

at this improved level of approximation. It is suggestive
that the quantities appearing in the improved disper-
sion relations are shear and bulk. moduli closely related"
to the sum rules for

Eliminating the time derivative on the right-hand side
of Eq. (A4) by using Eq. (6) and evaluating the integral
at t=0 by using Eq. (8), we obtain

ct'IcI(E 0)/BtP = '—p p-'K'S(E) [1+2mpp p 'V-(K)] (A. 5)

Combining this with Eq. (A3) gives Eq. (9) when we
recall that C(E) is defined in terms of S(K) by Eq. (12).

APPENDIX 3
The collision term that we add to the Vlasov equation

is the single relaxation-time kinetic model that conserves
particle number, momentum, and energy. This was
first introduced by Bhatnagar, Gross, and Krook'"
in their work on small amplitude oscillations in gases.
Kith the linearized version of the above model, we have,.
for. the modified Vlasov equation,

(icp+iK gpp) fc'&(K gicp) iK —ep.v(Is)

cp4S(E,cp) dcp
X f (Kg ) '5= td —f']

which describe short time behavior to order t'. It is
therefore likely that a kinetic description correct to
order t' will extend the present calculation in. a similar
way that Nossal and Zwanzig" " have extended
Zwanzig's earlier calculation. ' Work in this direction
is now in progress.
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where

4= v/&p

t'Z 1

I 0 = f&'&(K,g, icp)dag

p

APPENDIX A

We can deiive Eq. (9) starting from Eq. (6) by making
use of the known short time behavior of

The quantity 0. is a constant and can be identihed with
a typical collision frequency of the system. Taking $i to
be the component of K along (, we get

f& &(K,I, ,jcp) =—Pp f nZA+2npnQ, 1S$;+rcpnrA(j' p)—
epC(E)ZiEpp)gh—+S(E)A], (83).

N(K, t) = I' &"(E,tc,t)dn = S(IS',cp) coscpt dcp. (A1)
where

8'iV (K,t)/ctt'= iK—oo gP (1)

u du ~

8$

'4 P. Schofield, Proc. Phys. Soc. (London) 88, 149 (1966).

For a classical Quid it is readily shown that

1V(IC,O) =S(E),
'

(A2)

O'Ar(K, O)/BtP = ——,'ppPE'. (A3)

We have already built in Eq. (A2) in our initial con-
dition. We can thus use Eq. (A3) to define the effective
potential V(E). Differentiating Eq. (6) with respect to
time and integrating with respect to u gives

Hy taking the first three velocity moments of (83), we
obtain three coupled equations involving Z, Q&, and r
After carrying out the integrations, " the final result
can be written as

Cz -~0'-

"P. F. Bhatnagar, E. P. Gross, and M, Krook, Phys. Rev.
94, 511 (1954)."S. Ranganathan, Ph.D. thesis, Cornell University, 1967
(unpublished).
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where

yvo+C E oi 2yvl y(vo —vo/2)
yvi+C E oo 2 v, y(v, —v,/2)

oy(2vo —vo)+-', C(E)(2co—oi) -', (2y) 2vo —vi) oy(2v4 —2vo+ ovo)

7i~ &a

—&i + 'V~-

( ZR, I S(E)
VRr

i

QBI VB-
E 'r ' E'vo o (2vo Vo)

yo ———U

vi= AiU+—BoV, oi ——BiU+AiV —1;
where

with Vor ——Vos[v;~ o;]. Here R and I refer to the for the modified Vlasov equation are given by
Leal part and the imaginary part, respectively.

BZ/Bi+ooBQ, /Boo;= 0

&Q,/cV+oo(&/»~) [Z+r]+ (1/i o)go~(x;, t) =0, (85)
87/Bt+ ,'oo(BQ;-/»;) =0,

vo= AoU+Bo—V Bi, —

vo —— Ao U+B—oV Bo, —

v4 —— A4U+B4V —Bo ,'Bi, — ——

Ai ——x,

Ag ——x'—y'

2 ~
——x'—3'',

A, =x4—6x'y'+y',

oo=BoU+AoV Ai,. —

oo BoU+——A o V Ao—

y
4

82= 2Xy7

83=38 y—y j

84——4x'y —4'';

1 By(~x—xo()
g~o&(x;, t) =— 4xo Z(x, ,(),

m ~+i

so that g"'(E,m) = (1/m)iE&(E)Z(E, ig). The zero-
frequency sound speed can be easily calculated and is
given by

V= (kT/m) '"[5/3 —C(0)]'". (86)
In the case of the Vlasov equation, the "sound"

speed was derived to be'

V,= (kT/m)'"[1 —C(0)]'". (87)

(+7r)oo(x —iy) = U+i V =(Q7)i/7r-
-g2e

oo X—
Zy

x=co/Eoo, y=&/E&o.

A subroutine to calculate the functions U and V has
been constructed. In the earlier treatment, where we
did not include any collisions, the value of y was equal
to zero and hence we had to approach the imaginary
axis in a deGnite fashion. In the presence of collisions,
however, there are no singularities on the imaginary
3XlS.

Since S(Is,&v) is proportional to the real part Z of
Z(E,m), it can be easily calculated from the matrix
equation (84).

The linearized Euler equations of hydrodynamics

Comparing the Euler equations (85) with the Euler
equations corresponding to a dilute gas, we note that
the self-consistent-field term only contributes to the
momentum-balance equation. It does not have any
contribution to the heat Sow. The hydrostatic pressure
and hence the zero-frequency sound speed is thus
aQected by the self-consistent-Geld term and the
adiabatic sound speed is given by Eq. (86). Thus, by
referring to Eq. (87) also, it is seen that the sound speed
changes from its isothermal value to its adiabatic value
on the inclusion of collisions.

As noted before, S(E,M) can be computed from the
matrix equation (84), once a proper value for the col-
lision frequency n is assigned. We took 0,=2.2)& io"sec-'
(so that y=1/E)and with this value fo'r n, it was seen
that collisions do not play an important role in the
regime currently explored by neutron-scattering
experiments.


