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The enhancement of the spectrum of density fluctuations in a parametrically excited plasma is studied
using the linearized theory. In the particular case studied, the plasma is "pumped" by a monochromatic
electromagnetic field of either transverse or longitudinal polarization with frequency coo~(electron plasma
frequency)+(ion acoustic frequency). A strong enhancement of the Quctuation power at the two
individual frequencies is predicted as the previously calculated threshold for instability or oscillation of
the linearized theory is approached. The experiments of Stern and Tzoar and other recent theories are dis-
cussed. Approximate expressions are derived for the strength of the enhanced resonances and the range of k
vectors which actively participate. The cross section for inelastic scattering of radiation from the excited
plasma is derived and compared with a result due to Berk, who did not consider the important regenerative
process of parametric amplification. The saturation of the noise level for pump powers above the linear
threshold is treated.

1. INTRODUCTION

HE parametric excitation of longitudinal electron
plasma waves and ion acoustic waves in a plasma

by strong, externally controlled, monochromatic pump
fields was recently proposed and studied theoretically
by the present authors. ' ' Stern and Tzoar' recently re-
ported the experimental generation of strongly en-
hanced noise signals at the optical and acoustic wave
frequencies from a discharge plasma excited by a pump
signal near the plasma frequency. This enhancement
occurred only for pump powers above a threshold, which
is characteristic of parametric excitation.

The idea of parametric amplification is, of course, a
very old one going back to Lord Rayleigh and has re-
ceived many applications in electrical devices' and more
recently in nonjinear optics. ' The main issue here is the
detailed application of these ideas to plasmas, including
the calculation of the relevant coupling parameters.

In I and II we treated the problem of a transverse
(pump) beam of frequency coo whose amplitude was
weak in the sense that the ratio of the pump energy per
unit volume to the plasma thermal energy per unit
volume was small. When co~~&ot+cos, where coi and cps

are frequencies of (approximate) normal modes of the
system, it was shown that for sufFicient pump power (to
overcome losses in these modes) these modes could be
driven simultaneously unstable. It was shown that the
lowest threshold for instability occurred when co& was
near the electron plasma frequency and co2 was in the

range of ion acoustic frequencies. Another possibility
was for both col and A&2 to be near the electron plasma
frequency, but this was seen to be much weaker and to
depend on the spatial variation of the pump 6eld. ' In
addition to the negative damping of the coupled modes
there was a small power-dependent shift of the resonant
frequencies.

A rather large number of other theoretical studies of
parametric excitation of plasma waves have appeared.
Silin based his original theory on the cold-plasma equa-
tions and thus did not include the coupling of electron
plasma waves and acoustic waves, nor did he include
the effect of wave damping. The present authors'~
showed the coupling of Langmuir waves to ion acoustic
waves to be the strongest three-wave coupling. Ke also
consistently took into account damping effects which are
essential to estimating the threshold. Our conclusions
were substantially verified by Jackson, r who based his
theory on the linearized Vlasov equation, and by Lee
and Su, ' who worked with a hydrodynamic model.
Jacksonr also extended the kinetic theory to the strong-
field case and obtained partial agreement with the cold-
plasma results of Silin. ' A number of other papers' have
considered parametric excitation of transverse waves in
plasmas, but these do not bear directly on the experi-
ments of Stern and Tzoar or on the considerations of the
present paper.

Of these papers, only the work of Goldman' " has
been concerned with the noise power spectrum of

~ D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14,
544 (1965); henceforth referred to as I.' M. V. Goldman, Ann. Phys. (N. Y.), 38, 95 (1966);Hughes Re-
search Laboratories Research Report No. 343, 1965 (unpublished),
henceforth referred to as IL' R. A. Stern and N. Tzoar, Phys. Rev. Letters 17, 903 (1966).

4 W. H. Louisell, Coupled Mode and Parametric Electronics
(John Vhley R Sons, Inc. , New York, 1960).

'N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc. ,
New York, 1965).

V. P. Silin, Zh. Kksperim. i Teor. Fiz. 47, 1977 (1965) LEnglish
transl. :Soviet Phys. —JETP 21, 1127 (1965)j.

7 E. A. Jackson, Phys. Rev. 153, 235 (1967).
8 Y. C. Lee and C. H. Su, Phys. Rev. 152, 129 (1966).
9M. V. Goldman and D. F. DuBois, Phys. Fluids 8, 1404

(1965); A. Yariv, in Proceedings of the Seventh International Con-
ference on Ionization Phenomena in Gases, Belgrade, 1%65 (Belgrade,
1966), Paper No. 4.4.5(3); D. Montgomery and I. Alexei, Phys.
Fluids 9, 1362 (1966)."M. V. Goldman (to be published).
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parametrically excited density fluctuations. Experi-
ments of the type of Stern and Tzoar can measure this
incoherent Ructuation spectrum. The other theories

apply, strictly speaking, to amplification of coherent
signals which are introduced into the plasma. There-
fore, the main purpose of this paper is to analyze the
fluctuation spectrum in detail for three-mode coupling
in a two-temperature plasma.

Ke also wish to comment on the applicability of this
theory to the experiments of Stern and Tzoar. ' In these
experiments a finite, inhomogeneous cylindrical dis-
charge plasma was used in which the excited optical
modes were the radial Tonks-Dattner resonances (the
analog of the electron plasma waves in an in6nite
homogeneous plasma). In addition, the monochromatic
pump wave used here was itself a longitudinal Tonks-
Dattner resonance which was excited by the externally
produced fields.

The simplest modej, and the one used by all authors to
date, is that of an infinite, homogeneous plasma. The
pump field can be taken to have a longitudinal po) ariza-
tion, in contrast to the transverse polarization explicitly
considered in I and II. It is physically obvious, however,
that in the limit of eke iufiuite pump wanelengtk, which
was used in all theories' ' ' ' for the plasma-acoustic
wave coupling, there can be no physical difference be-
tween a transverse pump and a longitudinal pump field
in a uniform, isotropic plasma. "This was demonstrated
explicitly by Lee and Su, ' who obtained exactly the
results of I and II by using a longitudinal pump. A more
serious question, which was not observed by these
authors, is that the infinite-wavelength limit is rot
kinematically consistent for the three-mode coupling
with longitudinal pumping in an infinite, homogeneous
plasma. Momentum conservation and the approximate
frequency-matching conditions cannot be satisfied for
Pp=—0. However, we will show that even when the finite
ko is taken into account, the three-mode coupling is un-

changed provided (ke/kD)&(1 and the dispersion relation
of I and II still applies.

The pump intensity threshold level predicted by this
three-mode theory is higher than that observed by
Stern and Tzoar. The differences might reasonably be
expected to result from the oversimpli6ed model of the
plasma. However, a more serious qualitative diGerence
still exists. The noise spectrum was observed' to have
strong components at frequency 0 (acoustic frequency)
and at too —0 (plasma resonance), as predicted by the
three-mode theory, plus an equally strong component
at coo+0, stot predicted by this theory. It is clear that
this can be explained only by a four-wave parametric
coupling. The nonlinear susceptibilities for this coupling

"The brief theoretical discussion by Stern and Tzoar (Ref. 3)
implied that this was not the case. Their theory also seemed to
imply that the threshold condition was not a symmetrical function
of the optical and acoustic wave losses, in turn implying a differ-
ent threshold for the two waves. This would violate the Manley-
Rowe relations which must hold for such problems,

and the appropriate dispersion relation were also cal-
culated by Goldman' for the case of a transverse pump,
but were not analyzed for parameters corresponding to
these experiments. In another paper now in prepara-
tion we will present a detailed analysis of the predictions
of this four-mode theory. The threshoM intensity turns
out to be equal to or greater than the three-mode
threshold.

The present paper will be devoted to the analysis of
the Ructuation spectrum in the three-mode case. There
are clearly defined experimental conditions under which
this coupling is more important than the four-mode

coupling. "The analysis of the simp/er three-mode case
is essential as a first step in understanding and carrying
out the more complicated four-mode case. The general
analysis is presented in a form applicable to any three-
mode parametric coupling.

In Sec. 2 a derivation of the basic equations of the
theory is presented which should make the theory more
accessible to experimentalists than the quantum deriva-
tions of I and II.

The linear and nonlinear electromagnetic susceptibili-
ties for the plasma are derived from the collisionless
Boltzman-Vlasov equation for longitudinal or transverse

pump fields. The finite ko of the longitudinal pump field

is taken into account. Coupled Maxwell equations for
the high- and low-frequency plasma modes are solved,
and expressions are derived for the fluctuation spectrum.

The behavior of the density-fluctuation spectrum

So(k, td) is dominated by the resonances in the response
function of the linearized system P~(k,~)—'. In Sec. 3
the zeros of the analytic continuation of e~~(k, &o) in the

complex co plane and the residues at these poles are de-

termined. This can be done analytically if the fre-

quency arguments of the linear dielectric functions,
which make up e~~, are near the complex zeros of these
linear functions. This is seen to be valid for frequencies
near the electron plasma frequency co„and, if the elec-

tron temperature is greater than the ion temperature,
for frequencies near the ion acoustic frequency to, (k).
For equal temperatures the formulas derived in this

approximation are seen to be qualitatively accurate but
not quantitatively so, by comparison with numerical

work done in I and II.
In Sec. 4 we use the properties of e~z(k, &o)

' derived

in Sec. 3 to examine the behavior of 5,(k,to) in the
vicinity of the resonances. %e find that as the pump
power approaches the threshold for which the most
favorably matched mode k goes unstable, there is a
great enhancement of the resonances in the spectrum.
This enhancement occurs for a narrow range of wave

vectors around k which receive comparable negative
damping from the parametric coupling. For most cases

of interest the resonance near co~ is more strongly en-

"Recent experiments by Kong ori three-mode parametric ex-
citation of drift waves in a plasma have been reported t A. Y.
Wong and M. V. Goldman (to be published}].
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hanced than that near ~;.Near threshold, however, both
resonances have the same width which goes to zero at
resonance in the linearized theory. The spectral peaks
are enhanced more strongly than the total area under
the resonances (i.e., the total noise power), but the
linearized theory predicts that the enhancement of both
quantities goes to in6nity at the point of linear threshold.

In Sec. 5 we discuss the cross section for inelastic
scattering of another beam of higher frequency from the
parametrically excited plasma. The di8erential cross
section is known to be proportional to Sp(k, &o). The cross
section is greatly enhanced in a narrow range of angles
corresponding to the range of "active" k vectors which
are parametrically excited. Because of k-dependent
factors in the cross section, arising because the heavy
ions do riot respond directly to the scattering electro-
magnetic fields, the enhanced resonances in the scat-
tering at co„and co; have comparable cross sections in

many cases. The total scattering integrated over the
resonances and over the narrow range of "active" h
vectors is enhanced. Again all the enhancement factors
diverge at linear threshold.

Ke compare our results with the work of Berk, "who
did not include the regenerative parametric effect. Near
threshold for instability this effect is extremely im-

portant, and Berk's result greatly underestimates the
enhanced cross section.

In Sec. 6 we consider the important question of the
nonlinear saturation of the level of fluctuations near and
above the threshold for the linearized theory. The large
longitudinal fluctuating currents induced in the system
react back on the pump 6eld, so that the steady-state
pump amplitude is not that predicted by the linear
theory. Conservation of energy arguments show that
the self-consistent pump field adjusts intself so that the
effective pump amplitude is always below but near the
linear threshold. The enhancement factors then become
exponentially increasing but finite functions of the pump
intensity for intensities above the linear threshold.

In Sec. 7 we briefly comment on the effect of nonlinear
longitudinal mode coupling, which has not been in-
cluded in the present work.

E(r,t) = Ep sin(kp r—coot)

B(r,t) = (cko/ooo) XE(r,t) (2 I)

to the plasma and ion acoustic resonances of the self-
consistent longitudinal field U(r, t) in a two-temperature
plasma. A simple perturbative approach based on the
Vlasov equation is equajly applicable to the case of

"H. Berk, Phys. Fluids 7, 917 (1964) .

2. BASIC THEORY

We begin by calculating the nonlinear suscepti-
bility, which couples a monochromatic electromagnetic
"pump" wave

The singularities in co are to be handled in the Landau
sense. Let

f= (2~)'B'(k)B(~)fo(v)+fi(v, k,~)+f4(v, k,~)+

where fp(v) is the equilibrium distribution functions, f&
is first order in a, fo is second order in a, etc. Thus,

ia(v, k,co) Bfo(v)
fi(v, k, io)=-

op —k v Bv
(2 5)

dok'dip' a(v, k—k', &o
—io') B

fo(v, k, io) = ( i)'—
(2m.)4 (oo—k v) Bv

(a(v, k',pp') Bfp(v))
X( —

I
(2 6)

E~'—k' v Bv i
etc. The average electron charge density is

p(k, oo) = q dov f(v, k,4p)

= (2or)484(k)B(oo)qn, +pi(k, &o)+po(k, oo), (2.7)

where pj. and p2 are, respectively, first and second order
in a. The average charge ge, in equilibrium is exactly
canceled by the positive ion background, and so may be
neglected. We are interested only in that part of the
charge density which is proportional to the self-consist. -
ent field U. Terms which go as U' (e.g., in po) are as-
sumed shall compared with terms which are linear in U,
this is an effective limitation on how hard we excite

transverse or longitudinal pump waves. Our result for
the transverse pump agrees with previous calcula-
tions" '; however, the result for the longitudinal
pump disagrees with the hydrodynamic theory which
Stern and Tzoar' used to interpret their experiment, in
which a longitudinal pump parametrically excites the
plasma and ion-acoustic waves.

The Vlasov equation for electrons in an electro-
magnetic field is

Bf/Bt+v Bf/Br= —a(v, r, t) Bf/Bv, (2.2)
where

a(v, r, t) = (q/nv)( —V U(r, t)+F(r, t)/q), (2.3a)

F(r, t)/q= E(r,t)+(v/c) XB(r,t) . (2.3b)

a is the acceleration of an electron as a result of the self-
consistent longitudinal 6eld VU and the Lorentz force
F of the total field (E,B). In Fourier space, Eq. (2.2)
may be rewritten as

d3k des

f(v, k,oo) = —i
(2or)4

a(v, k —k', &o—4o') Bf
X —(v,k', oo') . (2.4)

(4o—k v) Bv
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the system, and terms independent of U are propor-
tional to 8 functions such as 8(ca), 8((o+(ao), 8(&0&2'&p),
etc. , since the external 6eld is monochromatic. Four
our purposes coAecop, v=0, +1;therefore, such
terms vanish. A more detailed treatment of those
neglected terms is found in I and II.

The equilibrium longitudinal linear susceptibility X,
is defined by

4irpi(r, t) = V' d'r'dt' X,(r—r', t—f)U(r', t') . (2.8)

nate space, 47rp2(r, t)= —Jd''r'dt'Qi(r, t; r', t')U(r', t'} in
analo~yi5 with (2.8).

After carrying out the differentiation with respect to
v; in (2.14), it is convenient to express the term

&;—k P,(k',&') &fo(v)

(~-(o'-Lk-k'j v)'((u-k v) Bv;

8 1 -P,(k', (o') Bfo(v)

cjv (o—a)' —Lk—k'j v (o' —k' v Bv;

From (2.5), integrated over velocity space, we retain

where

4m.pi(k, (o) = —k'x (k (o) U(k (o) (2 9)

4me'
x,(k,co) =

mk'

k $8fp(v)/Bv j
d3v

0/ —k' V+M
(2.10)

is the usual'4 linear susceptibility. It is convenient to
define a quantity g (the "proper polarization part"),
dined by

k;—k 1+,
(rs' —k' v)' &o

—k v ~—a' —Lk—k'] v

8 p

E;(k',&o') . (2.15)
Bvg

The first term on the right-hand side of (2.15) may then
be integrated by parts. When this is done, all terms pro-
portional to (8'fo/Bv, 8v, ) in the integrand of (2.14) are
seen to cancel. We may further use the relation

q(kp&) =
me, P

k +f0(v)/avj
d V

(a kv+—is
(2.11)

tjP, (k',a)') k P; k,'P;—
co —k 'v

where P is the inverse thermal energy. In terms of q,

X,(k,o)) = (kD2/k') q(k, &o), (2.12)

where kii' ——4~m, 'P is the square inverse Debye length.
The integral of (2.6) over velocity space gives the

Fourier component of the electron charge density to
second order in a. Only the crossterms linear in U are
to be retained in this expression, which (after a trivial
change of variables in one term) may be written as

4m p, (k,a&) =— d kdGD

-Qi(k, &v; k' —k,co' —a))
(2s)4

XU(k —k', a)—(o') (2.13)

e'i k;—k 8
Qi(k, o&; k' —k, (a' —(o) = —4m.—Q d'v

m 2 cg —k'v Bv'

'4 B. D. Fried and L. D. Conte, The P/asmu Dispersion Func-
tion (Academic Press, Inc. , New York, 1961).

-P;(v,k',a') afo(v)- k;—& a
P;(v,k', o)')

co' —k' v Bv; co—k v Bv;

1 8 0

(v) . (2.14)
(o—co'—Lk—k'j v Bv,.

Q, (k,ra; k' —k,&o'—ra) may be regarded as the Fourier
transform of a nonlinear susceptibility Q&(r, t; r', t')

which contains the first-order modulating effects of the

pump field (E,B) of external origin. Thus, in coordi-

which is easily proved from (2.3b), the Maxwell equa-
tion B(k',&o') = (ck'/co') XR(k', co'), and standard vector
identities. One then obtains the following useful ex-
pression for Qi.

i
Qi(k, (o; k' —k,&o'—o)) = 4ire2— dev

m' ((o'—k' v)'

-(k' —k) F(v; k', (o')k k F(v; k', o)')(k' —k)-
X +

M —k'v &o' —m —Lk' —kj v

~ o(v)
X —. (2.16)

The magnetic part of the Lorentz force F(v,k', &o')

vanishes for a longitudinal pump field, and for trans-
verse pump radiation it may be ignored for the fo~-

lowing reason: From (2.1) and (2.3b) it is evident that
8 is of order v,kp/&uo times the electric field, where
v, = (Pm) '" is the electron thermal velocity. The pump
frequency ~p must be very near the plasma frequency
&o„, since the ion-acousticfrequencyis&«o„. Thus, v kp/too

ko/hid. The dispersion relation for transverse radiation
near the plasma frequency is coo = &o&(1+c'&o'/&. '&n') '",
so we require (k,/k&)«v. /c. The 8 term may then be
ignored since we need not calculate beyond zeroth order

"We have expressed this relation in terms of the polarization
Q1 rather than a nonlinear susceptibility x1 related to it by
Q1 ——+v'x1 in order to take advantage of certain symmetry prop-
erties present only in Q& ~
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in kp or p,/c for a transverse pump. The Lorentz force
F may therefore be taken simply as

either a transverse or longitudinal pump

Qr(k, co; kp —k, cop—co) =-,'kn'k d. (2.22)

4me'coo'

Qi(k, co; k' —k,co' —co) = d v
(co'—k' v)'

-(k' —k) dk
X

co—k v

k d(k' —k) — afp(rt)

co'-~-[k'-k] v clv
(2.20)

This expression is easily evaluated to zeroth order in
(k'p, /co)=kp/kri simply by neglecting k' v compared
with co' in the first denominator. Then, for example,

Qi(k, co; ko —k,cop—co) = -', kn'[(kp —k) dq(k, co)

+.k dq*(
~
ko—k (,cop—oo)], (2.21)

where q is defined in (2.11) and (2.12) to be proportional
to the linear electronic susceptibility. This applies to a
transverse or longitudinal pump field, the only differ-
ence being whether d points in the kp direction or trans-
verse to it. We note, in passing, an important symmetry
property in (2.21): Qi(kco' kp k cop co)=Qi*(kp k,
cop—co' k co).rp As we shall soon see, co and k may cor-
respond to the frequency and wave number of a plasma
wave, co =cor,(k) = co (1+3k'/kri') '" and cop —co and
ko—k then correspond to the frequency and wave num-
ber of an ion acoustic wave (co;=k,p,(m/M)'", where
M = ion mass). For a transverse pump field the frequency
matching condition tells us that co~(1+c'ko'/o 'kD')'"
=co (1+3k'/k&')'" or kp is of order (p/c)k. In this
case kp may be totally neglected in (2.20) and (2.21)
which reduces to the result previously found in I and
II for this case. ' In particular, the dominant term in
(2.21) is the second, since g(k, cdp —co)—1, whereas
t7(k, co)=k'/kn'.

For a longitudinal pump Geld, ko must still be &kD
for an undamped plasma wave, but it generally can-
not be neglected in comparison with k. However, the
dominant term in (2.21) is again the second, so for

"In the notation of II, Q1(k,co, kp —k,c'0 —co) =k'Ap. g
)& (kp cop' k—kp co—cop) where Ap is the vector magnitude of the
vector potential for E (r,t)o

F(k', co') = —
~

e
~

E(k',co')

= [(2rr) cmcoo'/2i]d

X [b(co'+cop) b'(k'+kp) —b(co' —cop) b'(k' —kp)], (2.17)

~here

d= —(( e[/tttcop')Ep (2.18)

is the maximum excursion distance from the trajectory
of an electron perturbed by the monochromatic pump
field E(r,t) =Ep sin(kp r—coot). If (2.17) is inserted into
(2.16), we have

Qt(kp&; k' —kp&' —co) =Qr(k, col
k' —k)co' —co) (2~)'

X [&(co'+coo)&P(k'+ko) —&(co' coo)bo(k' ko)], (2 19)

where

The correction terms arising from the first-order ex-
pansion of (cd'—k' v) ' in (2.20) lead to a correction to
(2.22) which is of order (k,/kD) or smaller, and generally
negligible. One may also determine the convergence of
this entire perturbative procedure in the strength 1 of
the pump Geld. Such convergence is in fact guaranteed if
dk~&&1, or if electron excursion distances are less than
the Debye distance. This is demonstrated in II.

There will also be an ionic contribution to the total
charge density, in which linear and nonlinear ionic sus-
ceptibilities are defined simp/y by replacing the elec-
tron mass rtt and temperature 0, (or thermal velocity
p,) by the ion mass M and temperature 0; (or thermal
velocity p,).However, the nonlinear ionic susceptibilities
may be neglected because they are of order m/M times
the nonlinear electronic susceptibilities, thus exhibiting
the preference of the external field for the lighter elec-
trons. However, the linear ionic susceptibility must be
retained as it contributes to the ion acoustic resonance.
We may then write for the total charge density (elec-
trons+ions) in Fourier space,

—4~to...(k,~)=k'[x, (k,~)+x;(k,~)]U(k,~)
+Qr(k, co

&
kp k, cop co) U(k+ kp&co+ cop)

—Q,(k, ; k,—k, ,—)U(k —k, , —,), (2.23)

where we have used (2.13) and (2.19). Continuation of
our perturbative expansion in d to next order gives rise
to terms of the following form:

Qp(k co' 2kp —k 2cop co)U(k+2kp co+2cop)

+Qp(k co' 2ko —k 2coo co) U(k 2kp co 2coo)

—2Qp(k, co; —k, —co) U(k,co), (2.24)

where each of the Qp's is proportional to d'.
We wish next to calculate the correlation of total

charge density fluctuations in the nonequilibrium steady
state prevailing when the pump radiation intensity is
just below the threshold for instability of plasma and
ion-acoustic modes. By envisioning a steady state we
neglect the relatively slow secular heating of the plasma
by the pump radiation. A complete treatment of all
terms in the fluctuation spectrum for the case of a trans-
verse pump and equal electron and ion temperatures was
given in II, while a simpler, more intuitive presentation
was described in Ref. 10;valid for lossless mode coupling
(real nonlinear susceptibilities). Since the imaginary
parts of our nonlinear susceptibilities are much smaller
than the real parts, this latter format is adequate for
our purposes, and may be used for a generalized treat-
ment which includes the possibility of a longitudinal
pump and unequal electron and ion temperatures. Con-
sider the self-consistent field U and the tota) charge
density p&.& to be fluctuating quantities whose thermal
ensemble averages vanish but whose average correla-
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where

Thus,

where

—47rp„„(k,cd) =k'x(k, cd) U(k, cd),

x(k, cd) =x,(k,cd)+x, (k,cd) .

k'o (k—cd) U(k cd) = —4irp'(k cd)

(2.26)

(2.27)

(2.28)

c (k,cd) = 1+X(k)cd) (2.29)

is the longitudinal dielectric function. The thermal
average of (2.28) gives zero on both sides, but the
average absolute square relates the correlation of
longitudinal self-consistent-field Quctuations to cor-
relations of total charge density fluctuations in the non-
interacting plasma:

k'I "(k~) I'&I U(»~) I')= (4~)'&I p'(k&~) I'} (2 3o)

In a two-temperature equilibrium these correlation
functions may be determined either by direct evalua-
tion' " or by application of Nyquist's theorem. " (We
assume the collisionless approximation. ) In the classical
limit,

&lp"(k, )I')hm—

l 0,, 1mX, (k,cd)+0;ImX, (k,M)j, (2.31)
4m'

where 0 and T are the volume and time of observation,
respectively. This determines & l U(k, cd)

l
') through

(2.30). Of more direct interest to us will be the correla-
tion of total charge density fluctuations, defined by

(Ipc.c(k,~)+p'(k, ~)
I
')

e'So(k, cd) = lirn . (2.32)
Q, T~co

tions do not. Such quantities may be thought of either
as stochastic classical variables or as quantum-mechan-
ical Heisenberg picture operators. U is related to its
source by Poisson's equation

U(k cd) 4irp«(k cd) 4irpo

where p'(k, cd) is the Fourier transform of the fluctuating
total free charge density in the absence of self-consistent
or external fields. p~„t,, as before, is the total fluctuating
polarization charge density, proportional to components
of the self-consistent field U. Suppose first that we take
the external fields equal to zero, so

we now calculate Sp(k, cd) in the presence of an external
pump field of intensity below threshold (to guarantee a
steady state). From (2.23) and (2.25),

k'pi(k, cd) U (k,cd) = —Qi(k, cd; —k,—k, —cd,—cd)

XU(k+ kp, cd+cop)+Qi(k, cd; kp —k, cdp —cd)

X U(k —ko, cd—cdo)+4irpo(k, cd) . (234)

This generates an infinite set of coupled equations, of
which another Lobtained by displacement of (k,cd) into
(k—ko,~—~o)] is

kol o (k—ko, cd —cdo)U(k —ko, cd cdo)

= —Q, (k—kp, cd —cdo, —k, —cd) U(k, cd)

+Qi(k —ko~tcd —cdp', 2kp —k, 2cdp —cd)

X U(k —2kp, cd—2cdp)+4irp'(k —kp, cd —cdp) . (2.35)

The chain may be broken by noting at which fre-
quencies U(k, cd) is resonant in equilibrium, and assum-
ing the real parts of the nonequilibrium eigenfrequencies
are not shifted from these frequencies by very much (the
shifts will in fact be of order kDd«1). The equilibrium
resonances are at +~~ and &co;, so that if co is in the
neighborhood of +co„,co—cop will be in the neighborhood
of —co, , and co—2orp will be in the neighborhood of —co~.
Thus, o)—scop, for e any positive or negative integer
other than 1 or 2, will be far from any of the equilibrium
resonances, and the corresponding U may be ignored.
Suppose co—cop= —co;, so that the ion-acoustic wave is
excited at resonance. Then M 2(a)p= co—2' aild
U(cd —2cdp) can be resonant at —cd„only if 2cd; is much
less than the linewidth yl, of the longitudinal plasma
mode. The significance of the case cv;((yl, will be dis-
cussed shortly. For the present, assume that ~;))pl, , so
that the mode U(cd —2cdp) may also be ignored, and
(2.34) and (2.35) become a closed set of equations:

k'o (k,cd) U(k, cd) —Qi(k, cd; k, ,cdp —cd) U( —k;,cd —cdo)

= 4n-po(k, cd) k,'o~( —k;,cd —cdp) U( —k;,c'—cdo)

+Qi(—k,~—~o, —k,—~)U(k, ~)
= 4pr po( —k;,cd —cd,), (2.36)

where k, =—kp —k. Then,

U(k, cd) =
k o (kcd)

Qi(k&cd; k;&cop—cd)
X p (k,cd)+ p ( k' cd cdp) (2 37)

o (—k cd —cdp)k '

LQi(k, cd; k;,cdo —cd))'
o (kcd)=E (kcd)—

kok PoL( k. cd cdo)

ko (lf (k,~)l&)
Sp(k, cd) =—lim

p2 4~ O, T~oo Qg

(2.38)
(2.33)

Here we have used the property

Employing Poisson's equation LEq. (2.25)j, we see where the nonlinear dielectric function o~~(k, cd) is
that So is proportional to & l

U
l

'}: defined b

Using the above information for the equilibrium plasma,

17 H. Nyquist, Phys. Rev. 32, 110 (1932).

Qi(k, cd; k', cd') = —Qi( —k', —cd'; —k, —cd),

readily seen from (2.21), and ct(cd)*= q(—cd).



If we now form (I U(k,ce)12) from this expression, and note that fluctuations in p' at different frequencies are
uncorrelated ((p (~)p'(co —o»~)) = 0), Eqs. (2.31) and (2.33) yield for the nonequilibrium density correlation function

4xe2 2
-so(k,~)=

~c~z(k,co)~'

0.Im&.(k~)+0, Im&;(k, ~) 1 ~Qi(k, co; k', ceo—~) ('

CO i "(u;, —,)i

0, ImX, (—k; ce—ceo}+0; ImX;(—k;,ce—ceo}
X . (2.39)

The use of the equihbrium (external field-free) expres-
sions for (~ po(c0)

~

') and (~ p'(c0 —cez) )') here is only
permissible when the imaginary part of Qi is negligible,
as in our case.

With e close to +„Rnd eo—co close to e;, we ITlRy usc
(2.22) to write

(1/k')fQi(k, (a; k;,cdo —co)]'=A'PkX' (2.40)

Returning to (2.39) for the density correlation func-
tion So(k,ce), a great simplicity arises in the limit of the
high electron-to-ion temperature ratio, 0",/0;))1, pro-
vided kj, k,«kD. Under these conditions the ratio of
ImX, (k,cu) to Im&, (k,co) is exponentially smail, regard-
less of whether co=co~ or co=co, , so that terms in (2.39)
proportional to 0'; may be neglected, and S0(k,co) may
be written as

i1'= (dki)/2) '= Io/neO(co„/(ao) '

Io——(Eo/2)'c/4m

p=(k d)'.

(2.41)

(2.42)

(2.43)

k2 1
So(kp&) = 2~

PD2
~

eNI (k ce) (

2

Imez, (k co)

i Qi(k, ce; k;,ceo—(a) i
' ( 1Im~, (2.44)

(0—Mo 4 (k co fdo)—
A' is proportional to the pump intensity" Io, and is
always assumed ((1.f is an angular factor which attains
its maximum value of 1 when the electric field vector of
the pump (be it transverse or longitudinal) lies coin-
cident with the propagation direction of the plasma
wave M.

All of the arguments made above rested upon the as-
sumption that co is close to co„and ~0—~ is close to ~;.
As we shall see in the next section, there is a zero in
e~~(k, c0) with the real part of co close to co~ and the
imaginary part corresponding to decay or growth, de-
pending on the value of A'. However, in so far as ImQi
is negligible, there is a symmetry in the condition
e~z(k, co) =0 which tells us that if (k,(o) is a root, then
(ko—k,c00—a&*) must also be a root. This corresponds to
the well-known Manley-Rowe relations for real mode
coupling, and may be seen as follows. The linear sus-
ceptibijities as a function of complex ~ are known to
have the symmetry property X(kp&)*=X(k—a&~) (which
implies ez{kicd)*=ez(ki, —&o*)].If we now set. the right-
hand side of (2.38) for e~z(k, or) equal to zero and then
set its complex conjugate equal to zero, comparisons
shows that both (k,ce) and (ko—k, s&0—&8) satisfy the
same formal equation and are both valid roots, pro-
vided the imaginary part of (Qi)' is negligible compared
with the real part.

'8 Note that the deGnitions of intensity in (2.42) and in Refs. 1—8
di6er in that (L'0/2)' appears here, but A&0' there, because of the
deGnition of the pump Geld- as a sine here and as twice the sine in
I and II. This has led Jackson to mistakenly claim the results of. I
and II diGer from his by a factor 4.

where we have used Imez(k, ce)=ImX, (k,~), which is
valid in these frequency ranges, and the definition
kn' ——(4mee'/0~, ). It is notable that (2.44) also follows
from (2.39) in the equal-temperature case 0~,=0";,
since ImX, (co~)/ImX;(ra~) is still exponentially small as
long as M&&m.

Some 6nal points remain to be discussed. %e have
omitted terms proportional to the susceptibilities Qq

in (2.24) from the analysis. The neglect of U(co+2c00),
provided co;))yz, has been justified earlier Lbeneath
Eq. (2.35)]. However, the term —2Q~(k, co; —k,—co)

XU(k,ce) which is of order A', properly should have
been included in our above remarks. As discussed in II,
such a term is partially responsible for the slight shift
in the real part of frequency c0 obeying e~z(k,c0)=0
from coz(k) to roz(k) $1+0(A.')]. It has no effect on the
imaginary part of u, which is of main interest here, and
so is neglected.

A case of great interest since it is realized in the exper-
iment of Stern and Tzoar, ' is when or, «yL, , so that with
eu close to e„, Rnd co—no= —e;, we hRvc +—2&0= —&
—2'; differing from —co„by less than the linewidth yL,
of the resonance of U(co—2coo) at —a&„. This case was
first treated by one of the authors' for a transverse
pump and equal electron and ion temperatures, and will
be generalized to unequal temperatures and a longi-
tudinal pump in a current work in progress. 3riefly,
when the terms involving U(a& —2c00) arising from (2.24)
and (2.35) are taken into account, instead of the two
coupled equations (2.36), we obtain three coupled
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equations, of form

k'"( )U( )—Q.(-;-.--)U( —.)+Q.(;2 .—)U( —2-.) =4-"(-)l4-kl'"( —.)U( —.)
+Ql(M too,' co) U(to) Qt(M —coo,

'
2coo—ro),

U(co—2ooo) =4rr po(ro —roo),

I
2ko —k

I
'e (ro—2coo) U(co—2(oo)+Qr(a& —2coo, (oo—co) U(oo—too)+ Qs(co—2coo, —ro) U(ro) =4s p'(co —2to) . (2.45)

We have suppressed the obvious wave-vector dependence of the Q s and U's. e~ includes the correction arising
from Qs.

e~(k)to) —= e~(k, ro) —(2/k')Qs(k)to; —k,—(o) .

The threshold condition e~~(k, co) =0 is now equivalent to the vanishing of a 3)&3 determinant:

k'e (&o) ) Qr(~& too oo), +Qs(ro& 2roo to)

Q( — —), Iko-kl"'( —o), -Q( —o;2 o
—) =o,

Qs( —ro, to—2roo), Qi(ro —»o, too —ro), I
2&o—k

I

'e (ro 2roo)

(2.46)

Kith ~ close to ~~, the condition on A' for threshold
(Imrd=0) is now altered; more importantly, we can
show that if ro is a growing solution (Imago) 0), then so
is 2&os—oo*, by taking the complex conjugate of (2.46)
and using the symmetry about the off-diagonal axis.
This means that in addition to stimulating an ion
acoustic wave at co; and a plasma wave at k co—Mp —Q);,

the pump also stimulates a plasma wave at 2~0—Reer
= too+re, ; which has, in fact been. observed by Stern and
Tzoar. ~ This symmetry about the pump frequency is

well known in stimulated Raman scattering. ' In fact,
we may draw an analogy between the Raman vibra-
tional level and co;, the scattered Stokes line and ~p—M;,

and the scattered anti-Stokes line and roo+ro;. Further
details of the effect of this anti-Stokes parametric ex-

excitation will be reserved for another publication. "
3. RESONANCE APPROXIMATIONS

where

ave

(k,res„i&.)=0——(3 2)

The analysis and understanding of the function
e~~(k, oo) is simplified if we can assume that the functions
e~(k,oo) and e~(k, too—ro) which appear in (2.38) and

(2.39) have their frequency arguments very close to one

of their complex zeros. "That is, we assume that we can
write in the neighborhood of a zero at co=~„—iy„

r)e (k I)
Z„'=(v„

~=(u.—

slav)

(3.3)

Zl.= ', +0(kl, '/kn')- (3.4)

where o,'= co,/m, is the rms thermal velocity, ro, '= 4rre'n

X(1/m, +1/m, „), kn' ——4rre'/O~„h= kas/rs. The first
term in the expression for yl, is the collisionless Landau
damping term, which vanishes rapidly as k ~ 0. The
second term arises from electron-ion collisions. " The
ratio Vr/ror, is «1 if k(kn and )i«1.

The second root of interest corresponds to the ion
acoustic waves where (v=i) for a particular k=k;

It follows from the property er (k,ro)*= er (k, —ro*) that
for every zero at ~„—i'Y„ there will be a mirror zero at
—~„—~'Y„, with a Z, of the opposite sign.

As a working example throughout this paper we con-
sider a classical two-component p)asma. The general
analysis applies to any 3-mode parametric excitation
with suitable reinterpretation of A' and reidentification
of the modes. One of the two least-damped roots of
interest to us corresponds to electron plasma waves
where (v=1) for a particular k=kr,

(ro 2+3k~so 2) iI2

ki)s h
f 0

e
—sI s t I &&o'Isr,'+-

(2 kr, s 6%2rrsi' Eh(uv

"E.A. Jackson (Ref. 7) has shown that when ~0—a(&~1, then
a relatively weak parametric coupling of the two nearly degenerate
anodes at co and ~—2fd0 can still occur at much higher threshold
levels. He also shows that this eBect is canceled by collisional
damping if (y/eu&)&10 4. We will not consider the regimes for
which this process can occur in the present paper.

"The function e~Lra)(g is, of 'course, analytic in the lower half
co plane as demanded by causality. The zeros which we are dis-
cussing are actually in the analytic continuation of Le~(cu) j from
the upper into the lower half plane.

d'or
= k'Cir(O~, /rIS )j'" (3.5)

21 D. F. BuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963);see also M. G, Kivelson and D. F. DuBois, Phys,
Fluids 7, 1578 (1964).

where x is a constant depending on the role of collisions
in the plasma. For a collisionless plasma with equal
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electron and ion temperature 0', it is found"

M; 1.6k;(0,/m ) '"=C,k

7,=0.6k, (O,/m, ) ~ .

(3 6)

(3.7)

In the nearly degenerate case when PL~V; and
hM))

~
VL—V, ~, we can write the solution as

M =ML—
2 AM —z2 (VL+7,)

a-', AM(1 —41"/LAM j') '". (3.16)
In this case 7,/M, is not particularly small, and the mode
is not well defined. "On the other hand, if the electron
temperature 0", is greater than the ion temperature 0~;

(e.g., &5), then it is easily shown in the collisionless
case' that

/l2ztgkI) (zr) ~ kn
"(k;,M)=1y—1—

(

' '
[

—
z]

—
[ ~, (3.8)

k;2 k M / E2/ k2

~
VL—'Y;

(
«AM(21".

The threshold condition in this case is

I'(1—L~Mj'/41") '"&1(VL+7*)

(3.17)

Ke see that in this case one of the square roots will
have a positive imaginary part corresponding to a
negative-damping contribution if

from which we find, for k«k~,

and

M;= n(k, /kD)M„= k,(O,/m, ) '"=C;k;

7,=np/2(zr/2) '"(k,/kD)M~

Z; = ,'(k, z/kD2-)

(3.9)

(3.10)

(3.11)

If I'»her, the growth rate will be proportional to F. In
most interesting cases for plasmas, and in particular for
the experimental parameters of Stern and Tzoar, ' the
damping of the original roots diGers considerably. In
these experiments DM«VL+M, 'YL and VL))'Y, . If
~VL—7,~))AM, we can neglect the mismatch. In this
case we have, for example, if 'YL»'Y; and if

where n= (m/M)'". In this case we see
I'2/VL 2&&1, (3.18)

7; n zr)i~z

M~ 2 2I

Our assumption is that roots of pNL(k, M) at
co=co~L—i'Y~L for a particular k=kL lie close to the
root of pL(k, M) at ML i'YL and tha—t Mp can be adjusted
so M —Mp lies near the ion acoustic root of pL(k, ,M

—
Mp)

at —M,—iV, (where k, =kp —kI,). Then we can write
for co in this neighborhood of the complex plane, using
(2.38), (2.41)—(2.43)

(M ML+zV L)
pNI (k M)~

kD'
h.p lII. (3.12)

(M Mp+Mg'+zVi) kz

The complex zeros of e~L are roots of a quadratic
which occur at

AM (VL+7 ) AM —z(VL —7 )
07= COL

— —Z

2 2 2

( 4r2 1/2

X]1—
f AM i(7I7—;)]2.—

I'2=42(knz/k 2)QZ ZLM ML,

and where Ace is the frequency mismatch

AM= ML+Mi —Mp.

(3.13)

(3.14)

(3.15)

"B.D. Fried and R. W. Gould, Phys. Fluids 4, 139 (1961)."In the coIlision-dominated case, even for equal temperatures,
&;/co;((1. The theory leading to the expression above for H~
applies strictly only to the near-collisionless case. Preliminary con-
siderations indicate that this expression is valid even if the low-
frequency root co0—co is in the collision-dominated regime, as
long as co remains above the electron-ion collision frequency.

the roots

i MNL zVNL ML ~M(I2/VL2) zVL zI 2/7

Ml —MNL zVNL ML ~M —zV~+zI'2/VL (3.19)

Since all the factors in this expression depend on kL, or
k;=

~
ko—kL~, Ac is a function of kL.

As we remarked following Eqs. (2.41)—(2.43), lit = 1 for
a transverse pump with electric vector in the kL ——(—k,)
direction, or for a longitudinal pump with kp collinear
with both kL and k;. Thus, as A. is increased, modes
propagating in the appropriate directions reach the
critical point of instability first. Note that (3.20) is
symmetrical in (M,/7, ) and (ML/VL).

The dependence of the negative damping on Acr can be
seen in the following way: Kith ~=~~L—iV~L we take
the real and imaginary parts of pNL(k MNL iVNL)=—0
using (3.12). After some rearranging we can obtain the
simultaneous equations

2(7 VNI)
yNL —y.

(+MNL)2+(7 VNL)2

P2(+MNL)
MNL=Mo —M~+ (3.21b)

(AMNL) 2+ (7 VNL)2

(3.21a)

If 'Y;»'YL the solution has the same form, with 'YL and
'Y, interchanged throughout. The root Mi (in the case
'YL))'Y,) has a negative-damping contribution pro-
portional to A', while the root or~ receives an additional
positive damping. At a critical value of the pump in-
tensity the net damping of the first root (for the value of
k involved) becomes zero. This occurs at

I ~ (k) kn ZIM~ZLMLlp= h.,z — — = 1, DM«7;. (3.20)
k VVL
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where now
Ap/NL =p/~L+ p/ /o— (3.22)

These equations must be solved self-consistently to ob-
tain pPL and V~L When (3.18) holds, and Api&&VL, we
have seen in (3.19) that p/~L~p/L The value of o/~L de-

pends on (Ape). If V~L&&V, (see below), then iteration of
(3.21b), starting with ApPL=Api, yields

I"(A~)
p/ÃL p/L+— (3.23)

(A~)'+V, '

From this we find

2C;
k, = 2k' ———ka'

3 M&

4C; 4C
kL'= ko' ———knokox+- kn'

3 (0y 9 Gay

A A

s=kp'kj,

and 1&x& (C,/3p/„)(kD2/ko). If

(3.28)

(3.29)

If 6~&&71. we see that

/o//L —poL+ (P2/V 2) (Aie) (3.24)
C; kii' C; kii Qeno. kn

3a)„kp 3v. kp 3 m kp
We have a small power-dependent frequency shift

away from co~ proportional to h~. Such sects have been
considered in detail by Goldman' and Jackson. 2 To
calculate these shifts correctly it is necessary to include
nonresonant corrections" to eL(p/) and eL(pp —

pop) which

depend on A', as mentioned earlier. If A'(k'/kD')«1,
these shifts are small and can be neglected for most of
our considerations. We will not deal with these shifts
explicitly in this paper, but we will keep their existence
in mind.

If we assume that co~~ is known @ed if we are near
threshoM so that

~

V'vL
~
&&VL, we see from (3.21b) tha, t

p2p
yNI —y.

(A~PL) 2+V 2
(3.25)

When Aco~hco~~&&'Yl, we see that we recover the value
of V~L obtained from (3.19) with p/~L iV~L—= p/1 How-.
ever, we now see from (3.25) that appreciable negative
damping occurs only in a range of order 'Vl. about Ace= 0.
This condition determines the range of k values which

receive appreciable negative damping. We can write this
as

then these relations simplify to read

k '—2kpx (1& x& 0)

kl.—kp. (3.30)

Again we note that in the case of a longitudinal pump
field we cannot neglect kp with respect to k; or k~. The
most eKcient collinear configuration which makes 1P= 1
in (3.20) corresponds to x= 1 in (3.30).

When O~.= ; it was shown for a transverse pump in
2 tha, t for (k-0.2k„nkD jk«1),

Ak/kii -'on. (3.31)

kD2 Z;co; Zl.(dr.71,
A, '(k )— tt — —= 1. (3.32)

k, 2
1/t/; [Ap/(kL)]2+ VL2

In terms of A., the condition (3.18) becomes

[This corresponds formally to V,/p/, ~(3+e) " in (3.29)]
For k's away from the frequency-matched conditions,

the threshold condition reads

h(hp/ "L) h(Ap1) =VL, (3.26) (3.33)

where h(App) is the increment of k values in Ape. Using

(3.4) and (3.5), we can express this in terms of hkL

k,"kLhk, . h[p/L(k—L)+o/, (k;)]=VL(kL); for hkL/kL«1
we have

VL(kL)

[BpiL(kL)/BkL] [itpi;(k, )(k,"kL)/—Bk,]
VL(kL)

3v.(k/k D) —(k,"kL) C;
(3.27)

The range Ski. of active kL, vectors thus depends only
on kL, , which we can take to be determined by Ace—=0.
In the case of a transverse pump we have already seen

ko 0((v/c)k), so k= —k; is essentially independent of
kp. For the case of a longitudinal pump, on the other
hand, we have the condition

(p/ 2+3kL2v2)1/2+C
~
k k

~

—~ —(~ 2+3k 2v 2)1/2

"See Kq. (3.46).

With this definition (3.20) of A.=A, (kL) we can re-
write (3.19) for k's which satisfy Ap/= 0 in the form

p/1= COL
—2VL(1+V;A /VL A~ )~piL —VL,'

(3.34)
poi = poL —i'Y, (1—A2 /A, '),

all quantities except A. being functions of kl..
The arguments following (2.43) show that in addition

to the roots coj and dr~ for k= kr. , there are also two roots
for k=k, = ~kp —kL~ at

N2= p/; —2VL(1+V(A /VLA~ )~op~ 2YL, —
(3.35)

p/2 = po, i'Y;(1 A'/A —')—
for Aa&= 0. Thus the roots co~ and co~ both have the same
imaginary part. Thus modes with frequencies near ~1,
and near p1, (for Ace=0) have identical thresholds and
growth rates, as demanded by the Manley-Rowe
relations. ' 4
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pNL(k &)~ (pp pp )+0(~—~ )2 (3.36)
~@NI

The residues of [pNL(k„&o)j ' at the simple poles cor-
responding to the above zeros of pNL(pp) are defined by

LjpNL(k„pp)
(Z NL~ )

—i— (3.37)

where co„'s are the zeros discussed above. Carrying this
out, we find [again assuming the inequality (3.21)j

Z NL
ZL

ZL p

1+(A2/A, 2) (Y;/VL)

Clearly, as A ~ 0, then co~ ~ coL—i'YL and co2 —+

co;—6';, which are the linear roots. The roots M~ and Q2

arise, therefore, from the nonlinear coupling, and must
disappear from the theory as A. ~ 0.

To see this we expand pNL(k, or) about one of its zeros
cov:

attains it maximum value of 0.58. The threshold value
for the associated instability in this case is

(0.58)A,2ZL(ipL/'YL)(k ~ ep) 2= 1, (3.42)

which is close to the value obtained from (3.20) with
(Y,/pp, ),ff ir T.he results in this case will always turn
out to be quaHtatively in agreement with the formulas
derived above with 'Y,/oI;= 0(1). However, these
formulas are quantitatively inaccurate.

4. BEHAVIOR OF THE FLUCTUATION
SPECTRUM

We now can use the approximations of the last section
to understand the behavior of Sp(k, pp).

The factor
~

pNL(k, &o) t

' peaks at the real frequencies
MNL and coo—coNL. As discussed above, each of these real
frequencies is near a pair of complex zeros of pNL(k, co).

For example, using (3.12) to (3.19) we can write in the
neighborhood of coNL~coL for k= kL

A2 7;
Z NL —Z

2yL

CO
—

My M —
COg

pNL(kL pp) =
)

~ LZL(pp oIL+zY~)—
(4.1)

Z'
Z NL ~Z;,

1+(h. /A )(V;/VL)

again assuming pdp=olL+pp'. Thus, using (3.19) and
(3.22), we have

ML ZL

A' 'Y;

g NI —Z.
A,2 VL

The residues Z~NL and Z2NL at the poles at M~ a
vanish as A~0 while giNL~Z2 and Z2NL —+Z;,
making contact with the linear theory. Because of
(3 21) Z NL((g NL and Z NL((Z NL

Examination of the terms neglected in using the first
terms in the expansions of pL(co) and pL(&u —(pp) about
their zeros shows that this approximation is valid only
lf

The last factor in (4.2) dominates if 1»1—A.2/A, 2, i.e.,
near threshold, and we can write

(ZiNL)2pp 2

(4.3)
~

pNL(kL, pp)
~

2 (a)—(oL)2+7'((1—A2/i1 '))2

(3.38) ~

pNL(kL pp)
~

2
(pp —&gL)'+yL'((1+/ F2/YLg '))')

(~ ~ )2+y,2

X — . (4.2)
nd Mg

(pp
—cpL)'+Y '(1—A2/A ')'

and

VNL(PL&V;,

coNL~ML,

(&,/(o, ) '«1 and (YL/'YL) 2«1.

(3.39)

(3.40)

where ZiNL is given by (3.26). In the limit A. ~ 0 the
last factor in (4.2) approaches unity, and we obtain the
usual linear result.

Near Mp
—cp

L and for a shifted value of k, =
~
kp —kL ~,

on the other hand, we can write (using hip=0)

co, = 1.7n(k/kD) pp„= 1 7k(O/m;)'. " (3.41)

corresponding to «'"= 1.7 in (3.5).
When this condition is met, Im[kz/kz&2pL(pp —ppp)j

'

For a classical plasma with O, =O;, this last condi-
tion does not hold for the ion acoustic mode. The dis-
persion relation pNL(k, &o) must then be solved by a
careful numerical analysis of the function [k2/knzpL

X (k,pp —happ)
j-' using the tabulated" collisionless plasma

screening functions. Goldman' has carried this out for
the transverse pump. He finds that a maximum nega-
tive proportional to A' leads to a frequency-matching
condition as in (2.13), but with

M —M2 CO
—M2

pNL(k. ~)—
pp;Z;((p —pp~+zVL)

and
1 M' Z'

~

p»(k pp) ~2 (pp
—(g )2+/ 2((1—fP/i1 2))2

(4.4)

((O—PP;) '+VL'
X . (4.5)

(~ ~.)2+y 2((1+y i12/Y ~P 2))2

Since 'Y;[1—(A2/Ap)]«'YL the behavior of this function
for (co—~,)2&&'YL2 is dominated by the 6rst factor and
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we can write On the other hand, we also have for v =I
—g2 y. -2y 2- ~ g2 — g2 3~

Al, —— — — 1+— —. (4.12)

(4.13)

For most cases of interest for near collisionless
plasmas and A A„

$Z1o ] P 2gv.
5p(k„&o)=

(co—co„)P+7 P((1—hP/h, s))P Z„co,

1 A2

X —+
((op—k1„) h, '

(4.14)A;/A 1,——(o;/1oc«1,

so that the resonance near co„ is much more enhanced
than the low frequency resonance at 1o,(k).

The integrated power in one of the resonance peaks
is of interest. Integrating over the I orentzian of (4.7),
we obtain

(4 7)

where &=i or I. and [Z~zpo]~ ZPzk1z an——d [Z~zro],
=Z2NLco;. In obtaining this expression we note that
since 7~z=7;(1—h'/h ')&&'Y . 7z, we have replaced all
factors except the resonant term by their values at
resonance. In our analysis we have been assuming
'YL&'Y; but now both resonances have the same reduced
width 'Y, (1—h. '/h, ') for values of h. approaching h,
(i.e., for which 1))1—h'/h ')

The values of S(k,co) at the peak resonances &o=1o„

are given by

( gk)'/ k') pS(k„,1o)=2m(Z„/7„)A„K',

kg)2 7.
ck)Sp(k, (o) =7rZ„211A „K

k' Vv

(4.15)

The integrated spectrum is thus enhanced by a factor
A„K'(7;/'Y„) over the equilibrium value.

From these formulas we find that the ratio of peak
power at co=~„k=k; to peak power at co=coL, k=kL is

Sp(k;,k,) kD' (71./po J.)

Sp(kz, (oc) kp (7;/co;)
(4.16)

where

1 NL 2

(4.6)
~

p&z(k, (g)
~

~ (co—1o )~+7 ~((] —h~/h &))&

In the limit h ~ 0 the last factor in (4.5) approaches a
Near threshold A&A„AL is a large number since

constant value of unity and the 6rst factor dominates,
giving the usual linear result near the ion acoustic 1k~ 1
resonance. ))1 ~

On collecting results, using (2.44), we see near each Co 1 Qk QK
resonance (provided 1))1—h. '/h. ,') that Sp(k co) has
the form

and
1—h'/h, '

-Z NL NL-2 y 2—
v v v

ZvMv — ~ — COP Mv Ac—

(49) which can be greater than or less than one. Since the
resonance widths (for h. h, ) are equal the ratio of the
integrated power in the two resonances is the same as

(4.10) (4.16).

When A„E2=1 we have the familiar result of the
linear equlibrium theory. "

The nonlinear effect of the regenerative parametric
coupling is contained in the factor E, which appears
here squared. As the pump intensity parameter A2

approaches the critical value h, (k) for the instability,
E diverges. Physically, of course, the nonlinear proc-
esses which we have neglected in the analysis up to
this point lead to a saturation of the effect at some finite
but large value. The steady state saturation level for E
is discussed in Sec. 6.

For the case a=i, Eq. (4.10) in conjunction with
(3.26) and (3.27) gives

co' A
1

L1+ (h.'/h ') (7,/7z) j' cop —co h '
CO; h.2

CO=602 —CO]
&

k is the wave vector difference

(5.2)

S. INELASTIC SCATTERING OF RADIATION
FROM THE PARAMETRICALLY

EXCITED FLUCTUATIONS

It is well known that the asymptotic differential cross
section for scattering an incident beam of radiation of
frequency co&))co„from the parametrically excited plas-
ma is"

C'o (k,(o) mrp'

I1+&p'+(k,~) I'Sp(1,~)(el ep)' (5 1)
CkO2d02 m

if co is near a resonance of c~~(k,co) '. Here n is the mean
electron density, rp ——e'/mcP is the classical electron
radius, ~ is the difference between the incident and
scattered frequencies

COL A, 2
(4.11) k= k2-k~, (5.3)

"E.E. Salpeter, Phys. Rev. 120, 1528 (1960};D. F. DuBois
and V. Gilinsky, ibid. 135, A995 (1964),

and e~ and e2 are the polarization vectors of the incident
and scattered radiation.
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The factor ~1+Xp,+(k,&o) ~2 arises because the cross
section is really proportional to the electro' density
fluctuation spectrum and not the total density fluctua-
tion spectrum Sp(k (o). This factor essentially removes
the effect of ion fiuctuations from Sp(k, op).

We have seen in Secs. 3 and 4 that as the pump power
is increased toward the threshold. value, Sp(k,&o) is en-
hanced near the resonant frequencies pp„(k) for a narrow
range of k vectors which satisfy (3.28) to (3.30). The
scattering angle 8 is essentially determined by k (if
(d 1))My)

INCIDENT
PUMP BEAM

k= 2k~ sin20. (5 4)

Thus, for a restricted range of scattering angles M de-
termined by ok (see (3.28) and (3.31)), we expect an
enhanced spectrum Sp(k, &o) given by (4.7). From (5.4)
we And

6k bkk
sin888= 2—(1—cos8) =

k kI2
(5.5)

Cup
—

Cuv

coso&, (5.6)
A,2(0)

E=—
1—cosztt (A2/A '(0))

(5 7)

where A '(0) =A 2(cosp=0).
The geometry is made clear in Fig. 1, where we have

taken the case in which the incident scattering beam is
perpendicular to ep and kp.

The solid-angle increment in which the enhanced
scattering lies is from 80= sin8b8dg. To obtain the total
enchanced scattering in the cone of thickness 80
integrated over all P and integrated over frequencies in
the neighborhood of a resonance at (d„, we have, from
(4.14), (5.1), and (5.5).

tv dC02

2w dzo(k ~)
df sln8$8 ——

0 dGod 0
k' 5k

=«o'
~
1+~oz+(k,pp, ) ~

'(dz e2)'2—(1—cos8)
kg)2 k

Thus if the possible "active" k vectors were isotropically
distributed, the enhanced scattered radiation would lie
in a cone with an angle 8 [determined by (5.4) with k
the value for perfect frequency matching] and a thick-
ness b8 determined by (5.5). However, the strength of
the negative damping terms (3.19) is proportional to
(k eo)' [see (3.20)]. Thus, the greatest enhancement
occurs for k~~ep. We can make the dependence on
cosg=(k op) explicit by writing

gNL~NL2 y2—

FIG. 1. Geometry for inelastic scattering experiment. Incident
and scattered radiation k1 and k2 are essentially normal to the
plane of the paper. The shaded region indicates the range of L
vectors which receive appreciable negative damping.

Here we have evaluated the integral

dPA, ($)K($)= 2zrA„(4 =0)[K(&=0)'12 1] (5.9—)

using (5.6), (5.7), and well-known tabulated integrals.
The enhancement factor of the scattering cross sec-

tion in this cone of angles is therefore

A.(~=0)l K(~=0)'"-1] (5 10)

where A„(&=0) and K(&=0) are given by (5.6) and
(5.7) with A, for g= 0. The singular behavior at thresh-
old, though reduced by the angular integration, is still
present in the enhanced scattering cross section.

Considering a&~a&„(so that 1+Xp'+(&o)~1), using
(5.7), and integrating over the resonance using (4.13),
we obtain for the differential cross section per unit
azimuthal angle

do (k' & bkk
(k,a&) =«p2—

~

— ~(ez e2) 2A r(y)KQ), (5.11)
dy

(kopje

where we have also used Z1.~1, p,Ace&&1, and (5.5) for
sin8d8. Using only the dominant term in Az, from (4.11)
and the expression (3.31) for 8k, Eq. (3.41) for co,, and
the definition (3.42) for A.,2, we can write this as

p.hop,

XZ, —A,(&=0)[K(&=0)"'—1]. (5.8)
eP e~auv

do (k Eo)2 pp„—=0.009~zrp' p—(ei e2)'K(p).
dQ kl2g,

(5.12)
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Here 0 is the volume of the system and T is the time
interval over which we are averaging. From the rela-
tiOnS E,(k,&p)=E;(k,—Ip)~ and J,(k,4o)= J,(k,—Ip)* it
follows that X;,(k,ip) =X,;(k,—Io)*; we can write

I'p

0

d k dG)

(22r)' „24r

(E,(k,op) E,*(k,io)) I' "L
X ~2 ImX, ;(k,~)

' + . (6.7)
0T 0

It can be shown that the nonlinear dissipation PNL

vanishes if the dissipative part of the nonlinear sus-

ceptibility is small compared with its reactive part.
This was shown to be the case in Sec. 2. The physical
reason for this is clear. If the nonlinear susceptibility is

nonlossy, then for every pump photon lost, one optical
plasmon and one acoustic plasmon are gained. Thus the
decrease in the plasmon loss rates due to the nonlinear
parametric gain is exactly canceled by the increase in

the pump photon loss rate. Ultimately, the heating or
dissipation in the steady-state system arises solely from
the linear losses. This assumes, of course, that onty
these three modes are appreciably coupled. In Sec. 7 we
will briefly discuss the e6ect of further mode coupling.

The total electric 6eld is made up of the self-consistent

pump field plus the fluctuating longitudinal fields; thus

E;(k,ip) = e,'(-2'Ep(22r) 4h(4o —Ipp) 82(k—ki)
+ Epo(22r) II(4p+"p)ti (k+'ko))+EL(k")~'/Ikl (68)

where EL(k,ip) = —kU(k, ip) is the fluctuating longi-
tudinal field of Sec. 2. Since (EL(k,cp))=0, we can
write (6.7) as"

Therefore, in computing the power required of the ex-
ternal electrical sources we should subtract the eGect
of S(k,op; Ep ——0).

We assume again that Sp(k,po; Ep) is dominated by
its resonance at Ip„—iV„and use (4.16) for the integral
over co

&p—=2 IEoI'~o+2o
0

-P Z„v„„(22r)2 v

X[A„(y)X(O)—1j, (6.12&

where we have used the relations

+p = QPp InlXp(kp, iop)

'r„=Z„(p„1mXL(k„,ip„) . (6.13)

By using (5.6) and (5.7) for A„(P) and E(P), the integra-
tions over p and k can be approximated by the same
arguments used to obtain (5.8):

142=F2+
-g NL~ NL-2 y 2

n(22r) 2 ~ Vp Z„ io„V,2

h.,+X 2pp„

X 1+
opo —Io„) X h.,—X Ipo —Ip,

(6.14)

~p—=
2 I

Ep
I

Ip Imx o(ko, ioo)
0

d'k do) (42r)'e'
+ ~2 ImXL(k, ~)

(2ir) ' (22r) k2

X LSo(k,po,
' Eo)—So(k,co; 0)j. (6.11)

I p= 2 IEpl Io Imxp(kp, idp)
0

d k dc' (I E'(k,~)
I
')

Io2 ImXL(k, io) —. (6.9)
(22r) 2 (24r) 0T

where I p

h.p2 —— (H, =P, '),
0ne, yp

X'= IEoI'/ o..

(6.15)

(6.16)

From (2.33) we have

. ( I.EL(k ~) I
2) (4~)2e2

Sp(k,4o; Ep) .
0T

(6.10)

A A

"Here Xl,=k;k;, X;;, X0—=e .e X;,.

Here we have explicitly indicated that Sp(k, o&) is a
function of Ep because of the parametric coupling. The
expression (6.9) is not exactly correct since it implies
that power is absorbed from external sources even when
Ep=0 and there are no parametrically excited plasma
fluctuations. The thermal fluctuations which exist
when Ep=0 result from the balance between spon-
taneous emission of plasmons and the linear decay of
plasmons. The energy for these fluctuations is provided
by the heat bath which maintains the temperature. where

A, A,+A.
App ——52+F —ln —2

A A.,—A

k28k A,4 COLp~
22(22r)2 X„,4 Io;

(6.18)

(6.19)

This transcendental equation determines the self-
consistent pump amplitude or A.2 in terms of the power
A2 delivered by the external sources. Note that if
X'«A. ,', then X' Ap so

I
Ep ['=Ep/W'p ——

I
Eo I

' (6.17)

i.e., in this case we can identify Ep as the field produced
by the external sources plus the linear induced currents
alone.

Now going to the explicit case considered in the text,
VL))V, , IpL))4o;, we use (3.38), (3.34), and (3.35) to
write (6.14) as
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If we assume Ao'&A, ', then A. must be near A, and we
have approximately

K= e exp'

Thus for power levels above threshold, i.e., Ao'&A, ',
the amplification factor E increases exponentially with
Ao' but always remains finite for 6nite Ao'.

7'. DISCUSSION

The inclusion of self-consistency requirements for the
pump 6eld is thus suQicient to mak. e the three-mode

parametric model finite. However, nonlinear longitudinal
mode coupling cGects which we have neglected will un-

doubtedly reduce (perhaps greatly) the steady state
amplitude which can be experimentally attained. The
principal mode coupling effects are probably further
three-mode couplings of the type responsible for the
parametric CQect itself. The parametrically excited
plasmons can themselves act as a pump which couples
to another plasma mode and another ion acoustic mode.
These secondary processes will not be as strong as the
original parametric coupling since the pump energy is
now spread over a number of spatial (k) modes and
since the frequency-matching conditions for the
secondary pump plasmons will not be optimum.

A complete treatment of the effect, of longitudinal
mode coupling on the saturation level has not yet been
carried out.
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Collisionless Sound in Classical Fluids*

MARK NEI KIN AND S. RANGANATHAN
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The dynamic form factor S(E,~) for a classical Quid is calculated from the linearized Vlasov equation.
Following Percus or Zwanzig, the effective interatomic potential is taken as —he (r), where c (r) is the direct
correlation function. The result for S(E,co) is a simple closed expression with no free parameters except for
the static structure factor S(E). Using Ashcroft and Lekner's hard-sphere Percus-Yevick results for S(E),
we calculate the inelastic neutron scattering from liquid lead. The resulting scattering law shows a strong
qualitative similarity with experiment. The narrow quasielastic peak observed experimentally is not, how-

ever, given by the calculation. The reasons for this discrepancy are discussed. An extension of the calculations
to include a phenomenological collision term is also presented.

I. INTRODUCTION

ECENT slow-neutron inelastic-scattering experi-
ments have shown a surprising persistence of

~~ ~

~

~ ~~ ~

phononlike excitations in the liquid state. The dynamic
form factor S(K,&o) exhibits a structure associated with

propagating sound waves in a variety of liquids in-

cluding liquid helium above and below the lambda
point Rs well Rs classical liquids. This naturally sug-

gests that a mean 6eld theory would provide a useful
phenomenological description of such experiments. ' In
the present paper we present some simple calculations
demonstrating that this is in fact the case for classical
fluids.

*Work supported by the U. S. Atomic Energy Commission
under Contract No. AT(30-1)-3326. A preliminary report of this
work was presented at the ¹wYork meeting of the American
Physical Society, January 1967.' A. D. B.Woods, Phys. Rev. Letters 14, 355 {1965).

~ P. A. Egelsta6, Rept. Progr. Phys. 29, 333 (1966).
3 D. Pines, in Qmultuet Ii/aids, edited by D. F. Brewer (John

Wiley k Sons, Inc. , New York, 1966).

The familiar classical limit of a mean 6eld theory is
the Vlasov equation. This equation has long been used4

to calculate the dynamic form factor associated with
electron density Quctuations in a plasma. To use the
Vlasov equation in neutral Quids we must replace the
actual interatomic potential by an appropriate CGective

potential. The desired substitution is v(r) ~ —ItTc(r),
where c(r) is the direct correlation function. This re-

placement was first suggested by Percus and Vevick. '
When used in a self-consistent way it leads to the well-

known Percus-Yevick integral equation for the radial
distribution function. The same replacement has been
obtained by Zwanzig' from consideration of variational
cxplcsslons for cigcnfunctlons of thc Liouvlllc equation.
Within the context of the Vlasov equation, the replace-

' E. E. Salpeter, Phys. Rev. 120, 1528 (1960). {There is a large
body of subsequent literature on this subject. )

J. K. Percus, in The Bftlilibriges Theory of C/assjca/ F/gods,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin,
Inc. , New York, 1964); see in particular Appendix A, p. II-142.

s Robert Zwanzig, Phys, Rev. 144, 170 (1966).


