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The enhancement of the spectrum of density fluctuations in a parametrically excited plasma is studied
using the linearized theory. In the particular case studied, the plasma is “pumped” by a monochromatic
electromagnetic field of either transverse or longitudinal polarization with frequency wo (electron plasma
frequency)+- (ion acoustic frequency). A strong enhancement of the fluctuation power at the two
individual frequencies is predicted as the previously calculated threshold for instability or oscillation of
the linearized theory is approached. The experiments of Stern and Tzoar and other recent theories are dis-
cussed. Approximate expressions are derived for the strength of the enhanced resonances and the range of k
vectors which actively participate. The cross section for inelastic scattering of radiation from the excited
plasma is derived and compared with a result due to Berk, who did not consider the important regenerative
process of parametric amplification. The saturation of the noise level for pump powers above the linear

threshold is treated.

1. INTRODUCTION

HE parametric excitation of longitudinal electron
plasma waves and ion acoustic waves in a plasma
by strong, externally controlled, monochromatic pump
fields was recently proposed and studied theoretically
by the present authors.!:2 Stern and Tzoar? recently re-
ported the experimental generation of strongly en-
hanced noise signals at the optical and acoustic wave
frequencies from a discharge plasma excited by a pump
signal near the plasma frequency. This enhancement
occurred only for pump powers above a threshold, which
is characteristic of parametric excitation.

The idea of parametric amplification is, of course, a
very old one going back to Lord Rayleigh and has re-
ceived many applications in electrical devices* and more
recently in nonlinear optics.® The main issue here is the
detailed application of these ideas to plasmas, including
the calculation of the relevant coupling parameters.

In I and IT we treated the problem of a transverse
(pump) beam of frequency wy whose amplitude was
weak in the sense that the ratio of the pump energy per
unit volume to the plasma thermal energy per unit
volume was small. When w¢™~w;+w;, where w; and w.
are frequencies of (approximate) normal modes of the
system, it was shown that for sufficient pump power (to
overcome losses in these modes) these modes could be
driven simultaneously unstable. It was shown that the
lowest threshold for instability occurred when w; was
near the electron plasma frequency and w; was in the

1D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14,
544 (1965); henceforth referred to as I.

2 M. V. Goldman, Ann. Phys. (N. Y.), 38, 95 (1966) ; Hughes Re-
search Laboratories Research Report No. 343, 1965 (unpublished),
henceforth referred to as II.

3R. A. Stern and N. Tzoar, Phys. Rev. Letters 17, 903 (1966).

*W. H. Louisell, Coupled Mode and Parameiric Elecironics
(John Wiley & Sons, Inc., New York, 1960).

5 N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc.,
New York, 1965).
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range of ion acoustic frequencies. Another possibility
was for both w; and w; to be near the electron plasma
frequency, but this was seen to be much weaker and to
depend on the spatial variation of the pump field.? In
addition to the negative damping of the coupled modes
there was a small power-dependent shift of the resonant
frequencies.

A rather large number of other theoretical studies of
parametric excitation of plasma waves have appeared.
Silin® based his original theory on the cold-plasma equa-
tions and thus did not include the coupling of electron
plasma waves and acoustic waves, nor did he include
the effect of wave damping. The present authors!:?
showed the coupling of Langmuir waves to ion acoustic
waves to be the strongest three-wave coupling. We also
consistently took into account damping effects which are
essential to estimating the threshold. Our conclusions
were substantially verified by Jackson,” who based his
theory on the linearized Vlasov equation, and by Lee
and Su,® who worked with a hydrodynamic model.
Jackson? also extended the kinetic theory to the strong-
field case and obtained partial agreement with the cold-
plasma results of Silin.® A number of other papers® have
considered parametric excitation of transverse waves in
plasmas, but these do not bear directly on the experi-
ments of Stern and Tzoar or on the considerations of the
present paper.

Of these papers, only the work of Goldman?1® has
been concerned with the noise power spectrum of

¢ V. P. Silin, Zh. Eksperim. i Teor. Fiz. 47, 1977 (1965) [English
transl.: Soviet Phys.—JETP 21, 1127 (1965)].

7E. A. Jackson, Phys. Rev. 153, 235 (1967).

8Y. C. Lee and C. H. Su, Phys. Rev. 152, 129 (1966).

M. V. Goldman and D. F. DuBois, Phys. Fluids 8, 1404
(1965); A. Yariv, in Proceedings of the Seventh International Con-
Jerence on Ionization Phenomena in Gases, Belgrade, 1965 (Belgrade,
1966), Paper No. 4.4.5(3); D. Montgomery and I. Alexeff, Phys.
Fluids 9, 1362 (1966).

10 M. V. Goldman (to be published).

207



208 D. F.

parametrically excited density fluctuations. Experi-
ments of the type of Stern and Tzoar can measure this
incoherent fluctuation spectrum. The other theories
apply, strictly speaking, to amplification of coherent
signals which are introduced into the plasma. There-
fore, the main purpose of this paper is to analyze the
fluctuation spectrum in detail for three-mode coupling
in a two-temperature plasma.

We also wish to comment on the applicability of this
theory to the experiments of Stern and Tzoar.? In these
experiments a finite, inhomogeneous cylindrical dis-
charge plasma was used in which the excited optical
modes were the radial Tonks-Dattner resonances (the
analog of the electron plasma waves in an infinite
homogeneous plasma). In addition, the monochromatic
pump wave used here was itself a longitudinal Tonks-
Dattner resonance which was excited by the externally
produced fields.

The simplest model, and the one used by all authors to
date, is that of an infinite, homogeneous plasma. The
pump field can be taken to have a longitudinal polariza-
tion, in contrast to the transverse polarization explicitly
considered in T and II. It is physically obvious, however,
that in the limit of the infinite pump wavelength, which
was used in all theories!=#:6=8 for the plasma-acoustic
wave coupling, there can be no physical difference be-
tween a transverse pump and a Jongitudinal pump field
in a uniform, isotropic plasma.!* This was demonstrated
explicitly by Lee and Su,® who obtained exactly the
results of I and II by using a longitudinal pump. A more
serious question, which was not observed by these
authors, is that the infinite-wavelength limit is #o?
kinematically consistent for the three-mode coupling
with longitudinal pumping in an infinite, homogeneous
plasma. Momentum conservation and the approximate
frequency-matching conditions cannot be satisfied for
ko=0. However, we will show that even when the finite
ko is taken into account, the three-mode coupling is un-
changed provided (%o/%p)<<1 and the dispersion relation
of I and IT still applies.

The pump intensity threshold level predicted by this
three-mode theory is higher than that observed by
Stern and Tzoar. The differences might reasonably be
expected to result from the oversimplified model of the
plasma. However, a more serious qualitative difference
still exists. The noise spectrum was observed?® to have
strong components at frequency € (acoustic frequency)
and at wo—Q (plasma resonance), as predicted by the
three-mode theory, plus an equally strong component
at wo+Q, not predicted by this theory. It is clear that
this can be explained only by a four-wave parametric
coupling. The nonlinear susceptibilities for this coupling

1 The brief theoretical discussion by Stern and Tzoar (Ref. 3)
implied that this was not the case. Their theory also seemed to
imply that the threshold condition was not a symmetrical function
of the optical and acoustic wave losses, in turn implying a differ-
ent threshold for the two waves. This would violate the Manley-
Rowe relations which must hold for such problems.
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and the appropriate dispersion relation were also cal-
culated by Goldman? for the case of a transverse pump,
but were not analyzed for parameters corresponding to
these experiments. In another paper now in prepara-
tion we will present a detailed analysis of the predictions
of this four-mode theory. The threshold intensity turns
out to be equal to or greater than the three-mode
threshold.

The present paper will be devoted to the analysis of
the fluctuation spectrum in the three-mode case. There
are clearly defined experimental conditions under which
this coupling is more important than the four-mode
coupling.’2 The analysis of the simpler three-mode case
is essential as a first step in understanding and carrying
out the more complicated four-mode case. The general
analysis is presented in a form applicable to any three-
mode parametric coupling.

In Sec. 2 a derivation of the basic equations of the
theory is presented which should make the theory more
accessible to experimentalists than the quantum deriva-
tions of I and II.

The linear and nonlinear electromagnetic susceptibili-
ties for the plasma are derived from the collisionless
Boltzman-Vlasov equation for longitudinal or transverse
pump fields. The finite ko of the longitudinal pump field
is taken into account. Coupled Maxwell equations for
the high- and low-frequency plasma modes are solved,
and expressions are derived for the fluctuation spectrum.

The behavior of the density-fluctuation spectrum
So(k,w) is dominated by the resonances in the response
function of the linearized system eV*(k,w)~. In Sec. 3
the zeros of the analytic continuation of é¥Z(k,w) in the
complex w plane and the residues at these poles are de-
termined. This can be done analytically if the fre-
quency arguments of the linear dielectric functions,
which make up e¥%, are near the complex zeros of these
linear functions. This is seen to be valid for frequencies
near the electron plasma frequency w, and, if the elec-
tron temperature is greater than the ion temperature,
for frequencies near the ion acoustic frequency w;(k).
For equal temperatures the formulas derived in this
approximation are seen to be qualitatively accurate but
not quantitatively so, by comparison with numerical
work done in I and II.

In Sec. 4 we use the properties of eV%(k,w)™! derived
in Sec. 3 to examine the behavior of Sy(kw) in the
vicinity of the resonances. We find that as the pump
power approaches the threshold for which the most
favorably matched mode k goes unstable, there is a
great enhancement of the resonances in the spectrum.
This enhancement occurs for a narrow range of wave
vectors around k which receive comparable negative
damping from the parametric coupling. For most cases
of interest the resonance near w, is more strongly en-

12 Recent experiments by Wong on three-mode parametric ex-
citation of drift waves in a plasma have been reported [A. Y.
Wong and M. V. Goldman (to be published)].
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hanced than that near w;. Near threshold, however, both
resonances have the same width which goes to zero at
resonance in the linearized theory. The spectral peaks
are enhanced more strongly than the total area under
the resonances (i.e., the total noise power), but the
linearized theory predicts that the enhancement of both
quantities goes to infinity at the point of linear threshold.

In Sec. 5 we discuss the cross section for inelastic
scattering of another beam of higher frequency from the
parametrically excited plasma. The differential cross
section is known to be proportional to So(%,w). The cross
section is greatly enhanced in a narrow range of angles
corresponding to the range of “active” k vectors which
are parametrically excited. Because of k-dependent
factors in the cross section, arising because the heavy
ions do not respond directly to the scattering electro-
magnetic fields, the enhanced resonances in the scat-
tering at w, and w; have comparable cross sections in
many cases. The total scattering integrated over the
resonances and over the narrow range of ‘“active” k
vectors is enhanced. Again all the enhancement factors
diverge at linear threshold.

We compare our results with the work of Berk, who
did not include the regenerative parametric effect. Near
threshold for instability this effect is extremely im-
portant, and Berk’s result greatly underestimates the
enhanced cross section.

In Sec. 6 we consider the important question of the
nonlinear saturation of the level of fluctuations near and
above the threshold for the linearized theory. The large
longitudinal fluctuating currents induced in the system
react back on the pump field, so that the steady-state
pump amplitude is not that predicted by the linear
theory. Conservation of energy arguments show that
the self-consistent pump field adjusts intself so that the
effective pump amplitude is always below but near the
linear threshold. The enhancement factors then become
exponentially increasing dut finite functions of the pump
intensity for intensities above the linear threshold.

In Sec. 7 we briefly comment on the effect of nonlinear
longitudinal mode coupling, which has not been in-
cluded in the present work.

2. BASIC THEORY

We begin by calculating the nonlinear suscepti-
bility, which couples a monochromatic electromagnetic
“pump”’ wave

E(r,t) =E, sin(ko-r— wof)

B(r,f) = (cko/wo) X E(x,1) (2.1)
to the plasma and ion acoustic resonances of the self-
consistent longitudinal field U(r,?) in a two-temperature

plasma. A simple perturbative approach based on the
Vlasov equation is equally applicable to the case of

15 H. Berk, Phys. Fluids 7, 917 (1964) .
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transverse or longitudinal pump waves. Our result for
the transverse pump agrees with previous calcula-
tions!278;, however, the result for the longitudinal
pump disagrees with the hydrodynamic theory which
Stern and Tzoar?® used to interpret their experiment, in
which a longitudinal pump parametrically excites the
plasma and ion-acoustic waves.

The Vlasov equation for electrons in an electro-
magnetic field is

of/dt+v-9df/dr=—a(v,r,t)-df/dv, (2.2)

where
a(v,r)=(g/m{—VU)+F(r)/g}, (23a)
F(r,0)/g=E(r,))+(v/c) X B(r,1). (2.3b)

a is the acceleration of an electron as a result of the self-
consistent longitudinal field VU and the Lorentz force
F of the total field (E,B). In Fourier space, Eq. (2.2)
may be rewritten as

[ d%kdo’
f(V,k,w) = —1«/ (27r>4
a(vk—kK,w—o) df
———(v,K ). (2.4
(w—k-v) av(v ). (24

The singularities in w are to be handled in the Landau
sense. Let

f= (21r)463(k)5(w)f0(v)+fl(v,k,w)~|-f2(v,k,w)+ )

where fo(v) is the equilibrium distribution functions, f;
is first order in a, f; is second order in a, etc. Thus,

atvko) ar,
k)= =t 2D
w—k'v v
d%'dw’ a(v,k—k w—w’) 9
@mt  (o—k-v)  dv
kl / o
><<_.—a(v’ ) 9f (v)>, (2.6)

o—K-v 9v

(2.5)

fo(v,kw)=(—1)* /

etc. The average electron charge density is

plkw)=g¢ / @ f(v)k,)

= (2m)*6*(k)d(w)gnetp1(k,w) +pa(kw) ,

where p; and p; are, respectively, first and second order
in a. The average charge ¢gn, in equilibrium is exactly
canceled by the positive ion background, and so may be
neglected. We are interested only in that part of the
charge density which is proportional to the self-consist-
ent field U. Terms which go as U? (e.g., in p;) are as-
sumed shall compared with terms which are linear in U,
this is an effective limitation on how hard we excite

2.7)
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the system, and terms independent of U are propor-
tional to § functions such as 6(w), d(w=w), 6(w=2w,),
etc., since the external field is monochromatic. Four
our purposes w#nwy, #=0, 1, «--; therefore, such
terms vanish. A more detailed treatment of those
neglected terms is found in I and II.

The equilibrium longitudinal linear susceptibility X,
is defined by

4mpy(r,t) = V2 / a¥'dt X (r—r' i— U@ ). (2.8)

From (2.5), integrated over velocity space, we retain

dmpy(kyw) = — kX o(kw) U (kw), (2.9)
where
4re? k-[dfo(v)/dv
LY R T R
mk? w—k-v{ie

is the usual linear susceptibility. It is convenient to
define a quantity ¢ (the “proper polarization part”),
defined by

k-[afo(v)/dv]
,W) = d% )
a(ks) mneB/ w—k-v+ie

where B is the inverse thermal energy. In terms of g,
Xe(k’o))= (kD2/k2)Q(ka) ’ (212)

where kp?=4mn.20 is the square inverse Debye length.
The integral of (2.6) over velocity space gives the
Fourier component of the electron charge density to
second order in a. Only the crossterms linear in U are
to be retained in this expression, which (after a trivial
change of variables in one term) may be written as

(2.11)

320 7,/

)4 @1(1(,(.0; k’—k;w/_w)

%' de
dmps (k) = — /

(2
XU(k—K,w—0o") (2.13)
) , , % . ki—k{ 0
O1(kyw; k' — ko' —w)= —4”;2 ZJ: /d v{w—kv v,
Fi(v,K' ') 0fo(v)] &;
X[ w’(—k/"’ J:;v,« :|+w— F Ank's I)::

x[;m E(‘v)]} . (2.19)

O1(k,w; k'—k,w'—w) may be regarded as the Fourier
transform of a nonlinear susceptibility Qi(r,;r,t")
which contains the first-order modulating effects of the
pump field (E,B) of external origin. Thus, in coordi-

14 B, D. Fried and L. D. Conte, The Plasma Dispersion Func-
tion (Academic Press, Inc., New York, 1961).
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nate space, 4mpa(n,t)=— JS'd*%'dt'Qi(r,t;x' {)U(Y,) in
analogy!® with (2.8).

After carrying out the differentiation with respect to
v; in (2.14), it is convenient to express the term

ki—k! Pl @) 8Ju(v)
(w—o'—[k—k']-v)? (w—k-v) 9v;
Al:—a_ 1 "Fi(k’,w’) 3 fo(v)
B dv; w-—w'—[k—k']-v_lw’——k’-v dv;

+ ki—k{ l: 1 1
(0 =k v)lLw—k-v w—w'-—[k—k']-v]
i)
X—ﬁE;(k',w') .

avj

(2.15)

The first term on the right-hand side of (2.15) may then

be inteégrated by parts. When this is done, all terms pro-

portional to (92fo/dv;dv;) in the integrand of (2.14) are

seen to cancel. We may further use the relation
aF;(kl,w/) ki,F@'—k/Fj

- 3
dv; o=k v

which is easily proved from (2.3b), the Maxwell equa-
tion B(k’,0") = (ck//w’) X E(K',w’), and standard vector
identities. One then obtains the following useful ex-
pression for O;:

Oi(kyw; K —k o' —w)= 41r62———/d3

(' —k'-v)?
[(k’—k) -F(v; k’,w’)kJ k- F(v; K o) (k'—k)
% w—k-v o' —w—[k'—k]-v ]
a
210 016
av

The magnetic part of the Lorentz force F(v,k',w’)
vanishes for a longitudinal pump field, and for trans-
verse pump radiation it may be ignored for the fol-
lowing reason: From (2.1) and (2.3b) it is evident that
B is of order v.ko/wo times the electric field, where
v,= (Bm)~1/2 is the electron thermal velocity. The pump
frequency wo must be very near the plasma frequency
wp, since the ion-acoustic frequency is Kw,. Thus, v.ko/wo
= ko/kp. The dispersion relation for transverse radiation
near the plasma frequency is wo=w,(14cko?/v.%kp?)1/?,
so we require (ko/kp)<Kv./c. The B term may then be
ignored since we need not calculate beyond zeroth order

1> We have expressed this relation in terms of the polarization
Q1 rather than a nonlinear susceptibility X, related to it by
Q1= 4V in order to, take advantage of certain symmetry prop-
erties present only in (;.
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in ko or v./c for a transverse pump. The Lorentz force
F may therefore be taken simply as
F(K @)= — || E(')
=[(2m)*muwo?/2:]d
X [8(e’+wo) 6%(k'+ o) — 8(ww’ — ) 6%(k'— ko) ],

where

(2.17)

d=—(|e| /mei®)Eo (2.18)

is the maximum excursion distance from the trajectory
of an electron perturbed by the monochromatic pump
field E(r,f)=E, sin(ko-r—wot). If (2.17) is inserted into
(2.16), we have

O1(k,w; K — ko' —w)=01(kw; k'—k,o'—w)(27)*
X [8(e'+w0) 3(k'+ ko) — 6(w’ — wo) 83(k'— ko) ], (2.19)

where

4mewy? 1
Q1(kyw; B — ko’ —w)= ’ /d3

m? v(w’ —K-v)?
X[(k,_k).dk¢ k-d(k'—k) }afo('v)
w—k-v rw’—w-—[k’—k]-v v

(2.20)

This expression is easily evaluated to zeroth order in
(k've/w)=ko/kp simply by neglecting k’-v compared
with «’ in the first denominator. Then, for example,

O1(k,w; ko—kywo— w) =3%p*[ (ko—k) - dg(k,0)
+k-dg*([ko—k|,wo—w)], (2.21)

where ¢ is defined in (2.11) and (2.12) to be proportional
to the linear electronic susceptibility. This applies to a
transverse or longitudinal pump field, the only differ-
ence being whether d points in the ko direction or trans-
verse to it. We note, in passing, an important symmetry
property in (221) Ql(k,w; ko—' k,wo—w)=Q1*(k0'— k,
wo—w; k,w).1% As we shall soon see, w and k may cor-
respond to the frequency and wave number of a plasma
wave, w=~wr(k)=w,(143k%/kp?)!%, and wi—w and
ko—k then correspond to the frequency and wave num-
ber of an ion acoustic wave (w;=kv.(m/M)'2 where
M =ionmass). For a transverse pump field the frequency
matching condition tells us that w,(1-4c%0%/v,2kp?)!/?
~w,(143k2/kp?)'/2 or ko is of order (v/c)k. In this
case ko may be totally neglected in (2.20) and (2.21)
which reduces to the result previously found in I and
II for this case.’® In particular, the dominant term in
(2.21) is the second, since g¢(kwo—w)=1, whereas
q(k,w)=k?/kp*.

For a longitudinal pump field, Zo must still be <kp
for an undamped plasma wave, but it generally can-
not be neglected in comparison with k2. However, the
dominant term in (2.21) is again the second, so for

16 [n the notation of II, Qi(kw; ko—kwo—w)=k2Ae-xNE
X (ko,wo; k—ko,w—wo), where Ag is the vector magnitude of the
vector potential for Eo(r,f).

PARAMETRICALLY EXCITED PLASMA FLUCTUATIONS
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either a transverse or longitudinal pump

O1(k,w; ko— kwo—w) =~ Lkp?k-d. (2.22)
The correction terms arising from the first-order ex-
pansion of (w’'—k’-v)~2 in (2.20) lead to a correction to
(2.22) which is of order (ko/kp) or smaller, and generally
negligible. One may also determine the convergence of
this entire perturbative procedure in the strength d of
the pump field. Such convergence is in fact guaranteed if
dkp<1, or if electron excursion distances are less than
the Debye distance. This is demonstrated in II.

There will also be an ionic contribution to the total
charge density, in which linear and nonlinear ionic sus-
ceptibilities are defined simply by replacing the elec-
tron mass m and temperature ®, (or thermal velocity
) by the ion mass M and temperature ®; (or thermal
velocity v;). However, the nonlinear ionic susceptibilities
may be neglected because they are of order m/M times
the nonlinear electronic susceptibilities, thus exhibiting
the preference of the external field for the lighter elec-
trons. However, the linear ionic susceptibility must be
retained as it contributes to the ion acoustic resonance.
We may then write for the total charge density (elec-
trons-ions) in Fourier space,

—4r Ptot(k’w) = k2[Xe(k7w)+Xi(k7w)]U(k;w)
+Q1(k,w; - k()— k,-w()'— w) U(k+ ko,w+w0)

—Ql(k,w; k()— k,wo—w)U(k— ko,w'—wo) 5 (223)

where we have used (2.13) and (2.19). Continuation of
our perturbative expansion in d to next order gives rise
to terms of the following form:

Qaok,w; — 2ko— k,— 20— w) U (k-+ 2ko,w+2wq)
+Q2(k,w; Zko— k,2w0— w) U(k— 2k0,w—" Zwo)
- 2Q2(k;w; - k7_w> U(k)w) )

where each of the Qs’s is proportional to d2.

We wish next to calculate the correlation of total
charge density fluctuations in the nonequilibrium steady
state prevailing when the pump radiation intensity is
just below the threshold for instability of plasma and
ion-acoustic modes. By envisioning a steady state we
neglect the relatively slow secular heating of the plasma
by the pump radiation. A complete treatment of all
terms in the fluctuation spectrum for the case of a trans-
verse pump and equal electron and ion temperatures was
given in II, while a simpler, more intuitive presentation
was described in Ref. 10; valid for lossless mode coupling
(real nonlinear susceptibilities). Since the imaginary
parts of our nonlinear susceptibilities are much smaller
than the real parts, this latter format is adequate for
our purposes, and may be used for a generalized treat-
ment which includes the possibility of a longitudinal
pump and unequal electron and ion temperatures. Con-
sider the self-consistent field U and the total charge
density piot to be fluctuating quantities whose thermal
ensemble averages vanish but whose average correla-

(2.24)
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tions do not. Such quantities may be thought of either
as stochastic classical variables or as quantum-mechan-
ical Heisenberg picture operators. U is related to its
source by Poisson’s equation

—k2U (kyw) = — 4mpror(k,w) — dmpd(kw) ,  (2.25)

where p%(k,w) is the Fourier transform of the fluctuating
total free charge density in the absence of self-consistent
or external fields. pyo, as before, is the total fluctuating
polarization charge density, proportional to components
of the self-consistent field U. Suppose first that we take
the external fields equal to zero, so

- 47rpt0t(k;w) = kZX(k,w) U<k;w) ’ (226)

where
X(kyw) =X (kyw)+Xi(kw). (2.27)

Thus,
— k2l (k,w)U(kw) = —4mp'(k,w) , (2.28)

where
el(k,w)=14+X(kw) (2.29)

is the longitudinal dielectric function. The thermal
average of (2.28) gives zero on both sides, but the
average absolute square relates the correlation of
longitudinal self-consistent-field fluctuations to cor-
relations of total charge density fluctuations in the non-
interacting plasma:

Rt | em(kw) [ (| U (kyw) [ %)= (4m) | p°(kw) [2).  (2.30)

In a two-temperature equilibrium these correlation
functions may be determined either by direct evalua-
tion?1% or by application of Nyquist’s theorem.!” (We
assume the collisionless approximation.) In the classical
limit,

(lp(kyw) %)

m —
Q, 7> QT

2

[0, ImX,(kw)+ 0, ImX.(kw)], (2.31)

W

where 2 and 7 are the volume and time of observation,
respectively. This determines (|U(kw)|2) through
(2.30). Of more direct interest to us will be the correla-
tion of total charge density fluctuations, defined by

(| prot(ye0) +p(k,w) | 2)
Qr '

eSo(kw)= lim_ (2.32)

Employing Poisson’s equation [Eq. (2.25)], we see
that S is proportional to {|U|2):
4mre? k?

U(kw)|?
—Sulle) = lim (el

47r Q,7 -0

(2.33)

Using the above information for the equilibrium plasma,

17 H. Nyquist, Phys. Rev. 32, 110 (1932).
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we now calculate Sy(k,w) in the presence of an external
pump field of intensity below threshold (to guarantee a
steady state). From (2.23) and (2.25),

kel (kw)U (k,w)=—Q1(kw; —ki—k,—wo—w)
X U (k+ko,w+wo) 4 Q1(k,w; ko— k,wo— w)
XU (k—ko,w—wo)+4mp"(kw). (2.34)

This generates an infinite set of coupled equations, of
which another [obtained by displacement of (k,w) into
(k— ko,w—w())] is

| k— Ko | 2eZ(k— ko,0— wo) U (k— ko,00— wo)
= —Q1(k—ko,w0—wo; —k,—w)U(kw)
+Q1(k— ko,w— wo, 2](0— k,2w0—w)
X U (k— 2ko,w— 2wo)+47p"(k— ko,w—ay) . (2.35)

The chain may be broken by noting at which fre-
quencies U(k,w) is resonant in equilibrium, and assum-
ing the real parts of the nonequilibrium eigenfrequencies
are not shifted from these frequencies by very much (the
shifts will in fact be of order kpd<<1). The equilibrium
resonances are at =-w, and ==w;, so that if w is in the
neighborhood of +w,, w—w, will be in the neighborhood
of —w;, and w— 2w, will be in the neighborhood of —w,,.
Thus, w—mnw,, for n any positive or negative integer
other than 1 or 2, will be far from any of the equilibrium
resonances, and the corresponding U may be ignored.
Suppose w—wy= —w;, so that the ion-acoustic wave is
excited at resonance. Then w—2wy=—w—2w; and
U(w—2wo) can be resonant at —w, only if 2w, is much
less than the linewidth v, of the longitudinal plasma
mode. The significance of the case w;<y; will be dis-
cussed shortly. For the present, assume that w; >y, so
that the mode U(w—2w,) may also be ignored, and
(2.34) and (2.35) become a closed set of equations:

kel (k,w) U (k,w) — O1(k,w; ki wo— w) U(— k;w—wp)
= 4mp®(k,w)k2e"(— kiyw— wo) U (— ki —wp)
+Q1(—kiywo—wo; —k,—w)U(kw)
=4mp"(— k;,0—wy) ,
where k;=ko—k. Then,

(2.36)

Ukw)=———
k2N (K, w)
o(k , Ql(k,w;ki,wo—w) 0 k 37
Xl:p( ’w)TeL(—ki,w_wﬂ)kﬁp ('~ isw—w(’):l’ (2'* )

where the nonlinear dielectric function eVi(kw) is

defined by (ks k ]
W5 Kiywo— 2

¥l ) = eb () — 2 e
kzk.;ZéL(’* ki,w—wo)

Here we have used the property
Or(kw; K w) = —0:(—K,—o'; —k,—a),
readily seen from (2.21), and ¢(w)*=¢(—w).

(2.38)
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If we now form (| U(k,w)|2) from this expression, and note that fluctuations in p° at different frequencies are
uncorrelated ((p%(w)p®(w—wo*))=0), Egs. (2.31) and (2.33) yield for the nonequilibrium density correlation function
4me? r@e ImX,(kw)+0; ImX;(kw) 1 |Qi(kw; kiwo—w)|?

—So(k,w)=
k? |eVE(kw)| o w k%2 | el(hiw—wo)|?

% 0, Imxe(—k,-,w—wo)+ @,' Imx,-(—k,-,w—wo)

The use of the equilibrium (external field-free) expres-
sions for (|p%w)|2) and (|p®(w—wo)|?) here is only
permissible when the imaginary part of Q; is negligible,
as in our case.

With w close to w, and wy—w close to w;, we may use
(2.22) to write

(1/k3)[Q1(k,w; ki,wo— w) 12=AZPEX2  (2.40)

where
A?=(dkp/2)*=Io/ncO(wp/wo)* (241)
Io=(Eo/2)%/4r (2.42)
y=(k-d)2. (2.43)

A? is proportional to the pump intensity!® /o, and is
always assumed <1. ¢ is an angular factor which attains
its maximum value of 1 when the electric field vector of
the pump (be it transverse or longitudinal) lies coin-
cident with the propagation direction of the plasma
wave .

All of the arguments made above rested upon the as-
sumption that w is close to w, and wo—w is close to w;.
As we shall see in the next section, there is a zero in
eVL(k,w) with the real part of w close to w, and the
imaginary part corresponding to decay or growth, de-
pending on the value of A2. However, in so far as ImQ;
is negligible, there is a symmetry in the condition
e¥L(k,w)=0 which tells us that if (k,w) is a root, then
(ko— k,wo— w*) must also be a root. This corresponds to
the well-known Manley-Rowe relations for real mode
coupling, and may be seen as follows. The linear sus-
ceptibilities as a function of complex w are known to
have the symmetry property X(k,w)*=X(k—w*) [which
implies eX(kyw)*= eL(k1,—«*)]. If we now set the right-
hand side of (2.38) for e¥Z(k,w) equal to zero and then
set its complex conjugate equal to zero, comparisons
shows that both (kw) and (ko—k,wo—w*) satisfy the
same formal equation and are both valid roots, pro-
vided the imaginary part of (Q:)? is negligible compared
with the real part.

18 Note that the definitions of intensity in (2.42) and in Refs. 1-8
differ in that (Z,/2)? appears here, but ¢? there, because of the
definition of the pump field as a sine here and as twice the sine in
I and II. This has led Jackson to mistakenly claim the results of I
and IT differ from his by a factor 4.

:| . (2.39)

wW— Wy

Returning to (2.39) for the density correlation func-
tion So(k,w), a great simplicity arises in the limit of the
high electron-to-ion temperature ratio, ®,/@,>>1, pro-
vided %1, ks<<kp. Under these conditions the ratio of
ImX;(kw) to ImX,(kw) is exponentially small, regard-
less of whether w~w, or w~w;, so that terms in (2.39)
proportional to ®; may be neglected, and Sy(k,w) may
be written as

k Imez(k: 1
So(k,w)=2n——— 2I|: GL( w) I

-
1) k%2

! > (2.44)
m(e"(ki,w—wo) ] ’ .

where we have used Imel(k,w)=TImX.(kw), which is
valid in these frequency ranges, and the definition
kp?= (4wne?/0,). It is notable that (2.44) also follows
from (2.39) in the equal-temperature case ©,=0;,
since ImX,(w,)/ImX;(w,) is still exponentially small as
long as M>m.

Some final points remain to be discussed. We have
omitted terms proportional to the susceptibilities Q,
in (2.24) from the analysis. The neglect of U(w==2wy),
provided w; >y, has been justified earlier [beneath
Eq. (2.35)]. However, the term —2Q.(k,w; —k,—w)
X U(kw) which is of order A% properly should have
been included in our above remarks. As discussed in II,
such a term is partially responsible for the slight shift
in the real part of frequency w obeying eVZ(k,w)=0
from wz(k) to wr(k)[14+0(A2)]. It has no effect on the
imaginary part of w, which is of main interest here, and
so is neglected.

A case of great interest since it is realized in the exper-
iment of Stern and Tzoar,? is when w;<<y1, so that with
w close to wy, and w—wp= —w;, we have w— 2wy~ —w
— 2w; differing from —w, by less than the linewidth ~;,
of the resonance of U(w—2wy) at —w,. This case was
first treated by one of the authors? for a transverse
pump and equal electron and ion temperatures, and will
be generalized to unequal temperatures and a longi-
tudinal pump in a current work in progress. Briefly,
when the terms involving U(w— 2wo) arising from (2.24)
and (2.35) are taken into account, instead of the two
coupled equations (2.36), we obtain three coupled

v [O1(kw; kiywo—w) [ I

wW—wo
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equations, of form
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E2eX(w) U(w) — Q1(w; wo— w) U (w—w) + Qa(w; 20— ) U(w— 2wp) = 4mp"(w) | ko— k| 2€%(0v— o) U (w— wp)

+01(w—wo; —w)U(w)— Q1(w—wo; 2wi—w) ,

U(w— 2wo) = 4mp*(w— wy) ,

| 2ko— k| 2€X(w— 2w0) U (w— 2030) +Q1(w— 2a0; wo— ) U (w— wo) +Qa(w— 2wo; — w) U (w) = 4mp*(w— 2w) .

(2.45)

We have suppressed the obvious wave-vector dependence of the (s and U’s. € includes the correction arising

from Q.:

EL(k’(,,))E GL(k,w) - (2/k2)Q2(k)w: - k)—w) .

The threshold condition e¥£(k,w)=0 is now equivalent to the vanishing of a 3)X3 determinant:

k*e(w) = Q1(w; wo—w), +Q2(w; 20— w)
Oilw—wp,—w), |ko—k|2el(w—wp), —Qilw—wo;2wi—w)|=0, (2.46)
Qo —w,w—2wg), QO1lo—2wowo—w), |2ko—k|2e4(w— 2uwy)

With w close to w,, the condition on A? for threshold and

(Imw=0) is now altered; more importantly, we can 9l )

show that if w is a growing solution (Imw>0), then so -~ =wy~6____’w_ (3.3)

is 2wo—w*, by taking the complex conjugate of (2.46)
and using the symmetry about the off-diagonal axis.
This means that in addition to stimulating an ion
acoustic wave at w; and a plasma wave at k.=~ wo—wi,
the pump also stimulates a plasma wave at 2wo— Rew
~wo+w;; which has, in fact been observed by Stern and
Tzoar.? This symmetry about the pump frequency is
well known in stimulated Raman scattering.’ In fact,
we may draw an analogy between the Raman vibra-
tional level and w;, the scattered Stokes line and wo— w;,
and the scattered anti-Stokes line and wo+w;. Further
details of the effect of this anti-Stokes parametric ex-
excitation will be reserved for another publication.!®

3. RESONANCE APPROXIMATIONS

The analysis and understanding of the function
eVL(k,w) is simplified if we can assume that the functions
el(kw) and eX(kwo—w) which appear in (2.38) and
(2.39) have their frequency arguments very close to one
of their complex zeros.?® That is, we assume that we can
write in the neighborhood of a zero at w=w,—1y,

(w—wy(k)-l-Z'W’y(k))i O(w—wrl-iY.,)z
w2y l

e (kyw)>

, (31

Wy
where

(b ,w,—17,)=0 (3.2)

19 E, A. Jackson (Ref. 7) has shown that when wo—w<Zwi, then
a relatively weak parametric coupling of the two nearly degenerate
anodes at w and w— 2w, can still occur at much higher threshold
levels. He also shows that this effect is canceled by collisional
damping if (v/wp)>10"% We will not consider the regimes for
which this process can occur in the present paper.

20 The function [eZ(w) ] is, of course, analytic in the lower half
w plane as demanded by causality. The zeros which we are dis-
cussing are actually in the analytic continuation of [eX(w)] from
the upper into the lower half plane.

00 lom@y—ivn

It follows from the property e(k,w)*= eL(k,—w™*) that
for every zero at w,—17, there will be a mirror zero at
—w,—1Y,, with a Z, of the opposite sign.

As a working example throughout this paper we con-
sider a classical two-component plasma. The general
analysis applies to any 3-mode parametric excitation
with suitable reinterpretation of A% and reidentification
of the modes. One of the two least-damped roots of
interest to us corresponds to electron plasma waves
where (v=L) for a particular k=kp,

wr=—(wp2+ 3k %212

A\ 1/2 Ep? A ®
Y= (_) 3/ 20— (UINEDA kL2 L ln(-——)
2 ki? V2132 \Jww,

Z1=%+0(k*kp®

(3.4)

wherev,2=w,/m.is the rms thermal velocity, w,?=4men
X(1/me+1/ms), kp2=4me?/®,, A=kp3/n. The first
term in the expression for vy, is the collisionless Landau
damping term, which vanishes rapidly as #— 0. The
second term arises from electron-ion collisions.?! The
ratio Y /oy is <1 if k<kp and AK1.

The second root of interest corresponds to the ion
acoustic waves where (v=1) for a particular k=k;

wi=k{x(Oc/m:) ],

where « is a constant depending on the role of collisions
in the plasma. For a collisionless plasma with equal

(3.5)

21 D, F. BuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963); see also M. G. Kivelson and D. F. DuBois, Phys.
Fluids 7, 1578 (1964).
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electron and ion temperature 0, it is found??

w~1.6k,(0,/m;)1 2= C;k 3.6)
and

’Yi20.6ki(®e/mi)”2. (37)

In this case 7,/w; is not particularly small, and the mode
is not well defined.?* On the other hand, if the electron
temperature 0, is greater than the ion temperature ©;
(e.g., >5), then it is easily shown in the collisionless
case? that

kD aveki\ 2 M\ 12 kp?
L(biyw) = 1+~—[1—< > ]—i(—) a—/ (3.8)
kiz w 2 k,;2
from which we find, for k<<kp,
w;= a(ki/kp)wp= ki((*)e/mi)"?: Ciki (39)
'Yi= a2/2(7r/2)”2(ki/kp)wp (310)
and

where a=(m/M)'/2 In this case we see

Y: asm\1l?
—=—<—> «1.
w; 2\2

Our assumption is that roots of €YZ(kw) at
w=wNl—7YN¥L for a particular k=*%z lie close to the
root of e(k,w) at wy,—4Yy and that wy can be adjusted
S0 w—wp lies near the ion acoustic root of eX(k;w— wp)
at —w;—7Y; (where k;=ko—k;). Then we can write
for w in this neighborhood of the complex plane, using
(2.38), (2.41)-(2.43)

(w—wr+17z)
VI (o, w)
wrly

Ziw,- kD2
+ Ay, (3.12)
(w—wotwi+1iY:) k2

The complex zeros of é¥L are roots of a quadratic
which occur at

Aw (7L+7i) Aw—i(’YL*"Yi)
w=wr— i ==
2 2 2
4T2 1/2
X (1 > (3.13)
[Aw—'i(’yL—'Y,;):P

M= Az(kpz/k,-2)¢Z,~ZLw,-wL, (3.14)

and where Aw is the frequency mismatch
Aw=wr+w;—wy. (3.15)

22 B. D. Fried and R. W. Gould, Phys. Fluids 4, 139 (1961).

23 In the collision-dominated case, even for equal temperatures,
Y;/wi<k1. The theory leading to the expression above for e¥Z
applies strictly only to the near-collisionless case. Preliminary con-
siderations indicate that this expression is valid even if the low-
frequency root wo—w is in the collision-dominated regime, as
long as w remains above the electron-ion collision frequency.
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In the nearly degenerate case when 7Y;~Y; and
Aw>>|YL—7;|, we can write the solution as

W=wr— %Aw— ’L%('YL+'Y,')
+1Aw(1—4T2/[Aw]2)12. (3.16)

We see that in this case one of the square roots will
have a positive imaginary part corresponding to a
negative-damping contribution if

Y= | KAw< 2T, (3.17)

The threshold condition in this case is
F(1—[Aw]?/4T2) 22 1 (vL+74) -

If I>>Aw, the growth rate will be proportional to T. In
most interesting cases for plasmas, and in particular for
the experimental parameters of Stern and Tzoar,? the
damping of the original roots differs considerably. In
these experiments AwKYp+w;~7Y;, and Y. >V, If
|YL—7:|>>Aw, we can neglect the mismatch. In this
case we have, for example, if 7;>>7; and if

/71, (3.18)
the roots
M=QVE— 9V L= — Aw(T2/Y D) — Y, —il%/Yy,,
1=V E— YV l=; — Aw—1Y;+iI%/7y. (3.19)

If ¥:>>7;, the solution has the same form, with ¥, and
7Y, interchanged throughout. The root &; (in the case
Y>7;) has a negative-damping contribution pro-
portional to A2, while the root w; receives an additional
positive damping. At a critical value of the pump in-
tensity the net damping of the first root (for the value of
k involved) becomes zero. This occurs at

Fcz(k) kuz Z,-w;ZLngb
=A 2. —_— 1 s

. AwY;. (3.20)
k2

ViYs )
Since all the factors in this expression depend on %z, or
ki=|ko—ks|, A. is a function of k;.

As we remarked following Eqs. (2.41)-(2.43), ¢ =1 for
a transverse pump with electric vector in the k; = (—k;)
direction, or for a longitudinal pump with ko, collinear
with both kz and k; Thus, as A is increased, modes
propagating in the appropriate directions reach the
critical point of instability first. Note that (3.20) is
symmetrical in (w;/7;) and (wz/7z).

The dependence of the negative damping on Aw can be
seen in the following way: With w=w¥Z—4YNL we take
the real and imaginary parts of e¥Z(k,w¥NL—iYN¥L)=(
using (3.12). After some rearranging we can obtain the
simultaneous equations

I‘z('yL_'yNL)
YNL=7y,— , (3.21a)
(AwNL)2+ (7L_7NL)2
Fz(AwNL)
WV L= (y5—w; , (3.21b)

(AwNL)24 (Y, —YNE)?
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where now
AN l= N+ w,— wy.

(3.22)

These equations must be solved self-consistently to ob-
tain w¥% and Y¥L, When (3.18) holds, and AwK7, we
have seen in (3.19) that wV¥E~wE. The value of wVZ de-
pends on (Aw). If YVEKLY; (see below), then iteration of
(3.21b), starting with AwVl= Aw, yields

I'2(Aw)

Vb= gl (3.23)
(Aw)2-|—’YL2
If AwKY, we see that
WV L= @l+4(T2/7.2)(Aw). (3.24)

We have a small power-dependent frequency shift
away from w” proportional to Aw. Such effects have been
considered in detail by Goldman? and Jackson.” To
calculate these shifts correctly it is necessary to include
nonresonant corrections? to e“(w) and e*(w—wo) which
depend on A?, as mentioned earlier. If A%(k%/kp?)<1,
these shifts are small and can be neglected for most of
our considerations. We will not deal with these shifts
explicitly in this paper, but we will keep their existence
in mind.

If we assume that 0¥ is known and if we are near
threshold so that | YVL|<KY,, we see from (3.21b) that

Iy,
(AwNL)24- 12 )

When Aw~AwV LY, we see that we recover the value
of Y¥L obtained from (3.19) with w¥£—4YVL=;. How-
ever, we now see from (3.25) that appreciable negative
damping occurs only in a range of order ¥z, about Aw=0.
This condition determines the range of % values which
receive appreciable negative damping. We can write this
as

(3.25)

7NL:7¢“

(AN E)~6(Aw) =71, (3.26)

where 8(Aw) is the increment of & values in Aw. Using
(3.4) and (3.5), we can express this in terms of kL
= —ktkLak@ 6I:wL(kL)+wi(ki)]=’YL(kL); fOI' 5kL/kL<<1

we have
Vi(kz)

(e (kr)/ k]~ [Bwilks) (Bi- kr)/ k]
3 'YL(/CL)
 3v(k/kp)— (ki k)Ci

The range 6k;, of active % vectors thus depends only
on kg, which we can take to be determined by Aw=0.
In the case of a transverse pump we have already seen
ko~O0((v/c)k), so k=—Kk; is essentially independent of
ko. For the case of a longitudinal pump, on the other
hand, we have the condition

(@p2 kL2021 24 Cy | ko— ki | = wo= (w24 3ko%.2) 12,

5kL=

(3.27)

24 See Eq. (3.46).
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From this we find

2C;
ki= Zkox'““ —kp?
3y (3.28)
4C; 4Cp '
k= ko*—— —kp*kor+- —kp?,
Wp wp?
where .
%=ko'k,‘ (329)
and 1> x> (Ci/3w,) (kp?/ko). T
C; kp* C;ikp \/K’mekD
3(.01; ko 31)9 ko 3 mq ku ’
then these relations simplify to read
ki=22kgx, (1>x>0)
k1 >ky. (3.30)

Again we note that in the case of a longitudinal pump
field we cannot neglect &y with respect to k; or k.. The
most efficient collinear configuration which makes ¢ =1
in (3.20) corresponds to x=1 in (3.30).

When 0,= 0; it was shown for a transverse pump in
2 that for (k~0.2kp, akp/kK1),

Ak/Epta, (3.31)

[This corresponds formally to v;/w.~~(34/k)~ in (3.29)]
For k’s away from the frequency-matched conditions,
the threshold condition reads

/31)2 Z,'wq, ZLwL'YL
A2(kp)—y =1 (3.32)
kY [Aw(kn) P+
In terms of A., the condition (3.18) becomes
A2 v,
— i (3.33)
A2V

With this definition (3.20) of A.=A.(k;) we can re-
write (3.19) for k’s which satisfy Aw=0 in the form

o= wL_‘i'YL(l‘HiAz/ VA~ — L, (3.34)
wi=wr,—1Y;(1—A2/A2),
all quantities except A being functions of k;,.

The arguments following (2.43) show that in addition
to the roots wy and & for k=%, there are also two roots
fOl‘ k=kz= Iko"kLl at

(ﬁz= w;— i’YL(I —f—'YiAZ/YLAcZ)zwi— i7L ’

Wo=wW;— 1:71'(1 _AQ/ACZ) s
for Aw=0. Thus the roots w; and w; both have the same
imaginary part. Thus modes with frequencies near wy,
and near w; (for Aw=0) have identical thresholds and

growth rates, as demanded by the Manley-Rowe
relations.?4

(3.35)
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Clearly, as A — 0, then &; — w;,—1Y; and w, —
w;—17;, which are the linear roots. The roots w; and @,
arise, therefore, from the nonlinear coupling, and must
disappear from the theory as A — 0.

To see this we expand e¥Z(k,w) about one of its zeros
W,

(w—w,)+0(w—w,)2. (3.36)

N L(k, )
AL

The residues of [eVZ(k,w) ]! at the simple poles cor-
responding to the above zeros of é¥X(w) are defined by

L G
v w" IS e

, (3.37)

Ow w=wy

where w,’s are the zeros discussed above. Carrying this
out, we find [again assuming the inequality (3.21)]

Zy
~7 L
1+ (A2/A2) (Yi/Y1)

ZINL=

Z;
1+ (A%/A2) (Vi/V)
A2 Y,

ZAQNL=Z5—* .
A02 7L

NL—

L)

(3.38)

The residues Z;"~ and Z,¥L at the poles at w; and &
vanish as A — 0 while 22— Z, and Z,¥!— Z;,
making contact with the linear theory. Because of
(3.21), Z\VEKZNE and Zy¥ K ZoNE,

Examination of the terms neglected in using the first
terms in the expansions of ez(w) and ez(w—wo) about

their zeros shows that this approximation is valid only
if

YVLLY <Y, ,
3.39
O)NL'T/COL , ( )
and
('Y,-/w,-) 21 and (‘YL/’YL)2<<1 . (340)

For a classical plasma with ®,=0,, this last condi-
tion does not hold for the ion acoustic mode. The dis-
persion relation e¥%(k,w) must then be solved by a
careful numerical analysis of the function [k%/kp2e
X (k,w—wo) ]! using the tabulated!* collisionless plasma
screening functions. Goldman? has carried this out for
the transverse pump. He finds that a maximum nega-
tive proportional to A? leads to a frequency-matching
condition as in (2.13), but with

wi=1.7a(k/kp)wp=1.Tk(O /my)1/2

corresponding to «!/2=1.7 in (3.5).
When this condition is met, Im[k2/kp%el(w— wp) ]~

(3.41)
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attains it maximum value of 0.58. The threshold value
for the associated instability in this case is

(0.58)Ac2Z (w1 /Y1) (B 80)2=1, (3.42)

which is close to the value obtained from (3.20) with
(Vi/wi)eti=2%. The results in this case will always turn
out to be qualitatively in agreement with the formulas
derived above with 7;/w;=0(1). However, these
formulas are quantitatively inaccurate.

4. BEHAVIOR OF THE FLUCTUATION
SPECTRUM

We now can use the approximations of the last section
to understand the behavior of So(%,w).

The factor | e¥Z(k,w)|~2 peaks at the real frequencies
wNL and wo—w" L, As discussed above, each of these real
frequencies is near a pair of complex zeros of e¥*(k,w).
For example, using (3.12) to (3.19) we can write in the
neighborhood of w¥*~w,, for k=%,

(w—w1)(w—ad1)
wrZi(w—wr+ivs)’

again assuming wy=w;+w; Thus, using (3.19) and
(3.22), we have

1 wr2Zy?
| V()2 (0—wn) ™Y (1A VA D)
(w—wr)?+7:?
(0—w1)HY 21— AY/AD?

eV i(kr,w)=

(4.1)

(4.2)

The last factor in (4.2) dominates if 1>3>1—A2/A.? i.e.,
near threshold, and we can write

1 B (ZlNL)2wL2
|V E(kr@) |2 (0—wr) V(1= AY/A2)?

where Z1VL is given by (3.26). In the limit A — O the
last factor in (4.2) approaches unity, and we obtain the
usual linear result.

Near wp—w™~ and for a shifted value of k;= | ko—ky|,
on the other hand, we can write (using Aw=0)

(4.3)

(w—we) (w—&2)

V(B )= (4.4)
wiZ (w—wi+1iY1)
and
1 wﬁZ,-z
|V E(fi) |2 (o—wi) H73(1— A2/A)?
—w; 2 742
e ak; (4.5)

X .
(w— wi)2+7L2((1+7¢A2/'YL/A02))2

Since V;[1—(A2/A,2) ], the behavior of this function
for (w—w;)?KY.? is dominated by the first factor and
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we can write

1 [wOZZNL]2
~ . (4.6)
[e¥E(Riw) |2 (0—wi)?+72((1—A%/A2))?
In the limit A — O the last factor in (4.5) approaches a
constant value of unity and the first factor dominates,
giving the usual linear result near the ion acoustic
resonance.
On collecting results, using (2.44), we see near each
resonance (provided 1>3>1—A2%/A.2) that So(k,w) has
the form

[ZNLw:IV2
(@—=w)*+72(1—A42/A2)* Ziw,

1 A2
XI:-—-—}- —:l, (4.7
Wy (wO_wv) Ac2

where v=1 or L and [Z¥Lw],=Z"Lw; and [ZVw];
=Zy"Lw, In obtaining this expression we note that
since Y¥E=7,(1—A2/A2)<KY;. Y1, we have replaced all
factors except the resonant term by their values at
resonance. In our analysis we have been assuming
Y1>7; but now both resonances have the same reduced
width 7;,(1—A2/A;2) for values of A approaching A,
(i.e., for which 1>3>1—A2%/A.2).

The values of S(kw) at the peak resonances w=w,
are given by

2nY,

Solksyw)=

(k¥ k,)So(kyyw)=2n(Z,/7,)4,K?, (4.8)
where
1
K=——— (4.9)
1—A2/A 2
and
Z,,NL(J),,NL 2 'yv2 w, A2
P i PR [
Zywy 712 wWo—wy ACZ

When 4,K%=1 we have the familiar result of the
linear equlibrium theory.?

The nonlinear effect of the regenerative parametric
coupling is contained in the factor K, which appears
here squared. As the pump intensity parameter A2
approaches the critical value A.2(k) for the instability,
K diverges. Physically, of course, the nonlinear proc-
esses which we have neglected in the analysis up to
this point lead to a saturation of the effect at some finite
but large value. The steady state saturation level for K
is discussed in Sec. 6.

For the case »=1, Eq. (4.10) in conjunction with
(3.26) and (3.27) gives

1 w; A?
4= [l-i— —':I
[1+AYAD(Vs/Y) L wo—wi A2
(4.11)

2% E. E. Salpeter, Phys. Rev. 120, 1528 (1960); D. F.‘ DuBois
and V. Gilinsky, bid. 135, A995 (1964).
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On the other hand, we also have for =L

A2 'Yi 2'YL2 wr, A2 A2 3wL
ol Y
ACZ YL 71’2 w; ACZ A2 wWs

Near threshold AZA,, 4y, is a large number since

(4.12)

(4.13)

For most cases of interest for near collisionless
plasmas and A~A,,

A.;/AL=OJ¢/CUL<<1 y (414)

so that the resonance near w, is much more enhanced
than the low frequency resonance at w;(k).

The integrated power in one of the resonance peaks
is of interest. Integrating over the Lorentzian of (4.7),
we obtain

kp? Y
—k—z— /deo(k,w)=7rZy2nA VK’)T . (4.15)

v

The integrated spectrum is thus enhanced by a factor
A,K(7:/7,) over the equilibrium value.

From these formulas we find that the ratio of peak
power at w=w;, b=k, to peak power at w=wy, b=k is

Solkiws) kp*(Yi/wr)
Solkrwr) ke (Vifws)

(4.16)

which can be greater than or less than one. Since the
resonance widths (for A~A,) are equal the ratio of the
integrated power in the two resonances is the same as
(4.16).

5. INELASTIC SCATTERING OF RADIATION
FROM THE PARAMETRICALLY
EXCITED FLUCTUATIONS

It is well known that the asymptotic differential cross
section for scattering an incident beam of radiation of
frequency wi>>w, from the parametrically excited plas-
ma is?

d?o(k,w) nred
———=—— |1+ Xoi (kyw) | 2So(kw) (é1- &2)* (5.1)
dwzdﬂz ™
if w is near a resonance of eV L(k,w)~'. Here # is the mean
electron density, 7o=e2/mc? is the classical electron
radius, w is the difference between the incident and
scattered frequencies

Ww=wr— w1, (5.2)
k is the wave vector difference
k=ko—k;, (5.3)

and &; and &, are the polarization vectors of the incident
and scattered radiation.
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The factor |14Xoit(k,w)|? arises because the cross
section is really proportional to the electron density
fluctuation spectrum and not the total density fluctua-
tion spectrum So(k,w). This factor essentially removes
the effect of ion fluctuations from So(k,w).

We have seen in Secs. 3 and 4 that as the pump power
is increased toward the threshold value, So(k,w) is en-
hanced near the resonant frequencies w,(k) for a narrow
range of k vectors which satisfy (3.28) to (3.30). The
scattering angle 6 is essentially determined by % (if
w1>>wp)

k=2k, sinif. (5.4)
Thus, for a restricted range of scattering angles 66 de-
termined by &k (see (3.28) and (3.31)), we expect an
enhanced spectrum So(k,w) given by (4.7). From (5.4)
we find

ok Skk
sinf5f= 2—/;(1~cos€)=——- (5.5)

1

Thus if the possible “active” k vectors were isotropically
distributed, the enhanced scattered radiation would lie
in a cone with an angle 6 [determined by (5.4) with %
the value for perfect frequency matching] and a thick-
ness 60 determined by (5.5). However, the strength of
the negative damping terms (3.19) is proportional to
(k- &,)? [see (3.20)]. Thus, the greatest enhancement
occurs for k||é. We can make the dependence on
cosp= (k- &) explicit by writing

Z NI NL2 7y 2 @ A2
A,= ——|:1 - cos’p :I, (5.6)
Wo—wy A2(0)
1

ZV“’V ‘Yi2
K= , (5.7
1—cos?¢(A2/A.%(0))

where A,2(0)=A,2(cosp=0).

The geometry is made clear in Fig. 1, where we have
taken the case in which the incident scattering beam is
perpendicular to &, and &.

The solid-angle increment in which the enhanced
scattering lies is from 6Q=sind60d¢. To obtain the total
enchanced scattering in the cone of thickness &6
integrated over all ¢ and integrated over frequencies in
the neighborhood of a resonance at w,, we have, from
(4.14), (5.1), and (5.5).

%o (kw)
/ dws / d¢ sinfs6
dwdQ

—m’o< >I1+on+(k wy) | 2(ér 62)22-—(1—cost9)
kp?

fiw,
z 460K =011, 6

eBehior_
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INCIDENT
PUMP BEAM

k2
36)]

F16. 1. Geometry for inelastic scattering experiment. Incident
and scattered radiation k; and k, are essentially normal to the
plane of the paper. The shaded region indicates the range of k
vectors which receive appreciable negative damping.

Here we have evaluated the integral
2

/ d$4,B)K($)=2nA,(6=0)[K(G=0)"""—1] (5.9)
0

using (5.6), (5.7), and well-known tabulated integrals.
The enhancement factor of the scattering cross sec-
tion in this cone of angles is therefore

4,(¢=0)[K(¢=0)""2—1] (5.10)

where 4,(¢p=0) and K(¢=0) are given by (5.6) and
(5.7) with A, for ¢=0. The singular behavior at thresh-
old, though reduced by the angular integration, is still
present in the enhanced scattering cross section.

Considering w~w, (so that 1+4X,+(w)>~1), using
(5.7), and integrating over the resonance using (4.13),
we obtain for the differential cross section per unit
azimuthal angle

do k? okk
=)o B GK@, (D)
d¢ kp? k2

where we have also used Z;~1, B./w<1, and (5.5) for
sinfdf. Using only the dominant term in 4, from (4.11)
and the expression (3.31) for ok, Eq. (3.41) for w;, and
the definition (3.42) for A2, we can write this as

da' (k Eo)2 Wp
—=0.00917¢2 B—(é1-62)2K () .
d¢o ki'n i

(5.12)
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This expression, which is independent of the ion
mass, is proportional to a result obtained by Berk!?:26
in treating a similar situation in which one radiation
beam slightly above the plasma frequency enhances
plasma fluctuations which subsequently scatter a
second beam. However, Berk’s model utilizes infinitely
heavy ions. Therefore, there is no ion-acoustic mode in
his theory and no possibility of regenerative parametric
amplification, which requires a dynamic ion response.
He does not, therefore, obtain the amplification factor
K(¢). This would not be serious if his expression were
restricted to powers considerably below threshold
A’KA% K~1. However, his numerical examples are
considerably above threshold AZ>A 2, and the results
clearly are not valid. We can conclude from our results
that near (but below) threshold the cross section will
be considerably larger than Berk predicts because of the
regenerative parametric process.

In a sense Berk’s results represent the lowest order
term of an expansion of our results in powers of £y
However, the higher-order terms in this expansion have
a secular character and are not small, even if E,? is
small, if the resonant frequency matching and threshold
conditions are approximately satisfied.

6. NONLINEAR SATURATION CONDITIONS

The enhancement factor X which appears in an es-
sential way in the above considerations diverges as A
approaches the value A, at which the most favorably
matched k mode goes unstable in the linearized theory.
This is clearly unphysical; we have neglected the re-
action of the induced currents in the system back onto
the pump field. When this is done self-consistently the
actual steady-state pump amplitude never quite attains
the threshold value, and K is large but finite. To solve
this problem in general we must couple the equation for
the pump field to the nonlinear current source provided
by the enhanced longitudinal field fluctuations. This
general nonlinear problem has not been solved in the
case of modes with linear losses.

Fortunately, for the steady-state case which we are
considering the self-consistent pump problem can be
solved by simply invoking conservation of energy
arguments. The basic simplifying assumption in the
steady state case is that the pump field still has the
form?”

Eo(x,t) = °/2 By exp[—i(dot—ko-x) J+c.c.  (6.1)

26 Aside from the factor K, which represents an important
physical effect not included by Berk, there are several minor dif-
ferences between our Eq. (5.12) and Beck’s Eq. (7). He considers
unpolarized pump radiation and therefore has (1— (&, k2)?) where
we have (&;-8:)? corresponding to an average over ;. In addition
his factor k:k2 in the denominator is equivalent to our %;* when
wi>>wp. Finally, there is a numerical factor which is different and
again appears to arise from our different handling of the dynamics
of the ions.

27 In general wo will be a function of E, which can only be deter-
mined by a more detailed analysis of the coupled equations. This
frequency shift affects only the frequency-matching conditions
which we assume to be optimum.
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where E, is the self-consistent steady state pump
amplitude resulting from the reaction of the induced
fluctuating current. The amplitude E, is not the value
of the pump field calculated from the external sources
and linear induced sources alone. It is determined by
the steady state condition that the absorptive power P
supplied by the external sources equals the power dis-
sipated by the self-consistent pump field and the
fluctuating longitudinal fields. Clearly, the rms value of
the longitudinal fields must remain finite if they are to
dissipate a finite amount of power. Thus %, must re-
main below the threshold value.

The power dissipated in the plasma is the average of
the volume integral of J(1)-E(1) where J(1) is the
microscopic plasma current density and E(1) is the
total electric field. Thus

Py= /dﬁ*xl((]i(l)E,-(l)))t (6.2)

where (), denotes a time average and { ) denotes the
ensemble average in steady state. The current density
is related to the effective field via susceptibility func-
tions in a way analogous to the charge density relation
defined in Sec. 2:

ad
];(1) = ]10(1)-'-‘6—;[ /d“x;Xﬁ(l - 2)1’1—,(2)‘*‘/(149('2

1

X/d"xzxwk(l—'2,1—3)E,(2)Ek(3)+ s } . (6.3)

Here J.°(1) is the fluctuating ‘“noise” current in the
absence of an electric field E. Inserting this into (6.2)
and noting that J,°(1) and E(1) are statistically-in-
dependent with zero average values, we can write

Po= / - / d4x2a—"’t<xﬁ<1—2><E,-<1>Ej<z>>>t

a
+/d3x1[d4x2/d4xs——
A1

X Xije(1=2,1=3)(E(1) E;(2) Ex(3) )}t - - . (6.4)

Expressing X’s and E’s in terms of Fourier components
we can write this as

.P(] /d3k °°dw
Q (211')3/_002#

X { —1X;(k,w)

E(byw)Ei(kw)*)) PVE
(E )(w)>}§ 65
QT Q

where
PNL d?k a3k r°de r*de
Q _/ (21)3/ (ma/_wﬂ f_w 2
X {—i(w+o)Xu(kw; k, o)
X{Ei(kw)E* (k+K wto) Ey(kK,w'))} .

(6.6)
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Here Q is the volume of the system and 7" is the time
interval over which we are averaging. From the rela-
tions Ei(k,w)=E¢(k,—-w)* and Jl(k,w)=J,(k,—w)* it
follows that X;;(k,w)=X;;(k,—w)*; we can write

Po / Pk do
Q (21r)3/w o
Ei k, Ej* k, _PNL
X[wZ I, (k) w;T( U 6.7)

It can be shown that the nonlinear dissipation PV
vanishes if the dissipative part of the nonlinear sus-
ceptibility is small compared with its reactive part.
This was shown to be the case in Sec. 2. The physical
reason for this is clear. If the nonlinear susceptibility is
nonlossy, then for every pump photon lost, one optical
plasmon and one acoustic plasmon are gained. Thus the
decrease in the plasmon loss rates due to the nonlinear
parametric gain is exactly canceled by the increase in
the pump photon loss rate. Ultimately, the heating or
dissipation in the steady-state system arises solely from
the linear losses. This assumes, of course, that only
these three modes are appreciably coupled. In Sec. 7 we
will briefly discuss the effect of further mode coupling.

The total electric field is made up of the self-consistent
pump field plus the fluctuating longitudinal fields; thus

E (k w) = 610{ 1E0(21r)46(w wo)53(k-—— 1)
+ 1 Eo*(2m)48(w+wo) 8 (k+ko)} + EX(k,w)k:/ | k| (6.8)

where EL(kw)=—kU(kw) is the fluctuating longi-
tudinal field of Sec. 2. Since (EZX(kw))=0, we can
write (6.7) as?

=% IE_()I 2(.0 ImXO(kO)wo)

d% / (| E(kw)|?)
—w2 ImXy (kw)———. (6.9)
(Z‘Ir)3 (27) Qr
From (2.33) we have
El(k,w)|?) (47)2%?
(2| >=( )2e50(k,w;Eo). (6.10)

or

Here we have explicitly indicated that Sy(kw) is a
function of E, because of the parametric coupling. The
expression (6 9) is not exactly correct since it implies
that power is absorbed from external sources even when
Ey=0 and there are no parametrically excited plasma
fluctuations. The thermal fluctuations which exist
when Ey=0 result from the balance between spon-
taneous emission of plasmons and the linear decay of
plasmons. The energy for these fluctuations is provided
by the heat bath which maintains the temperature.

28 Here x .= ~kikj, Xij, Xo=28"¢;"X;.
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Therefore, in computing the power required of the ex-
ternal electrical sources we should subtract the effect
of S(k,w, E0= 0)

= % IE()I 20) ImXo(ko,wo)
&k (4
-I—f / —w2 ImXz,(k,w)
(2m)3J (2m)
X [So(k,w; EO) —So(k,w; O):l .

7T)282

(6.11)

We assume again that So(k,w; Eo) is dominated by
its resonance at w,—17, and use (4.16) for the integral
over

] d3

Py
2 %|E0|2‘Yo+2®/ > 7z,
Q (25

X[4,(@)K(9)—1],

where we have used the relations

(6.12)

'Yo =Wy ImXo(ko,wo)
Y, =Zw, ImXy(k,,w,) . (6.13)

By using (5.6) and (5.7) for 4,(¢) and K(4), the integra-
tions over ¢ and k can be approximated by the same
arguments used to obtain (5.8):

k28k v, Z,,NLwyNL 2 'yv2
tarr Sl w )
n(27r)2 v Yo Z, w 7722
@ \Ae AL 20,
X[<1+ >~—ln ]], (6.14)
Wo— Wy A A Wo— Wy

(02: B,

where

A02= (6.15)

1nOevo

A2=|Eo|*/n0®,. (6.16)

This transcendental equation determines the self-
consistent pump amplitude or A2 in terms of the power
A? delivered by the external sources. Note that if
A2KA 2 then A2=Ay? so

| Bo| 2= Po/QYo=| Eo|?, (6.17)

i.e., in this case we can identify Ej as the field produced
by the external sources plus the linear induced currents
alone.

Now going to the explicit case considered in the text,
Y>>V, w>w;, we use (3.38), (3.34), and (3.35) to
write (6.14) as

_ A, AA+A
A02=A2+F{T In _—2} , (6.18)
A A—A
where _
k2%k [ A* wr
F~ |::— *] . (6.19)
n(2m)?
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If we assume A¢2>A,2 then A must be near A, and we
have approximately

A2— A2 F ln<—:————> =F In4K (620)
1—A2/A.2

AOZ_' Aa2
=1 exp(——) .
F

Thus for power levels above threshold, i.e., Ag?>A.%
the amplification factor K increases exponentially with
Ao? but always remains finite for finite Ao

or

(6.21)

7. DISCUSSION

The inclusion of self-consistency requirements for the
pump field is thus sufficient to make the three-mode
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parametric model finite. However, nonlinear longitudinal
mode coupling effects which we have neglected will un-
doubtedly reduce (perhaps greatly) the steady state
amplitude which can be experimentally attained. The
principal mode coupling effects are probably further
three-mode couplings of the type responsible for the
parametric effect itself. The parametrically excited
plasmons can themselves act as a pump which couples
to another plasma mode and another ion acoustic mode.
These secondary processes will not be as strong as the
original parametric coupling since the pump energy is
now spread over a number of spatial (k) modes and
since the frequency-matching conditions for the
secondary pump plasmons will not be optimum.

A complete treatment of the effect of longitudinal
mode coupling on the saturation level has not yet been
carried out.
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Collisionless Sound in Classical Fluids*

MAaRK NELKIN AND S. RANGANATHAN
Department of A pplied Physics, Cornell University, Ithaca, New York
(Received 13 July 1967)

The dynamic form factor S(K,w) for a classical fluid is calculated from the linearized Vlasov equation.
Following Percus or Zwanzig, the effective interatomic potential is taken as —kT¢ (r), where ¢ () is the direct
correlation function. The result for S(K,w) is a simple closed expression with no free parameters except for
the static structure factor S(K). Using Ashcroft and Lekner’s hard-sphere Percus-Yevick results for S (K),
we calculate the inelastic neutron scattering from liquid lead. The resulting scattering law shows a strong
qualitative similarity with experiment. The narrow quasielastic peak observed experimentally is not, how-
ever, given by the calculation. The reasons for this discrepancy are discussed. An extension of the calculations
to include a phenomenological collision term is also presented.

I. INTRODUCTION

ECENT slow-neutron inelastic-scattering experi-
ments have shown a surprising persistence  of
phononlike excitations in the liquid state. The dynamic
form factor S(K,w) exhibits a structure associated with
propagating sound waves in a variety of liquids in-
cluding liquid helium above and below the lambda
point! as well as classical liquids.? This naturally sug-
gests that a mean field theory would provide a useful
phenomenological description of such experiments.? In
the present paper we present some simple calculations
demonstrating that this is in fact the case for classical
fluids.

* Work supported by the U. S. Atomic Energy Commission
under Contract No. AT (30-1)-3326. A preliminary report of this
work was presented at the New York meeting of the American
Physical Society, January 1967.

TA. D. B. Woods, Phys. Rev. Letters 14, 355 (1965).

2P, A. Egelstaff, Rept. Progr. Phys. 29, 333 (1966).

3 D. Pines, in Quantum Fluids, edited by D. F. Brewer (John
Wiley & Sons, Inc., New York, 1966).

The familiar classical limit of a mean field theory is
the Vlasov equation. This equation has long been used*
to calculate the dynamic form factor associated with
electron density fluctuations in a plasma. To use the
Vlasov equation in neutral fluids we must replace the
actual interatomic potential by an appropriate effective
potential. The desired substitution is 2(r) — —&T¢c(r),
where ¢(7) is the direct correlation function. This re-
placement was first suggested by Percus and Yevick.?
When used in a self-consistent way it leads to the well-
known Percus-Yevick integral equation for the radial
distribution function. The same replacement has been
obtained by Zwanzig® from consideration of variational
expressions for eigenfunctions of the Liouville equation.
Within the context of the Vlasov equation, the replace-

1 E. E. Salpeter, Phys. Rev. 120, 1528 (1960). (There is a large
body of subsequent literature on this subject.)

57. K. Percus, in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin,
Inc., New York, 1964); see in particular Appendix A, p. 1I-142.

6 Robert Zwanzig, Phys. Rev. 144, 170 (1966).



