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Encouraged by the results of potential scattering, the Pads method of summing the Born series is applied
to Xp theory. The results of the third-order calculation are compared with previous work, both theoretical
and experimental.

I. INTRODUCTION

~ ~

E present here a calculation of m-x scattering
based on a 47r) (p.p)' interaction. The method

is to improve the convergence of the perturbation ex-
pansion by the use of the Pade approximant. '

There have been many attempts at a one-parameter
solution to the ~-x problem. ' ' Our approach is most
similar in spirit to that of Ref. 7 where an algebraic
rearrangement of the perturbation expansion is also
used. We do not, however, feel that there is really any
basic di6erence between our approach and the dispersion-
theory approaches of Refs. 2—6. The main difference is
in the method that one uses to rearrange the perturba-
tion expansion. In Refs. 2—6, the methods are based on
the analytic properties of the scattering amplitude in
the energy variables, whereas we consider the Pade
method to depend on analytic properties in the cou-
pling constant. '

The present calculation has several motivations. The
Pade method has shown itself to be a useful theoretical
and numerical tool in potential scattering. ' ' " It was
desirable to test the convergence of the method in Geld
theory and to compare its predictions with dispersion
calculations and experiment. The natural field-theory
candidate is the 'Age theory, which is thought to have
some connection with reality, and where the Grst few
orders of perturbation theory have been explicitly
calculated. ' If the Pade method did demonstrate a
reasonable degree of convergence, then one could hope
to compare the predictions of XPe theory with experi-
ment. The experimental situation is such that there is
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now believed to be more structure than just a p-wave
resonance. There have been suggestions of an ABC
enhancement (300 MeV) and/or a o particle (400 MeV),
while an e particle (750 MeV) has been used to explain
the p-decay asymmetry parameter. ""On the other
hand, a recent experiment" has found no significant
s-wave structure. One would thus like to answer the
question, does X&4 theory predict any low-energy s or-
p-wave structure P

In Sec. II we present the method, and in Sec. III
the results are discussed. In summary, the s waves show
no low-energy structure except for broad resonances for
X&0.2. The p wave resonates at the p mass for ) =0.115
and with a width I'=20 MeV. The p-wave result must
not be taken too seriously until a fourth-order calcula-
tion is done in order to check convergence. In Sec. IV we
conclude that the method should work well for inter-
mediate-strength couplings but that the Geld-theory
singularities associated with the Dyson "collapsed
state'"' may limit the method.

II. METHOD

In a previous paper it was shown that in potential
scattering one can (for a suitable class of potentials)
construct the scattering amplitude from its perturba-
tion expansion. For momentum q&0, one approximates
f(&)= (1/q"+') tanbt, where f has the power-series

expansion
f(X) =Xf&(q)+X'fs(q)

by a ratio of polynomials

po(q)+capt(q) ) p~(q)
PE,3fj= (2)

1+Xqr(q) X"q~(q)

The unique rational fraction [X,M1 is called the X,M
Pade approxirnant' to f, and the coefficients p;(q) and
q;(q) are determined by requiring that Eqs. (1) and
(2) have the same power-series expansion up to and
including the term X +
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In Ref. 9, the following theorem is proved.

FIG. i. The I=O, J=O scattering length as a function of ).
The solid curves are the Pad6 approximants. The dashed curves
are second- and third-order perturbation theory.
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FIG. 3. tan happ as a function of pion momentum
g for negative X.

For a general q, one may include only j=0, &2, &4.
Here, we optimistically apply the Pade method to ~1

X&4 theory up to third order in 'A where we may cal-
culate L1,17, I 1,27, and I 2,17.

We have used the perturbation calculations of Baker
and Zachariasen' and cross-checked them with those
of Alexanian and Wellner. ~ Some sign misprints in the
former paper are corrected, and the results are (we use C,"=—70LF'(s)7i—20I G(s)7i,
the Chew-Mandelstam definition of X)

(10)

(oo/q) tanbsz= XC,-+XoC,-+XoC- where
3

1
F(s)=-(s—o)

ds'(s' —4)'~'

("- )("-l)(")'"

2—
N

0

I

t2,1j

(s o) t.F(s )7o (s'—4l ' '
G(s) = P ds'

I I
. (12)

4 (s'—s)(s'—-')4 s' &

Also, we have defined for any function F(s)

I

-3 -2
I l l I I i

0 .1 .2 .3 A 5

LF(s)7i=2 F(t)Pi(cos8) d cos8, (13)

Fze. 2. The I=2, J=O scattering length as
a function of X.

where s=4co2 is the square of the center-of-mass energy
(u'= q'+1 and t= —2q'(1 —cose).
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approximant. The methods diBer in higher approxi-
mants. The Pade method is, however, much simpler
since they must solve a nonlinear diGerential equation
even in their second approximant. Also, their criterion
for choosing a function to approximate is based on the
smoothness of the function (thus they chose to use 8
instead of tan5). Our calculations are observed to
converge more rapidly than do theirs.

The dispersion calculation which can be most easily
compared with ours is that of Ref. 6. They calculated
the left-hand cut in perturbation theory and then con-
structed the partial wave from the N/D method. They
had difficulty in achieving convergence for ~),~)0.1.
Although their method works in potential scattering, we
remark that in Geld theory there is no reason to expect
the left-hand cut to converge as a function of X. We
believe that had the Pade method been used to rearrange
the perturbation expansion of the left-hand cut, their
convergence would have improved.

Although for ) =0.115 we get a p resonance at the
right position, its width is too small by a factor of 6.
Also, for this value of X, the I=O s wave shows no
resonance-type structure. This value of X is, however,
compatible with the I=2 data. A recent analysis"
gave ~aM~ =0.204+0.028. If we take the sign of Sou

from the analysis of the p-decay asymmetry parameter"
and use Fig. 2, we get ) =0.106&0.015.

IV. CONCLUSIONS

We have seen that the Pade approximant can be
successfully applied in Geld theory to yield converging
results where the perturbation expansion fails. It is

'~T. S. Yoon, P. Berenyi, A. W. Key, J. D. Prentice, N. R.
Steenberg, E. West, W. A. Cooper, W. Manner, L. Voyvodic, and
W. D. Walker, Bull. Am. Phys. Soc. 12, 684 (196').

our belief that low-order approximants provide a good
approximation for intermediate-strength couplings
where only a small number of resonances dominate.

The present calculation yields a p-wave resonance at
760 MeV for X=0.115with a width of 18 MeV. For this
value of ), the s waves are small and negative. We do
not, however, place much faith in the p-wave result
since one must go to fourth order and the $2,2j Pade
approximant in order to check convergence for the p
wave. '6 For the s waves, convergence is already good.
It will be interesting to see if the p resonance persists
in fourth order.

As is mentioned in Ref. 9, the Geld-theory case is
complicated by the presence of extra singularities
associated with the Dyson "collapsed state. " These
extra singularities have a branch point at ) =0 which
makes the perturbation expansion asymptotic. It has
been shown that the Pade method can also cope with
these extra singularities. " However, since the co-
eflicients in the asymptotic expansion are believed to
grow like e., these extra singularities will dominate
in higher orders and may limit the usefulness of the
Pade. method. A deeper understanding of this difliculty
is desirable.

Note added iN proof After .completing this work a
CERN report by Bessis and Pusterla" was received.
They do a similar calculation but include fourth-order
perturbation theory and analytically continue in /. The
real part of the Regge trajectories for the p and fe
mesons are obtained correctly to within 15% for
) =0.12. We consider this to be very encouraging.

"Fourth-order calculations are being done by M. A. Newton
(private communication) .

G. A. Baker, Jr., and R. Chisholm, J. Math. Phys. 7, 1900
(1966)."D.Bessis and M. Pusterla, Phys. Letters 25B, 2/9 (196'l).
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Low-Energy Theorem for the Weak Axial-Vector Vertex, S. L. AnLER ANn Y. DorHAN )Phys. Rev.
151, 1267 (1966)). In Eq. (80) for 3E& s, the tensor multiplying Fiv'(0) should be (gpss +k pz —5z p k).
In Eq. (82) for Oz, the tensor multiplying V2'"~& should be L(pi+p2)gk —(p,+p2). khan, $. Through-
out Sec. III, M'iv should be read as Miv'. We wish to thank Dr. J. Yellin for helpful discussions.

Towers as Sets of Composite Particles and Trouble with Infinite-Component Field Theories, M. B.
HALPERN [Phys. Rev. 159, 1328 (1967)]. Strictly speaking, our discussion is only valid when one has
crossing symmetry in the usual sense; that is, towers must be viewed as sets of composite particles if
crossing is to be maintained. We thank Dr. C. Fronsdal for emphasizing to us that, in his theory, the ex-
ternal particles are also part of an infinite- dimensional representation —thus the usual crossing is tost.


