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Encouraged by the results of potential scattering, the Padé method of summing the Born series is applied
to A¢* theory. The results of the third-order calculation are compared with previous work, both theoretical

and experimental.

I. INTRODUCTION

E present here a calculation of m-r scattering

based on a 4w\(¢p-¢)? interaction. The method

is to improve the convergence of the perturbation ex-
pansion by the use of the Padé approximant.!

There have been many attempts at a one-parameter
solution to the m-= problem.?~8 Qur approach is most
similar in spirit to that of Ref. 7 where an algebraic
rearrangement of the perturbation expansion is also
used. We do not, however, feel that there is really any
basic difference between our approach and the dispersion-
theory approaches of Refs. 2-6. The main difference is
in the method that one uses to rearrange the perturba-
tion expansion. In Refs. 2-6, the methods are based on
the analytic properties of the scattering amplitude in
the energy variables, whereas we consider the Padé
method to depend on analytic properties in the cou-
pling constant.?

The present calculation has several motivations. The
Padé method has shown itself to be a useful theoretical
and numerical tool in potential scattering.l:%* It was
desirable to test the convergence of the method in field
theory and to compare its predictions with dispersion
calculations and experiment. The natural field-theory
candidate is the \¢* theory, which is thought to have
some connection with reality, and where the first few
orders of perturbation theory have been explicitly
calculated.®®7 If the Padé method did demonstrate a
reasonable degree of convergence, then one could hope
to compare the predictions of Ap* theory with experi-
ment. The experimental situation is such that there is
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now believed to be more structure than just a p-wave
resonance. There have been suggestions of an ABC
enhancement (300 MeV) and/or a ¢ particle (400 MeV),
while an e particle (750 MeV) has been used to explain
the p-decay asymmetry parameter.!*'?> On the other
hand, a recent experiment! has found no significant
s-wave structure. One would thus like to answer the
question, does A\¢* theory predict any low-energy s- or
p-wave structure?

In Sec. IT we present the method, and in Sec. III
the results are discussed. In summary, the s waves show
no low-energy structure except for broad resonances for
22 0.2. The p wave resonates at the p mass for A=0.115
and with a width I'~20 MeV. The p-wave result must
not be taken too seriously until a fourth-order calcula-
tion is done in order to check convergence. In Sec. IV we
conclude that the method should work well for inter-
mediate-strength couplings but that the field-theory
singularities associated with the Dyson ‘‘collapsed
state’”’® may limit the method.

II. METHOD

In a previous paper it was shown that in potential
scattering one can (for a suitable class of potentials)
construct the scattering amplitude from its perturba-
tion expansion. For momentum ¢>>0, one approximates
fON) = (1/g?"*) tand;, where f has the power-series

expansion
TN=Nu9+Nfl)- -+, ¢y
by a ratio of polynomials
o(@Q+Ap1(g) - AN pu
v, M]=P (@+2p1(9) pu(q) . @

1+2q1(g) - - - Man(g)

The unique rational fraction [N,M ] is called the N,M
Padé approximant! to f, and the coefficients p:(¢) and
¢i(g) are determined by requiring that Egs. (1) and
(2) have the same power-series expansion up to and
including the term AV+¥,
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Fi1c. 1. The I=0, J=0 scattering length as a function of A.
The solid curves are the Padé approximants. The dashed curves
are second- and third-order perturbation theory.

In Ref. 9, the following theorem is proved.

Theorem : If

l)\im FO)/A=0, arghs=0, 7

and the potential NV (r) satisfies

V(r)>0 and ]” [V(r)]Vdr< =,

then for ¢ sufficiently small,

lim [N, N+ 1= /(0.

For a general ¢, one may include only j=0, £2, 4-4.

Here, we optimistically apply the Padé method to
A¢* theory up to third order in A where we may cal-
culate [1,17, [1,2], and [2,1].

We have used the perturbation calculations of Baker
and Zachariasen? and cross-checked them with those
of Alexanian and Wellner.” Some sign misprints in the
former paper are corrected, and the results are (we use
the Chew-Mandelstam definition of \)

= =3 /2NN

(w/q) tandsr=ACy/T+NCo T4+ NCy71 . 3)

-3 -2 -1 o a 2 3 4 5

FiG. 2. The I =2, J =0 scattering length as
a function of A.

We define
650
c,-=( 0) @
61'02
and have
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F16. 3. tan 8¢ as a function of pion momentum
¢ for negative A.

Cytt=—T70[F*(s) i—20[G(s)Ts, (10)
where
o dsi(st—4)L2

1
F(s)=—(s—%P , 11
() 7r(s ) . G (11)

and

(s—%)

™

0 1 b sl_ 1/2
G(s)= P/ ds* L7 ( 4) . (12)

(si—9) (s'=H\ ¢t

Also, we have defined for any function F(s)
1
[F()]=1 / F(O)Py(cost) dcosd,  (13)
-1

where s=4w? is the square of the center-of-mass energy
w?=¢?+1 and t= —2¢%(1—cosf).
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III. RESULTS

The coefficients C;/7 were calculated from the above
equations using the IBM 7094 computer at Toronto.
Once these were obtained, it was only a matter of
algebra to calculate [1,17, [1,2], and [2,1]. The s-wave
results are shown in Figs. 1-6.

In Figs. 1 and 2 we have plotted — @oo/5A and — ags/2\
as a function of —)\, where a7z is the scattering length,
together with the predictions of second- and third-order
perturbation theory (B, and Bj). The convergence for
I=0, J=0 is excellent, but for 7=2 it is not as good.
The [1,27] Padé predicts an I=0 s-wave bound state
for A= —0.51, in good agreement with Chew, Mandel-
stam, and Noyes* (—0.48), and Serebryakov and
Shirkov® (—0.5).

In Figs. 3 and 4 we have plotted tandy and tandpe
for A=—0.1 and —0.2 as a function of pion momentum
g. There is observed to be no structure except an en-
hancement at low energy due to a large scattering
length. The convergence is excellent even at large
energies.

T I T 1
02pRa
11
2 0 A=-.2 -
<
@ N=-1
S
= —
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F16. 4. tan 8o as a function of pion momentum
g for negative A.

In Figs. 5 and 6 we have plotted 8y and & for the
opposite sign of \. Here we observe that for A=0.2
and above the position of the p (¢=2.55), both phase
shifts pass through — /2 causing broad resonances. The
I=2 would yield the narrower width (=500 MeV).
One will note that this is a good test of the Padé
method. The perturbation expansion is unable to
predict these “resonances” while all approximants are
in close agreement for their positions and widths. It
should be mentioned that the coefficients Co® and Cy®
vanish at ¢=0.93 and ¢=0.41, respectively, and thus
the [1,2] Padé approximant must be discarded near
these values of ¢. It is precisely this situation that
restricts the values of j in the theorem quoted in
Sec. II.

For the p wave, since Cy!! vanishes, we are only able
to use the [1,27] Padé approximant. We thus have no

14 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.
119, 478 (1960).
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Fi16G. 5. 00 as a function of ¢ for positive A,

check on the convergence of the method and cannot
rely on the results. For the scattering length, we get

an=(10/97)\2/(1—7/0.29). (14)

For A=0.115 one gets a p-wave resonance at the posi-
tion of the p. The width I is given approximately by

4NCollg/w
M=
d(Cs'/Ca'Y)/dw

where Eq. (15) is evaluated at A=0.115, ¢=2.55. This
gives I'=0.13 (18 MeV). Note that in this lowest
approximation one cannot help but get a p resonance,
since the denominator of tands is linear in X and always
has a zero for real . It will be interesting to look at
fourth order and the [2,27] Padé approximant to see if
the p resonance persists. We do feel that perhaps the
sign of A for which one obtains the p is relevant. That
is to say, the p wave is most attractive for positive X
and negative s waves. This is in agreement with all
other calculations, except those of the inverse-ampli-
tude method? and Ref. 5. The former had difficulty with
convergence for small positive A\, while the latter con-
sidered it inconsistent with their dynamical equations.

The results of Alexanian and Wellner” are in qualita-
tive agreement with ours. The method is also similar
in that they rearrange the perturbation expansion, and
their lowest approximant is in fact the [1,1] Padé

(15)
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F1G. 6. 8oz as a function of ¢ for positive A.
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approximant. The methods differ in higher approxi-
mants. The Padé method is, however, much simpler
since they must solve a nonlinear differential equation
even in their second approximant. Also, their criterion
for choosing a function to approximate is based on the
smoothness of the function (thus they chose to use &
instead of tand). Our calculations are observed to
converge more rapidly than do theirs.

The dispersion calculation which can be most easily
compared with ours is that of Ref. 6. They calculated
the left-hand cut in perturbation theory and then con-
structed the partial wave from the N/D method. They
had difficulty in achieving convergence for |A|>0.1.
Although their method works in potential scattering, we
remark that in field theory there is no reason to expect
the left-hand cut to converge as a function of \. We
believe that had the Padé method been used to rearrange
the perturbation expansion of the left-hand cut, their
convergence would have improved.

Although for A=0.115 we get a p resonance at the
right position, its width is too small by a factor of 6.
Also, for this value of A, the /=0 s wave shows no
resonance-type structure. This value of \ is, however,
compatible with the I=2 data. A recent analysis'®
gave |aoz| =0.2042£0.028. If we take the sign of &g
from the analysis of the p-decay asymmetry parameter!?
and use Fig. 2, we get A=0.1063-0.015.

IV. CONCLUSIONS

We have seen that the Padé approximant can be
successfully applied in field theory to yield converging
results where the perturbation expansion fails. It is

BT, S. Yoon, P. Berenyi, A. W. Key, J. D. Prentice, N. R.

Steenberg, E. West, W. A. Cooper, W. Manner, L. Voyvodic, and
W. D. Walker, Bull. Am. Phys. Soc. 12, 684 (1967).
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our belief that low-order approximants provide a good
approximation for intermediate-strength couplings
where only a small number of resonances dominate.

The present calculation yields a p-wave resonance at
760 MeV for A=0.115 with a width of 18 MeV. For this
value of \, the s waves are small and negative. We do
not, however, place much faith in the p-wave result
since one must go to fourth order and the [2,2] Padé
approximant in order to check convergence for the p
wave.!® For the s waves, convergence is already good.
It will be interesting to see if the p resonance persists
in fourth order.

As is mentioned in Ref. 9, the field-theory case is
complicated by the presence of extra singularities
associated with the Dyson ‘“collapsed state.” These
extra singularities have a branch point at A=0 which
makes the perturbation expansion asymptotic. It has
been shown that the Padé method can also cope with
these extra singularities.'” However, since the co-
efficients in the asymptotic expansion are believed to
grow like %!, these extra singularities will dominate
in higher orders and may limit the usefulness of the
Padé method. A deeper understanding of this difficulty
is desirable.

Note added in proof. After completing this work a
CERN report by Bessis and Pusterla!® was received.
They do a similar calculation but include fourth-order
perturbation theory and analytically continue in /. The
real part of the Regge trajectories for the p and fo
mesons are obtained correctly to within 159, for
A=0.12. We consider this to be very encouraging.

16 Fourth-order calculations are being done by M. A. Newton
(private communication).
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Errata

Low-Energy Theorem for the Weak Axial-Vector Vertex, S. L. ADLER AND Y. DotuaN [Phys. Rev.
151, 1267 (1966)]. In Eq. (80) for M).%, the tensor multiplying F;"’(0) should be (gava+kayr—0rav k).
In Eq. (82) for Oy, the tensor multiplying V2|, should be [ (pi+p2)rka— (P1+52) ko). Through-
out Sec. III, M2y should be read as M y2 We wish to thank Dr. J. Yellin for helpful discussions.

Towers as Sets of Composite Particles and Trouble with Infinite-Component Field Theories, M. B.
HALPERN [Phys. Rev. 159, 1328 (1967)7]. Strictly speaking, our discussion is only valid when one has
crossing symmetry in the usual sense; that is, towers must be viewed as sets of composite particles if
crossing is to be maintained. We thank Dr. C. Fronsdal for emphasizing to us that, in his theory, the ex-
ternal particles are also part of an infinite- dimensional representation—thus the usual crossing is lost.



