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There are symmetry relations

O(klpq) = O(lkpq) = O(pqkl)*

Q('klPq) =Q(lkPq) = Q(Pqkl) e.

(B23)

(B24)

Equation (B23) follows from Eq. (89) and Eq. (B24)
is imposed so that G2G2 '=G2 'G~.

Equations (B18) and (B20) show that the expansion
coe@cients I&' have connected and disconnected parts.
The three-body contributions to I&' have disconnected
parts which begin to show an exponential cluster

structure Eq. (A25). This remarkable circumstance
prompts the conjecture that the complete "optimal"
expansion of the unit operator obeys the exponential
cluster structure exactly. If the conjecture is correct,
the "optimal" two-body approximation can be improved
upon by including some fragments of three-body states
so that the cluster properties are maintained exactly.
More generally, in the "improved" m-body approxi-
mation, the relation g=expg, is kept exactly and an
m-body approximation to 8, is calculated. The viability
of the conjecture and the validity of the "improved"
approximation will be examined e/sewhere.
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The Lee model isobar states are derived for large bare coupling (Z -+ 0) by the methods of old-fashioned
strong-coupling theory. There is one isobar in each sector with energy cca(e—1)/go', where rs is the maxi-
mum number of mesons allowed in the sector. Renormalization constants are also presented for all sectors.

HE purpose of this note is to solve the simplest
known static model' in the strong-coupling limit

by a method similar to old-fashioned strong-coupling
theory. ' Though the I,ee model is extremely crude,
relatively little progress has been made in solving it in
general. Amado's solution' of the V-8 sector caused a
revival of interest, but the higher sectors remain
essentially unexplored.

It is remarkable that the Lee model even has a
strong-coupling solution4 similar to richer models, since
the mesons involved do not have antiparticles (crossing
symmetry). Also, the mesons belong to a "singlet"
representation; therefore, no "rotational" states can
emerge. Finally, the renormalized coupling constant
remains finite as the bare coupling is taken to infinity. '

%e present here a simple intuitive derivation of the
isobar states which satisfy the Schrodinger equation.
As in other strong-coupling derivations, it is necessary
to make a few assumptions whose validity is checked
at the end. Ke use a notation analogous to charged
scalar theory; i.e., rt, p, w

—are the particles.

* Supported by U. S. Atomic Energy Commission Contract No.
AT-30-1-2171.

' T. D. Lee, Phys. Rev. 95, 1329 (1954).' G. Wentzel, Helv. Phys. Acta 13, 169 (1940).
s R. Amado, Phys. Rev. 122, 696 (1961).
4 The strong-coupling limit is discussed in the lowest (soluble)

sectors by M. T. Vaughn, R. Aaron, and R.D. Amado, Phys. Rev.
124, 1258 (1961).' This excludes the use of Goebel's unitarity argument on the
pole terms of the Chew-Low equation. Cf. C. I. Goebel, Midwest
Research Conference, 1965 (unpublished}; also T. Cook, C.
Goebel, and B. Sakita, Phys. Rev. Letters 15, 35 (1965).

where

+g, d' N()I4() +It(r),7, (1)

p(r) =sr -meson field,

u(r) = source function,

go= unrenormalized coupling constant,

m= meson mass,

pi 0) t 0 1) 0 Qy

+
(0 —if EO 0~ 1 Qf

eo
——level shift for the neutron.

The v matrices operate on bare proton and neutron
states:

t1) tQ
I p) =I

Eo) E1

Since we work throughout in the Schrodinger picture,

~.In this nonrelativistic version of t:he Lee model, the meson
Geld has dimensions I. ~', the cuto8 [N(r))=L, s, the coupling
[ro]=&'".

The Hamiltonian' for the nonrelativistic I.ee model
may be written:

-~~"(r) ~e(r)
H =-', (1—rs) ep+ d'r +mqV (r)y(r)

2m
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the meson-6eld operators satisfy

L4 (r)A'(r') j=~'(r—r'),

L4 (r)A (r')3=o.

Inserting Fourier transforms for the meson Gelds, Eq.
(1) becomes

&= 2 (1—ro) co++~ L'a,'(k2/2222+2N)a,

+goloa2& —+golub &+j, (3)
with

as= dor g(r)e 'o'

The charge, which is a constant of the motion, is given
by

Q=2 (1+ro)—Pq aqtag.

In order to solve the Schrodinger equation corre-
sponding to Eq. (3), we must make the "6eld splitting"
assumption of the old strong-coupling theory. The
assumption is that the 6eld may be split into bound
and quasifree parts:

(a&ata fat

E fa ~a'a+so&
' (12)

with cv—=Qa EqN29, 2 and f= goX. Th—e eigenvectors of
Eq. (12) are easily seen to be

Expressed in terms of the new variables, the Hamil-
tonian may be written

&=l(1— ) o+(z (E./)') ") '+co)r +-'+]
+Pa (k2/22N) )2SqfBota+atBqj

+pa Et,BotB2. (11)

The crossed terms (connecting isobar states) between
bound and quasifree operators are small when the cutoff
momentum of the source N~ is much less than the meson
mass. Precise conditions for the validity of this assump-
tion will be given later. Finally, on account of Eq. (9),
we may disregard quasifree meson excitations altogether
since the Hamiltonian separates into two commuting
parts.

The bound part of the Hamiltonian simplies to

where
a2 = (222/X) a+Bo,

d'k
ga:—QNa .

8+3

(13)

where n„and P„are constant coeKcients, and the f„
are harmonic oscillator wave functions with

Now No/X is the bound-state wave function for the
bound field quantum, and 8& may be expanded

Ba=pq 'Doqbq,

where soq is the k component of the Fourier transform
of the scattering state of a meson with momentum q.
The functions v&~ have the property

( (at)tl )
&v'( ')&

+&n= +n&n ) (16)

Pg Ns'vgq =0.
Equation (6) gives immediately

(6) Qo„= —(n 1)2 „. —

The eigenvectors are normalized so that

(i7)

Now since

we have'

a=gy Iaaf/)I, .

Laj,ao j=~ox,

La,at] = i.

(7)

Other commutation relations are easily derived to be

fa,Bgtg=0, (9)

$B2,Ba t$ =bqa —Nj,ua. /X2. (10)

We shall return to discuss the validity of the field-
splitting assumption after solving the problem assuming
it holds.

' Equation (8) is to be contrasted with the "coupling condition"
of Goebel's crossing-symmetric models where the bound 6elds
commute. A consequence of Eq. (8) is that in the Lee model the
scattering amplitude has a single pole in the strong-coupling
limit, whereas in crossing-symmetric models one obtains a double
pole; cf. Ref. (S).

MN+Qnf q/2I=E~

fv'22+rr. (22 1)~=n. (E— eo)—(19)

« is to be adjusted to make the physical neutron have
zero energy, i.e., Er——0. The result is so= f'/oo. The
solutions of Eq. (19) are then

E„+ +22
n.+/&o=

fv'& f

—4 (n2 —n) )"' (20)

(21)

Now for large f, the two solutions E„+ are widely
separated. Only E„ is retained since E„+is of order f';

P 2 (1+~ 2)
—1

and the E and n are to be found from the two simul-
taneous equations:
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and, therefore, its eigenvectors couple only weakly with
low-lying states. For large f the results then are

Eq. (11) by looking at them as a perturbation on the
masses in Eq. (22). We use second-order perturbation
theory to show that the eGect on isobar n isE„=aPe(e —1)/f ',

n„=—(Qn)(o/ f,
P„=1—neo'/2f'.

(22)

)(n] V/n —1, q)/'
~E.= —g

e m+q'/2m

(23) (31)
(24)

where
Now that the eigenvectors are known it is a simple

matter to compute the renormalization constants for
any sector (charge). First the wave function renor-
malization for the neutron is

(32)V= Q ugatBg.
~ 2nsX

~x=PP~P =~'/f'
For a rough estimate we may take the vzq of Eq. (6)

(25) to be plane waves, i.e. ,

All other renormalization constants are related to (33)

and

(v„,rav„) =P„'(1—n ')
= 1 2n(v—'/f' (26)

Then the matrix element of V is

(n
~

V
~

n 1,—q) = (Qn/2m') q'I„ (34)

&n—1p7+&n nO'n

(v'l)~/—f (27)

For example, from Eq. (27), the renormalized (e—1,
n, v ) coupling constant is

and Eq. (31) becomes

I 2~4

SE„=—
4X'm' e m+q'/2m

(35)

za„rs Lg„~mrs
=Ekok" +golfer+"'. (29)

Now since E, E, is of order aP/f'—, we may conclude
that the field is nearly static, i.e.,

~~"*=go(N~/E~)~+"'. (30)

Now for strong enough cutoff, Eq=m, and Eq. (30)
has the same momentum dependence as Eq. (5).

We may estimate the effect of the crossed terms' in

In principle this limitation could be eliminated by using the
strong-coupling prescription of Pauli. The present method is
considerably simpler, however, so we retain it. Cf. W. Pauli and
S. M. Danc06, Phys. Rev. 62, 85 (1942).

g. &,.———(gm)~/x.

One application of Eq. (28) is that in the e-meson
sector we 6nd that the scattering amplitude has a
crossed and direct pole; the residue of the crossed pole
is (e—1)aP/X' while the residue of the direct pole is
—~'/X'. According to Eq. (22), the poles come together
as f +~; the res—ult is a single pole with residue —aP/X'.
This con6rms the conjecture4 that as Z& —+ 0 the
scattering in all sectors becomes physically equivalent
to scattering in the v. p channel.

Now we must return to the assumptions made early
in the derivation. The Geld splitting assumption is
easily veri6ed by looking at matrix elements between
the physical states of the equation of motion for a~.

For a cutoff such that P, —+ JP '4vq'dq and R '« tw

(nonrelativistic mesons only), we have hE„+47rmm4/
7(mR)9'. For the crude cutoff above, X'~4v./3R3.
Then

AE„—3'N~/7 (Res)4. (36)

Now for our results to be valid, hE must be much
less than E„(Eq. (22)$, which in terms of the cutoff
radius is

E„3e'(Rm)'/47rg02. (37)

3N2(Rm)'/4 «tag,' (38)

and that the quasifree mesons only perturb the isobar
masses slightly,

aE„4 y mg, 'q~ 1 y'

E. 7n) (Rm)3/ A~/
(39)

Inequalities (38) and (39) are easily satis6ed by
taking

1«(mg, ')/(mR) '«(mR)4
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The requirements then are two: that the isobars be
tightly bound,


