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In the present paper we observe that in considering how particle states transform under ®=CPT one
cannot neglect internal symmetries, since ® changes the signs of all conserved internal additive quantum
numbers; and that, furthermore, if a physical theory admits a parity symmetry ®, this symmetry may also,
like ©, effect an automorphism on the group of internal symmetries, as does, for example, CP, the correct
parity operator in the presence of weak interactions. We find all types of particle multiplets for massive
particles that are compatible with local field theory, particle multiplets being defined as the irreducible
corepresentations of the group obtained by extending the internal symmetry group by ® and @©. Of the
thirteen types that exist, only three occur in the various approximation schemes that are at present used to
describe nature. The reason for the nonappearance of the other types is not to be found in the usual postu-
lates of local field theory, because Lagrangian field-theoretical examples of all thirteen types do exist and

are given.

I. INTRODUCTION

NE of the most striking features of elementary

particle physics is the existence of exact and ap-
proximate internal symmetry operations, such as those
generated by baryon number and isotopic spin, which
commute with all elements of the connected quantum
mechanical Poincaré group. These internal symmetry
operations also commute with the antilinear operator
O, traditionally called CPT, which is guaranteed by a
very general theorem! of elementary particle physics
to be an exact symmetry. However, it is at present no
longer possible to suppose that internal symmetries
also commute with space and time reflections since
the discovery? that it is CP, rather than P, which is
(at least approximately®) conserved in weak interac-
tions and which should properly be called the space
reflection operator.

Michel* has proposed that, in general, the geometrical
symmetry group may not be a subgroup of the quan-
tum-mechanical symmetry group (the group of all
transformations which leave the Lagrangian invariant),
but is obtained instead as the factor group of the full
symmetry group by an invariant subgroup. This idea
finds its application in a recent work by Lee and Wick,®
who classify all minimal extensions (to be described
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below) of the full internal symmetry group G by a
parity operator ®.

In the present work we give a complete classification
of the 13 types of particle multiplets, corresponding to
irreducible corepresentations® of the group K, made by
minimal extension of the group of internal symmetries
G by a parity operator @ and the CPT operator ©.
It is not necessary to adjoin an independent time-
reversal operator 7 since it may be defined® by 7'= 0.
This classification is made in terms of the properties of
the irreducible representations of the group G, assumed
known, and the extension of G by ® which is given.
Starting from an irreducible representation of G of
given dimensionality or particle multiplicity, it will be
found that adjunction of ® may or may not double
the multiplicity and adjunction of © may or may
not further double the multiplicity. Complete criteria
for determining these alternatives, explicit formulas
for the corepresentations, and illustrative examples are
given. Our results also include @ fortiori the case of
theories, which one might wish to consider, that admit
of no parity symmetry and, hence, no time reversal.
The adjunction problem is then simpler since only ©
is adjoined, instead of both @ and ©.

As a simple example of the classification given here,
consider some internal symmetry group G and adjoin
only ©. One of the three possible types of corepresenta-
tion of the resulting group is what may be called a
self-conjugate particle multiplet. It occurs if and only
if the irreducible representation D*(g) of G, which
corresponds to the multiplet, is equivalent to a real
representation [i.e., one in which the elements of the
matrices D*(g) are real], in which case © acts within
the multiplet; otherwise, the application of 6 to any
state of the multiplet produces a state outside the
multiplet. If the internal group is the isotopic spin

¢ Corepresentations are described by E. P. Wigner, Group
Theory and its Applications to the Quantum Mechanics of Atomic
Spectra (Academic Press Inc., New York, 1959), Ch. 26. They
occur when one considers transformations of basis vectors in a
vector space under a group that includes both linear and anti-
linear operators.
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group G=SU(2,C), the real representations correspond
to integral isotopic spin, and there can be no self-
conjugate multiplets of isotopic spin 3. This particular
result has been noted recently and thought to be a
consequence of locality.” Actually, it is found here to
depend on locality only to the extent that the CPT

theorem is valid and thus holds also in a CPT-invariant

S-matrix theory.® The first recognition of a degeneracy,
which we now attribute to an invariance generated by
an antilinear operator, dates back to Kramer’s 1930
article,® and the classification of the three types of co-
representation obtained by adjoining an antilinear oper-
ator to a group of linear operators appears in Wigner’s
1932 article on time inversion.® The new content of the
present article is the classification of the 13 types of
irreducible corepresentations obtained by adjoining
both a parity operator of the type discussed by Lee
and Wick® and an antilinear CPT operator © with
0= (—1)%.

Let us now turn our attention to the groups whose
corepresentations we will find in the following sections.
The complete quantum mechanical group of particle
physics includes:

(1) Unitary operators representing the quantum-
mechanical connected Poincaré group P,*. Its elements
are given by (a,4), where ¢ is a real 4 vector and
AESL(2,C) with the multiplication law (a2,45)(a1,41)
= (@2+A(A42)a1,4241), where the Lorentz transforma-
tion A(4) is specified by ¢”+e-a’'=A4(a’+¢-a)AT for
a’= A(A)a. Its irreducible unitary representations have
been found by Wigner.!! We will be concerned here only
with the irreducible unitary representations correspond-
ing to positive mass. A similar analysis could also be
effected for the case of zero mass, but this will not be
done here.

(2) The antiunitary CPT operator 6, whose multipli-
cation law with (¢,4) is given by 0(a,4)07 1= (—a, 4).
Here and elsewhere in the article we will use the same
symbol for the group element and the operator in
Hilbert space corresponding to it. We consider here
only the type occurring in field theory® where O is an

7P. Carruthers, Phys. Rev. Letters 18, 353 (1967); Y. S. Jin,
Phys. Letters 24B, 411 (1967); G. N. Fleming and E. Kazes,
Phys. Rev. Letters 18, 764 (1967); Huan Lee, 7bid. 18, 1098
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8 H. Stapp, Phys. Rev. 125, 2139 (1962) and High-Energy
Phjgs)icx and Elementary Particles, Trieste Lectures (IAEA, Vienna,
1965).

9H. A. Kramers, in his Collected Scientific Papers (North-
Holland Publishing Company, Amsterdam), p. 525.

B E, P. Wigner, Gottinger Nachr., Math-Physik p. 546 (1932).
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2 Other types may be considered (E. P. Wigner in Ref. 4) and
analyzed along the lines given below. A classification of the
representations of the Poincaré group including space and time
reflections is given by Wigner in Refs. 4 and 11. The modifications
which arise when the internal symmetries exist have not been
considered, however.
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antilinear operator satisfying'
6= (—1)%. (1.1)

We use (—1)% as a shorthand notation for the element
of P, % specified by (¢,4)= (0, —1). It is also an element

~of the internal symmetry group corresponding to a

rotation through 2.

(3) Unitary operators g making up the full internal
symmetry group G, assumed compact. Its irreducible
representations will be labeled D*(g). The elements g
commute with (a,4), and with ©:

£0=0g. (1.2)

This important property of © was stated and proven
in Ref. 5. Alternatively, it may be proven, following
Jost’s proof of the CPT theorem in Ref. 1, by noting
that because g commutes with the real Lorentz trans-
formations it also commutes with their analytic con-
tinuation, the complex Lorentz transformations, and
hence with 6. (In general, ® or 7 do not commute
with g.%%) If g is an element of a Lie group in the neigh-
borhood of the identity and generated by the Hermitian
operator F, so that g=14-ieF, we find from the anti-
linearity of © and Eq. (1.2)

OF=—F0©.

Consequently © changes the sign of all internal additive
quantum numbers, and hence carries every state into
its antiparticle state.

(4) A parity operator @, either as an exact or ap-
proximate symmetry. Its commutation relations with
(a,4) and © are

@ (G,A )G)_l = (d’,O'yA *G‘y) ’

where (ad',a’)= (a0, —a) and o, is the antisymmetric
Pauli spin matrix, and?®2
PO 1= (—1)%0. (1.3)

The commutation relations of ® with g are specified
only to the extent that

PP 1=F - g=G (1.4)
is a given automorphism™ F of G, and
M= fEG, (1.5)
where f is a fixed point of the automorphism F,
CfeI=F- f={. (1.6),
From 7=®6 and Egs. (1.2)-(1.5) we find
TgT1=00g0™ 10 1= g1
or
7¢7'=F-g, 1.7

13Tn the traditional formulation which has separate C, P, and
T operators, whose product CPT=6 commutes with g, P and
T cannot both commute with all g since C does not.

M F-1 exists and (F-g1) (F-g2)=F- (g:1g2). -
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and
T2=POr0 = (— 12102 =¢*
or

72=f.

In order to classify particle multiplets, it is sufficient
to study the little group of the 4-vector po= (1,0,0,0),
namely the group of all operators (apart from space-
time translations) which leave the particle at rest.
These include 4 =u4&SU(2,C) (the quantum mechani-
cal rotation group), g&G, @, 6, and their products.
In the rest frame, the rotations # are represented by

u) jmy=2 D% (w)| jv),

1.8)

where the Di(u) are irreducible representations of
SU(2,C) of dimension 2j+41. Now because g and @
commute with # and D¥(x) is irreducible, their repre-
sentatives D(g) and D(®) are scalar matrices in spin
space. However, even though 6 also commutes with
u, it is not diagonal in spin space, but reverses the
direction of all spins, as is known. This occurs because
it is antilinear, so that from ©u=u0 its representative
D(0) satisfies

D(©)D#*(u)=Di(u)D(®).

It is convenient at this point to introduce instead of
O the antilinear operator ©, defined by

00=0 exp(—inJ,)=exp(—inJ,)0, 1.9

which in the usual basis is a scalar in spin space. This
is easily proven by verifying that the matrix D(8)
commutes with all Dé(x):

Di(u)D(00) = Di(u) D exp(—ina,/2)1D(6)
=D[u(—is,) JD(©)=DO)D"u(—ic,)]
=D(0)Du*(—icy)*]=D(O) D u*(—is,)]
=D (0)D (—ioy)u]=D(©)D7 (—ic,)Di(x)
=D(00)Di(u).

Consequently, in order to obtain the multiplet struc-
ture one may suppress all spin and momentum varia-
bles, because g ®, and O, leave the particle at rest,
and their representatives are scalar matrices in spin
space. Equations (1.1)-(1.3) for © are replaced by

90 = 1 b} (1-10)
g60=0.g, (1.11)
PP 1= (—1)2i0,. (1.12)

The introduction of O instead of © recalls the intro-
duction, in the case of the isospin group, of isoparity
or G parity, G=C exp(—inT,), instead of the charge-
conjugation operator C. Like 8, ©, changes the sign of
all internal additive quantum numbers. One may, in
fact, introduce for arbitrary momentum p a correspond-
ing operator 8, which is a scalar in spin space.
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As a further convenience, which will give the same
form to representations for particles of integral and
half-integral spin (hereafter called tensor and spinor
particles, respectively) by eliminating factors of (—1)%,
we introduce on the manifold of one-particle states the

operator ®, instead of @, defined by
CPo=0C, (113)

where o=1 for tensor particles and o=¢ for spinor
particles. Using

fo=(=1¥fEG, (1.14)
Eq. (1.3) or (1.12) is replaced by
®eOo=0o0, (1.15)
by virtue of the antilinearity of @y, and
®o= fo (1.16)

replaces Eq. (1.5). Equations (1.4) and (1.6) remain
unchanged,

(Pog(Po_l=F'gEG, (117)
@ofo(s)o"d:F'fo:fo. (118)
Instead of
7=00, (1.19)
we also introduce for notational completeness
To= PO, (1.20)
which satisfies
To =(P090(P060= 6)029[) = (Po =fo, (1213.)
T0gT o7 1= PeOegB0 1Py 1= PogPy'=F- g. (1.21b)

Equations (1.10), (1.11), (1.15)-(1.18), and (1.21) de-
fine the minimal extension of G by ®o, 8y, and by To.

The new operators @ and 6, have been defined to
act on the manifold of one-particle states. If one were
to apply them to the fields, they would be found to
act nonlocally. However it will be found that when
the fields are conjugated with ® and O, and after the
space-time transformation properties of the fields are
taken into account (e.g., after multiplication by 4° or
v%), the fields become multiplied by the representatives
Of (Po and eo.

The main concern of the present article will be to
find all irreducible corepresentations D*(%) of the group

K={k}={G, G®o, GOy, GTo=G®sO0} (1.22)

in terms of the irreducible representations D*(g) of the
group G of all internal symmetry operators g. This
will be done in two steps. In Sec. IT we first find all
irreducible representations D!(k) of the group

H={h}={G,G®}, (1.23)
which is the extension of G by ®,. Secondly, in Sec.

III, we similarly find all irreducible corepresentations!®

18 This second step is actually effected in Ref. 6. However, we
repeat it here briefly for notational completeness and by a slightly
simpler method.
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Dx(k) of the group K,

K={k}={H,HO.}, (1.24)
viewed as the extension of H by the antilinear operator
O,. Then in Sec. IV the two steps are combined to
yield the D*(k) in terms of D*(g). There turn out to be
13 types of irreducible corepresentations D*(k). They
are displayed together in Table IV, which summarizes
the principal results of the present investigation. In
Sec. V our results are compared with previous analyses,
and in particular a general discussion of the charge-
conjugation operator C is given. The last section is
devoted to illustrative examples from Lagrangian field
theory. This is done by exhibiting Lagrangians which
admit a certain internal symmetry group and possibly
a parity operation. The group formed by these opera-
tors and the CPT operator transforms sets of multiple
component fields in a manner which can be put in
direct correspondence with the corepresentations studied
in Secs. III and IV. Observe that the transformation
laws of the fields, e.g. under parity, are not preassigned
to them, but are instead determined by the Lagrangian.
Consequently, in constructing field theoretic examples,
our main task is to devise suitable interaction Lagrang-
ians, which force particular transformation laws upon
the fields.
All of our results are summarized in Tables I-VIII.

II. IRREDUCIBLE REPRESENTATIONS OF
PARITY AND INTERNAL
SYMMETRY GROUP

We seek the irreducible representations D(k) of the
group H={h}={G,G®}. It will be found that they
are expressible in terms of the irreducible representa-
tions D*(g) of G, assumed known. Since k=g or k= g®,,
we consequently must obtain D!(g) and D*(g®). How-
ever, from the condition that D*(%) be a representation,
we have Dt(g®o) = D*(g)D*(1- ®,), for 1EG, and hence it
is clearly sufficient to specify D*(g) and D*(1- Py), which
we shall write as D!(®;). The equations that are
required are (1.16)-(1.18), which we reproduce here:

Pog®o'=F-g, 2.1)
®*= fo, (2.2)
®ofo®e =F- fo= fo. (2.3)

Since G is a subgroup of H, every representation
D*(h) is also a representation D!(g) of G. The group G
is compact, by assumption, so a basis may be chosen
such that D!(g) is completely reduced:

Dig)=2. @D*(g),

where D*(g) is an irreducible unitary representation of
G. Let us concentrate our attention on the set |sa),

ZUMINO AND D,
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which is the orthonormal basis for D*(g):

glsa>=Zﬁ: D2sa(8) |56). (2.4)

Multiply this equation on the left by ®:
G)ong(I): (pog(po‘-l(?o,SOO
=F'g@015a>=2; D254 (g) ®o| sB)

and now replace g by F~'-g, where F~ is the inverse
automorphism to F. One finds '

8(5’015&>=§ Dego(F1-g) ®o| sB). (2.5)

Consequently, the ®[sa) form a basis for the repre-
sentation D*(F~*-g), which is obviously unitary and
irreducible because D*(g) is, and F!G=G. There are
now two possibilities: Either D*(F-1-g) is equivalent
to D*(g), which we write as D*(F-1-g)~D*(g) and
designate as case A,, or D*(F~1.g) is inequivalent to
D:(g), D*(F1-g) not~D¢*(g), case B,.

We consider first case 4, and let P;~! be the unitary!s
matrix which effects the equivalence,

D*(F-1-g)=P,D*(g)P,. (2.6)

This matrix, which depends on the automorphism F
induced by ® and on the representation s, is unique up
to a phase factor since if P,/ also satisfies Eq. (2.6),
then P;7'P,” commutes with all D*(g) and must be a
constant times the identity. This constant is a phase
factor because P, and P, are unitary. We have further
that

D*(F~2-g)=P;'D*(F~'-g)Py=P2D*(g)P.?
=D*(®5%®")=D*(fo g fo)
= (D) (f)D*(g)D*(o) @7

by Egs. (2.1) and (2.2). By the argument given above,
P2 and D*(f,) differ at most by a phase factor. We
now choose the arbitrary phase factor in P, so that

P2=D*(fo). (2.8)

Only the sign of P, remains undetermined. We will see
that this sign may be regarded as the intrinsic parity
of a multiplet.

Let us return to Eq. (2.5) and write

g®o|sa)y= % [P.,'D*(g)P.Jpa®o]sB)
or
gL®o 2; Piyalsv)]
=§ Do (9)[®o {: P plsy)]. (2.9)

18 Reference 6, Chap. 9. We will again and again make use of
the simple theorems given in this chapter.
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This shows that the orthonomal basis vectors

[seh= @0 X P, alsy) (2.10)

also transform according to the irreducible representa-
tion D*(g) and hence!?

(sB|sa)1=Noas, (2.11)

where M is a constant independent of @, and |A|<1
since the vectors are normalized. We next show that
with the choice of phase of Eq. (2.8), A is real. From
Egs. (2.10) and (2.11) we have

(s8] ®o| s6)=AP ;4.
The complex conjugate of this equation yields
(s8] ol sa) T*=N*Py*pa=N*Pi s
= (sa| ®of [ 8)
=(sa| @57 |sB)
=(sa| ®®¢ 2| sB)={(sa| ®of"|5B)
= Zyi (sa| @o| s7)D2s (fo™)

=2 (sa| ®o[s7)Pi s

by Egs. (2.2) and (2.8). Hence
(set| ®o| $B)=N*Piag,
and upon interchanging « and 8 we find
{sB| ®o| s)=A*Pg,.

Consequently we find A=\*, so A isreal and —1<A<L1.
Consider the possibility A=-1. In this case, by
Egs. (2.10) and (2.11),

®o Y P lyalsy)y==|sa),

and hence,

(Polsa)=:I:Zﬁ Pige|sB). (2.12)
The sign alternative &4 could be absorbed into the
indeterminacy of sign of P,; however, we retain this
notation as a reminder that either sign is possible.
Equation (2.12) shows that if A==1, the operator @
acts within the multiplet |s,a). Since the g already
acts irreducibly there, we have obtained, if A=21, an
irreducible representation of H. It will be seen below
that the case —1<A<1 may be reduced, by a change
of basis, to the present case and so in case 4,

D*(F-g)=P,D*(g)P..
Dt(h) is given by
Di(g)=D*(g), D®)==P.. (2.13)

17 Reference 6, p. 115. We will make frequent use of the theorem
for irreducible representation s, s’: (sa|s’8) =A8ss'das.
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TaBLE I. Irreducible representations Dt!(k) of the group H
={G,G®}, where @y ig@p=F"1.g and ®o*= fo&G. The elements
g of G are linear operators as is ®o.

Types 1 and 2
D*(F-1.g)=P,'D*(g) P,
P2=D(fo)

Type 3
De(F1-g) not~D*(g)

20=("" parp)
pey=(5 P9

Dt(g)=D*(g)

Dt(ﬂ)o)zd:Px

The matrix P, is fixed by Eqs. (2.6) and (2.8). This

result is recorded in Table I, the two signs in Eq.

(2.13) corresponding respectively to cases 1 and 2.
There remains to be examined the situation when

—1<<1. Let us introduce a new set of basis vectors
| se), defined by
[sa)i=A|sa)+ (1—=N)2| sa);. (2.14)

Because |sa); and |se) transform according to D*(g),
so does |sa).. Using Eq. (2.11) one may easily verify
that the set of vectors {|sa),|sa),} form an ortho-
normal set. From Egs. (2.10) and (2.14) we have

®o|sey=3" Poyal A sy)+(1A—2)12|sy),]. (2.15)
v
Multiplying this equation by ® and solving for
®o|sa), one obtains

o l Sa>1= (1 — )@)—-1/2{2 Ps_l,,a @ l Sa)-k(?olé‘a)} .

By virtue of Egs. (2.2) and (2.8), we have
®ofsa)r=(1=N)VH3" Pyye|sa)
Y

—A X Poye[A|s1)+ (1= sa), ]},

where Eq. (2.15) has been used for the last term, and
hence,

®o|se)1=2 Psya[(1—N)2|sa)—A|s50),]. (2.16)

Equations (2.15) and (2.16) constitute a representa-
tion of ® in the orthonormal basis {|sa),|sa).},
N (=N

D((Po)=P‘,®((1“>\2)1/2 > (2.17a)

-\

On the same basis the g are represented by

1
D(g>=D*(g>®< 1) . (2.17b)

This representation is easily reduced, the irreducible
components being given by Eq. (2.13). This completes
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the proof that in case 4 all the irreducible representa-
tions are given by Egs. (2.13). '

The determination of the sign alternative in Eq.
(2.13) is an intrinsic property of the multiplet corre-
sponding to the irreducible representation D*(%) and
is the generalization of the present case of the intrinsic
parity of a particle. To see this one must verify that
the different signs yield inequivalent representations.
Let us assume the contrary. Then there exists a matrix
U such that D*(g)=UD*(g)U' and UP,U'=—P,.
But, because D*(g) is irreducible, the first equation
implies that U is a phase factor. The second equation
then reads P,= — P, which is a contradiction.

Let us turn to the second alternative, case Bi:
Ds(F'-g) not ~D(g). By Eq. (2.5) the vectors
®o|se) transform according to D*(F~!-g), which is in-
equivalent to D*(g), so,!” (sa|®o|s8)=0, and hence the
set {|sa),®o|sa)} forms an orthonormal basis. This
basis yields the representation .D'(k) for case Bi:
DS(F—I'g)y is nOtNDs(g):

D*(g) 0
Dt(g)= ;
® < 0 Ds(F1-g)

s 7).

(2.18)

It must be verified that this representation is ir-
reducible, for which it suffices to show that any matrix
M which commutes with D¢(%) is a constant matrix.!®

Let us write
M 11 M 12
M=< ,
M 21 M 22

so from M Dt(g)=D*(g)M, one has

C‘jnps(g) MmD‘(F“l'g))

uD*(g) MnD*(F'-g)
Ds(g)Mn D*(g)M 12 )
C(FrgMn D*(F-g)Ma

Hence, by Schur’s lemma,' Mis=My=0, and My
=51, M =35, where s1 and s, are scalar matrices, or

S$1 0
r( ).
0 So.
From the condition MD!(®o)=D!(®¢)M, one easily
finds s1=s$9, 50 M is a scalar matrix and the representa-
tion (2.18) is irreducible, as asserted.
Lee and Wick, in Ref. 5, classify the automorphism
induced in G by @, according to whether it is inner
(namely, there exists a g,&G such that F-g=g,g¢g,7%),

case 4, or outer (there is no such g,), case B. If case
A holds, then every representation D*(g) of G will be

ZUMINO AND D. ZWANZIGER
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of type A4,, D*(g)~D*(F'.g), and the equivalence
transformation P, that we have introduced will coincide
with D*(g,) to within a phase factor. If case B holds,
then the representation D*(g) may be either in case
4, or case B,. Equations (2.13) and (2.18) give all the
irreducible representations of the group H={G,G®}.
These are reproduced in Table I.

III. COREPRESENTATIONS WITH CPT
CONJUGATION

This section follows the general method of the pre-
ceding section and, so as not to bore the reader, the
justification of certain statements will now occasionally
be omitted if it may be found after the corresponding
statement there. We seek the irreducible corepresenta-
tions D*(k) of the group K= {k}= {H,HO,} in a vector
space where #C&H acts unitarily and ©, antiunitarily.
Our immediate problem is not the most general problem
of extension by an antilinear operator, because, by Eq.
(1.10), (1.11), and (1.15),

60h60—1=h (31)

and

O=1. (3.2)

However, it is just as simple to consider the general
problem, and this will provide results that are useful
later. So let us replace 6o by 4 in Egs. (3.1) and (3.2)
and let

AhAr=E-h, 3.3)
A?=eCH, (3.4)

where ¢ is a fixed point of the automorphism E,
Aed'=FE-e=e. (3.5)

We seek the irreducible corepresentations
D*(k) of the group K={k}={H,HA}.

Because A acts antiunitarily, D*(k) constitutes a set
of unitary matrices which are a representation D*(k)
of H and satisfy

D*(hA)=D*(H)D*(A4), (3.6)
D*(4k)=D*(A)D* (k) , (3.1
D*(4%)=D*(4)D¥*(4) = D*(e). (3.8)

We observe that it is sufficient to specify D*(k) and
D*(4). Furthermore, if a unitary change of basis U is
made such that

D(h) — D'*(k)=UD*(h)U", (3.9a)
then, because 4 is antilinear, one easily verifies that
D*(4)— D'*(4)=UD*(4)U"T, (3.9b)

so that the representative of an antilinear operator
does not undergo a similarity transformation unless
U is real. We call ‘a corepresentation irreducible if it
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cannot be brought into diagonal block form by a
transformation of the type (3.9).

Let the set |fa) be the orthonormal basis for the
irreducible representation D!(k) of H,

k| la>=§ Diga(h)|1B). (3.10)

Multiplication on the left by 4 yields
Ah|ta)y=(AhA™) A |ta)=3" D*s,(h)A|18),
8

since 4 is antilinear. Upon replacing # by A~%hA4
=E"!-h&H, one finds

WA |t)=Y D*s(E2-I)A|18).  (3.11)
8

Consequently, A4 |fa) forms a basis for the unitary
irreducible representation D**(E~1-%) of H.

Let us now explore the possibility that D®*(E1-%)
~Dt(h). Let A; be the unitary matrix, depending on
the automorphism induced by A4 and the representa-
tion ¢, which effects the equivalence

D™ (E-1-h)=A D! (WA, (3.12)

It is unique up to a phase factor. Upon writing E-/
for # and taking complex conjugates, we have

D‘ (E—2.h)= A t*_lDt*(E—l'h)A t*
=AHA DR AAF,
and hence, using Egs. (3.3) and (3.4),
D(e *he)= (D)~ (e)D*(h)D*(e)
= (4:A4*)7'D'(h)(4.A)
or
D(h)D*(e)(A A *)'=D*(e)(4:4*)7D*(h)

for all k. Because D*(k) constitutes an irreducible
representation, D(e)(4.4:*)! is a scalar matrix, and
in fact a phase factor since the matrices are unitary:

Dt(e)(4:4:*)'=n1
or
Dt(€)=7]AtA¢*; I‘V]'=1. (3.13)
Let us now set z=e¢ in Eq. (3.12). By Eq. (3.5) we find
D*(e)=A D' (e) A4y,

which yields, when Eq. (3.13) is substituted into the
left- and right-hand members,

AFA=A7 (A AX)A =04 54,,

and so 7 is real. Because it is also a phase factor,
n==1, and Eq. (3.13) becomes
A A¥=+De). (3.14)

This equation is the analog of Eq. (2.8) for the unitary
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operator ®. The upper and lower signs in Eq. (3.14)
will be designated as types 1 and 2, respectively.
Let us substitute Eq. (3.12) into Eq. (3.11):

hA |te)= % [AD () A JsaA |16)

or

h[% A eA |18)]=22 Dya (h)[§ A, A18)]. (3.15)

Consequently, the orthonormal basis vectors

lta)15§ A aA |16) (3.16)

also transform according to the irreducible representa-
tion D*(/) and hence!

1Bty =2 (Bl A| A ya=Nso  (3.17)

or

(18| A |tay=2A g, (3.18)

where X is independent of « and [A| <1. It will now be
shown from the antiunitarity of 4 that A\ vanishes for
type 2.1®* We have
(B 4 |ta)=[(A18] 47| tor) I*
(where (43| is the bra corresponding to the ketd |18)),
=[(4iBle|te)T*=3_ [{AB|tv)D*ya(e) T*,
v
by Eq. (3.4), so

Mupa=2 (D) ay(e)(ty[A]18)
= ﬁ:z (A LA t*)—la'y)\-A tyB

by Egs. (3.14) and (3.18), or
M igo=ENAF AT A ) ap= A Flapg= £\ 43a.

Consequently, A vanishes when the lower sign holds,
which is type 2.

We next concentrate our attention in detail on type 1,
AA*=D'(e). The phase of 4, has been arbitrary until
now, and it is convenient to choose it such that \ in
Eqgs. (3.17) and (3.18) is a real non-negative number,
0<AL 1. If A=1, then by Eq. (3.17), |ta)=|ta), and
hence by Eq. (3.16),

A]ta)=§ Aa|18), (3.19)

and consequently A acts within the multiplet. Since
the % acts irreducibly there, we have obtained, if A\=1,
an irreducible representation of K. It will be seen
below that the representation obtained when A <1 may

18 It is at this point that our method departs from Ref, @,
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TasLE IL Irreducible corepresentations D* (&) of the group K = {k} = { H,HO,}, where the “CPT" operator 6y is an antilinear operator
satisfying ©5~%00="%, 6’=1, and H ={G,G®0} is the group of linear operators obtained by extending the internal symmetry group G
by the parity operator ®. This table also gives the irreducible corepresentations of the group {G,GO,} if D*(k) and 6; are replaced by

D#(g) and O,.

Type 1 Type 2
Dt* () =6tDt (h)0, D* (k) =0, 1Dt k)0, Type 3
00*=1 O =— Dt*(h) not~Dt (k)
D(h) =Dl piy=pra(y ¢ p=("3" o)
D*(80) =06, D*(00) =0,® 0 —1 D%(8) = 01
1 0 10

be reduced to the one obtained here, and so for type 1,

D*(EY-h)=AD*(h)A, and A.A.'=D), (3.20)
Dx(k) is given by
D*(k)=D*h), D(A)=A4A.. (3.21)

The phase of D*(4)= A4, may be changed by multiply-
ing all basis vectors by a common phase factor.

To deal with the possibility 0<A<1, we introduce
a new set of basis vectors |/a), defined by

lta)1=7\|ta)+ (1-—)\2)‘/2|ta)1. (322)

Because of Eq. (3.17), the set of vectors {|fa),|ta).}
forms an orthonormal basis. By Eq. (3.16) we have

4 Ita>=§ AN 8)+(1—=22)12[18)].  (3.23)

Multiplying this equation by 4, and recalling that A2=e¢
and that \ is real, one obtains, using Eq. (3.20),

e| fa>=Zﬂ: Dga(e) liﬁ>=§ltﬁ)(x4u4t*)aa
= % Afsa N |18)+(1—N)2A|18).],

or
3| #8)4 1= N | ta)+ (1—=N)24 | tar),
B
=X\ 25: AN 8+ (1—2)2[48),]
+(1=N)"24 | ta), ,

in which Eq. (3.23) has been used. Solving for 4 |fa),,
one obtains

Al ta>1=§ A A=N)12[18)—N[18),]. (3.24)

Equations (3.23) and (3.24) yield the representative
of A,
A (A—N)v2

D(A)=A¢®<(1_)\2)1/2 > (3.252)

—X
in the basis {|/a),|/@):}. In this basis the % are repre-
sented by

1 0
D(h)=D‘(h)®<0 1) . (3.25b)

This corepresentation is easily reduced by a real orthog-
onal transformation, whereby the representatives of
the unitary and antiunitary operators transform in the
same way, according to Eq. (3.9). The irreducible
components of the corepresentation are then found to
be of the form (3.21). This completes the discussion of
type 1.

We now return to type 2, 4,4 *= — Dt(e), for which,
as we have seen, the right-hand side of Eq. (3.17)
vanishes. Consequently the vectors

{|ta), lta>1=§2 AipaA [18)}

form an orthonormal set. We have

A Ita>=§ Aga| 81 (3.26)

and also
Alta)1=3 A5 A 18)=3 A ™sae] 1)
8 6

= Bz Dtyg(e) A sa|ty)=—T (A A FAF ) 1| tv)

or

A’fa)1=—§ Apa|18)- (3.27)

Consequently, we find for type 2,
D*(E7-h)=A'DYh)A, and 4,4*=—D(e), (3.28)
that D*(k) is given by

D (h)=D'*(h)® <1 1) , (3.29a)

D“(A)=At®<1 _1> . (3.29b)

It must be verified that this corepresentation is ir-
reducible. The representation D*(k) [Eq. (3.29a)] of
the subgroup H is elready completely reduced. We
may require that this representation of H remain
invariant when attempting to reduce the full corepre-
sentation, according to Eq. (3.9), by a transformation
U. Using an argument similar to that which follows
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TasLE IIL Irreducible corepresentations D*(J) of the group L= {l}={G,GTo}, with T4 gTo=F"1-g, Te*= fo.
The elements g of G are linear operators; 7y is antilinear.

Type 1 Type 2
Do*(F1-g)=T,D*(g) T, D (F-1.g) =T, 1D (g) T, Type 3
T, =D*(f0) I, =~D(fy D*(F1-) not~D*(¢)
Do =Dg) p@-0@a(* ) 22@=("P pirp)
Do =T. pea=re(, ") o=, P'P)

Eq. (2.25), one finds that U must be of the form

o
Y
¥ O

It is unitary and may also be required to be unimodular,
since if U is multiplied by a phase factor, this does not
aid in the attempted reduction, but only multiplies
D*(4) by a phase factor. Consequently it suffices to
consider transformations of the form

a

U=1®< ) f*) laf™+ |8 =1. (3.30)

However, as one may easily verify, D*(4), given by
Eq. (3.29b), remains invariant when transformed with
this U according to Eq. (3.9b). Consequently the co-
representation (3.29) is irreducible. It is interesting to
note the curious phenomenon that the basis vectors of
the corepresentation (3.29) may be subjected to the
transformation (3.30) and the corepresentation remains
invariant. The particle multiplet which forms the repre-
sentation space of D*(k) has twice the dimensionality
of that of the multiplet corresponding to D*(%), even
though there is no quantum number which distinguishes
between |la) and |ta)1=> g A g4 |1B).

Finally we consider the remaining possibility,
D®(E™ k) not~D*(h), which we call type 3. In this
case, because the vectors of the sets {|/a)} and {4 |t)}
transform, by virtue of Eq. (3.11), according to in-
equivalent representations, they are orthogonal and
consequently form an orthonormal set when taken
together. From 4 |fa)= (4 |te)) and

A4 lfa>)=A2lta>=el¢a)=Zﬂ D'sa(e) [16) ,

in which Eq. (3.5) has been used, we find that the co-
representation D*(k) for type 3,

D*(E-*-k) not~D*(k) (3.31)
is given by
Dt (k)
D*(h)= .32
® ( D‘*(E‘l-h)>’ (3:322)
D“(A)=<1 Dt(e)>. (3.32b)

One may easily verify, using the arguments given below
Eq. (3.29), that this corepresentation is irreducible.

The three types of irreducible corepresentations of
the group obtained by extending any group of linear
operators H by any antilinear operator 4 are given
respectively by Eqgs. (3.21), (3.29), and (3.32). We
now apply this result by identifying the abstract group
H and operator 4 with some physical groups and
operators. Let H be the group of all internal sym-
metries extended by parity, H={G,G®}, and let 4
be the CPT operator 6o Then the desired irreducible
corepresentation D*(k) of K={H,HO,} in terms of
the irreducible representations D!(%) of H are obtained
from these equations by the substitutions

A—>90, At—>9¢, E—l'h—‘>h7
e—1, Dile)—1, (3.33)

by virtue of Egs. (3.1) and (3.2). Equations (3.12)
and (3.14) become, respectively,

D (h)=0;"D!(h)0, (3.34)
and

6¢9¢*=:h1. (3.35)

Because O, is unitary, the upper or lower signs imply
that ©, is symmetric or antisymmetric. The result of
the substitutions (3.33) is recorded in Table II.

As a second application of the theory of corepresenta-
tions, Table IT may also be used for the irreducible
corepresentations of the group {G,GOo} obtained by
extending the internal symmetry group G by ©,. This
group will be the full symmetry group (apart from P, 1)
in theories without parity invariance; otherwise it is a
particular subgroup of K={G,G®?,GO:,GP:O}. To be
consistent with the notation used elsewhere in the

present paper, one should replace
Dk) and ©, by D*(g) and 6O, (3.36)

for the corepresentations of {G,GO.}. Equations (3.34)
and (3.35) then become

Ds*(g)=93‘1D'(g)9,, ’
0.0 F==+1,

(3.37)
(3.38)

and O, is symmetric or antisymmetric. A canonical
form for O, is given in Sec. V. We note that the three
types of corepresentation of Table II correspond re-
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spectively to D!(h) or D*(g) being potentially real,
pseudoreal, or complex,’® the matrix 6, or O, being
respectively symmetric, antisymmetric, or nonexistent
in the three cases.

A final application is to let H=G, the group of
internal symmetries, and let 4= T, the “time-reversal”
operator. The irreducible corepresentations D?(}) of
the group L={G,GT7o} in terms of the irreducible
representations D*(g) of G, are obtained from Egs.
(3.21), (3.29), and (3.32) by the substitutions, justified
by Egs. (1.21),

A—> Ty, A—T,, h—yg, D'(h)— D*(g),
e~ fo, EVh—F1lyg
as effected in Table II1.

(3.39)

IV. EXTENSION OF INTERNAL SYMMETRY
BY PARITY AND “CPT”

In the last section we found and classified the irre-
ducible corepresentations D*(k), given in Table 111, of
the group K= {k} = {H,HO,} obtained as the extension
of H by 6, satisfying

OohO¢ =1,
O¢’=1.

(4.1)
(4.2)

The type of corepresentation D“(k) depends on the
existence and symmetry or antisymmetry of a matrix
O, satisfying, for each irreducible representation D*(k)
of H,

D®(h)=0,"D!(h)0,. 4.3)

We now apply this criterion to the representations
D(h), given in Table I, of the group H={G,G®}.
Equations (4.1) and (4.3) are respectively equivalent to

607'g0o=¢, (4.4)
001 PeOe= @ , (45)

and to
D*(g)=6,"D!(g)0., (4.62)
Dt*(@o)=9¢_lDt((Po)et. (46b)

We will express the corepresentations D*(k) in terms of
the irreducible representations D*(g) of G.

We first consider representations D‘(%) of types 1
and 2 for which

DS(F_I'g)f—Ps"‘lD“(g)Ps, 4.7
so that D*(k) is given by
D¥(g)=D*(g), D®o)==P,, (4.8)
where
Flg=0@"g®0, Cd=focG, (4.9)
and
P2=Ds(fo). (4.10)

1 See, for example, Ref. 6, pp. 285-288. Usual convention
designates our 6, by C%.
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We must find out under what conditions Eq. (4.6)
holds for these types of representation. From Egs.
(4.6a) and (4.8) we find that ©, must satisfy

D*(g)=6,"D*(g)0,. (4.11)

This is recognized as the criterion for the type of
corepresentation of the group {G,GO.}, obtained by
extending the internal symmetry group by ©,. These
corepresentations are obtained from Table IT by the
substitution H — G, k— g, D'(h) — D*(g), 6,— O.,.
We observe that if the representation D?*(g) is complex,
then no O, exists, and hence no 0; exists. The form of
the representation D*(k) is then given by substituting
Eq. (4.8) for D!(k) into the entry for case 3 in Table I1:

D"(g)=<Ds(g) Ds*(g)), (4.12a)
Du(@o)—;i(P' P,*>’ (4.12b)
D“(Go)=(1 1>, (4.12¢)

which also gives

P,

One may easily verify that the two possible sign
determinations in Eq. (4.12b) correspond to inequiva-
lent representations, by combining the argument which
follows Eq. (2.17) with the proof that the representa-
tion (3.32) is irreducible. These two corepresentations
appear as entries 9 and 10 in Table IV.

Let us now consider the alternative possibility,
namely that D*(g) is potentially real or pseudoreal,®
so that a unique solution (up to a phase factor) to
Eq. (4.11) exists, and hence if there is a ©,, it is given
by

6t=98.

The remaining condition that ©, must satisfy is Eq.

(4.6b), and so, by Eq. (4.8), 6, will exist, and be given

by 6,, if O, satisfies
P*=0,"1P.0,. (4.13)

This condition may be expressed in another way. Let
us substitute F1-g for g in Eq. (4.11), then, with O,
written for ©,, we have

D*(F1-g)=0,-D*(F1-£)0,=0,P,D*(¢) P,0,,
where use has been made of Eq. (4.7). If we set

T,:=PHO,, (4.14)
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TasrLE IV. Irreducible corepresentations of the group K ={k} ={G,G®,,G00,GTo}, where To= P¢Bo, Py lgPe=F"1-g,
Co*= fo£G, B g0 =g, O*=1, B 1POo= Po; g&G and @ are linear operators, Oy is antilinear.

D*(F1-g)=P,'D*(g) P,
Ds* (g) =0,71D* (g)e:

Pl2=Ds(fo) D*(g) =6,71D%(g)0,4
T,=P.0, Ds(F1-g) not~D*(g)
0.0*=1 0,0,*=1
T.T*=D*(fv) T Ts*=—D*(fo) 0,0.*=1
D) =D*(s) p@-0@e(' ) 2@=("9 Lmy)
D¥(®0) =P, D"((?o)=P.®(1 ~1) DU(®) = (1 D’(f°))
D@0 =6, pren=os(; ') pre=(* )
Types 1, 2 Type 3 Type 4
0,0,*=—1 0.0,*=—1
TsTs*=—D*(fo) T.T*=Ds(fo) 0,0 =—1
pg=-pe(' ) pw=-pes(’ ) =" )2t )
pwy=xpe( ) e=re(’ _)) o=, et )
D“(Go)=6.®(1 _1) Du(eo)=e.rzz>(1 “1> D¥(69) = (e. e‘)®(1 —1)
T'ypes 5, 6 Type:7 Type 8
D#(F1-g) =P, D*(g) P,
D**(g) not~Ds(g) D*(F1-g)=T,D* ()T,
P2=Ds(fo) D#(F1-g) not~D*(g)
T.Ts*=D*(fo) T\ T*=—D*(fo)
2@=("% ) 2@=(" pu) p@=("? pap)e(t 1)
COREY G @)= (pa ) pren=(_pa Me(* )
D“(Go)=(1 1) D“(Go)=(1 1) D"(e<,)=(1 1)@(1 1)
Types 9, 10 Type 11 Type 12

D#(F1-g) not~D**(g) not~Ds*(g)

De(g)
s(F—1.
D“(g)=< D g) Ds*(g) )
Ds*(F1.g)

D*(fo)
D“<"’°)=<1 D**(Jo)
1

1
1

D"(OO) =1

Type 13

then by reference to Table III we recognize that the usmultiply Eq. (4.13) on the left by PO, and on the
representation D*(g) is of type 1 or 2 with respect to right by 6,* This gives
extension by 7%,. This could have been recognized by P.O.P*0.*= P20.0.*

direct inspection of Egs. (4.7) and (4.11) because :
To= ®¢Oo and equivalence relations are transitive. Let and hence, by Egs. (4.10) and (4.14), the condition
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(4.13) for the existence of ©, is the same as the condition
TsTc*=D8(f0)eses*~ (4.15)

Inspection of Table II [with D!(k)— D*(g) and
6, — 0, shows that D*(g) is of type 1 or 2 with respect
to extension by 8y, according as ©,0,*=1 or 0,0,*=—1,
and likewise, by Table III, it is of type 1 or 2 with re-
spect to Ty as T, T*=D*(fo) or T.T*=—D*(fo).
Consequently the condition (4.13) or (4.15) for the
existence of a 0, is the condition that D*(g) be of the
same type with respect to extension by ©, and by 7.
Let us now consider the various possibilities:

(a) 08,*=1 and T.TF=D:(fo). (4.16)

In this case Eq. (4.15) is satisfied, so O, exists and is
given by O,, which is symmetric. Hence, by Table II,
type 1 and by Eq. (4.8), the representation D*(k) is

given by
D*(g)=D*(g), (4.17a)
D*(®y)==+P,, (4.17b)
Du(eo)=esy (4.17C)
and hence,
D“(‘I’o)=D"((Po)D"(80)=:{:P398= :l:T,. (417d)

The opposite signs yield two inequivalent representa-
tions which are recorded as entries 1 and 2 in Table IV.

(b) 0,6 =—1 and T.T*=—D(f)). (418)

Again Eq. (4.15) is satisfied and ©; is given by ©,,
which is antisymmetric. Hence by Egs. (4.3), (4.8),
and Table II, type 2, the corepresentation D*(k) is
given by

D"(g)=D"(g)®<1 1>, (4.19a)
Du(@0)=ip,®<1 1>, (4.19b)
D“(90)=63®<1 _1>, (4.19)

—1
Dum)=Du<<s>o>1)u<eo>=:&m(1 ); (4.194)

Te=P.0,.

Again the opposite signs yield inequivalent corepresen-
tations which appear as entries 5 and 6 in Table IV.

(c) 6,8*=1 and T,T*=-—D(fo), (4.20)
or

(d) 60*=—1 and T.T*=D:(fo)). (4.21)

Equation (4.15) is not satisfied and consequently no
O, exists so that the corepresentation D*(k) is of type
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3 in Table II. From Eq. (4.8) we find for D*(k)

D“(g)=<D8(g) Ds*(g)), (4.22a)
Du(@o)=i(P' P'*), (4.22b)
D“(eo)=<1 1). (4.22¢)

This corepresentation may be expressed in another
form. From Eq. (4.20) we have instead of Eq. (4.15)

T.T*=—D*(f0)0,0,*, (4.23)
or, by Egs. (4.10) and (4.14),
P,0,P*0,*=—P20,0,*,
which reduces to
P*=—0,"P,0,. (4.24)

If this equation and Eq. (4.11) are substituted into
Eqgs. (4.22a) and (4.22b), they become

D*(g)= (Da ©

GS‘IDs(g)G) ’

P,

D"(<Po)=:l:< )
—0/1P,0,

Now let the corepresentation D*(k) be transformed
according to Eq. (3.9) with

1
U=< ) .
0,
Then we find

1
Du(g)aDu'(g>=Ds<g>®( 1), (4.26a)

(4.25)

1

D¥(®p) — D¥(®g)==£P,® ) (4.26b)

and

(-
pu(eo)—»D“’<eo)=<1 9)(1 1)<1 b

Duf(eo)——-(e. G’T)=e.®<1 il). (4.264)

In the last line the upper or lower sign holds according
as O, is (c) symmetric or (d) antisymmetric, ie.,
according as D*(g) is (c) real or (d) pseudoreal. In

1
T

) , (4.26c)
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these two cases further transformation by

U=1<8><1 :H) (4.27)

interchanges the two signs in Eq. (4.26b) and leaves
all other equations invariant. Consequently the two
opposite signs in Eq. (4.26b) yield equivalent corepre-
sentations. Since we are interested only in equivalence
classes of corepresentations, we may suppress the lower
sign in Eq. (4.26b). The two cases considered here, (c)
and (d), appear as entries 3 and 7 respectively in Table
IV. Our analysis of types 1 and 2 of D3(g),
D*(F-g)~D*(g), is now complete.
The analysis for type 3,

D*(F~'-g) not~D(g), (4.28)

follows similar lines. The representation D*(k) is, by
Table I,

Di(g)=

<D8 ® (4.292)

Ds (F“-g)) ’
DK@ = (1 D‘(fo)> '

The question to be settled is whether or not there
exists a O, satisfying Egs. (4.6). It is convenient to
decompose O, into four square matrices

0,
Ou O12
93= < ) .
021 Oq
We multiply Eq. (4.6a) on the left by 6, and substitute
into it the expressions (4.29a) and (4.30):

euD‘*(IH- g)>
02:D*(F~1-g)

(4.29b)

i, j=1,2:

(4.30)

<911D“* (®
021D (g)

(e ey
S(F1-9)0a1 D*(F1-2)0,

There are three possibilities to be considered:

D#*(g)~D*(g) not~D*(F~1-g),  (4.32)
D¥*(F1-g)~D*(g) not~D*(F1-g), (4.33a)
which as we shall see is equivalent to
D#*(g)~D*(F~-g) not~D(g), (4.33b)
or
D#*(g) not~D>(g)
and D*(g) not~D*(F1-g). (4.34)

If the first holds then!® ©;,=0,=0, if the second
holds 911=622= 0, and if the third holds then 612=921
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=011=02=0. Consequently, if relation (4.34) holds
0,=0 and 6; does not exist, D*(k) is of type 3,
Table II. In this latter case, if Eq. (4.29) is combined
with entry 3 in Table II, one obtains

De(g) )
D“(g)= b (F. 'g) D“*(g) )
D (F-g)
(4.35a)
D¢( fo)
D¥(®)= ! (o)’ (4.35b)
| 1
1
D09= |, b (4.350)
1

which is recorded in Table IV as entry 13.
Let us now suppose relation (4.32) holds, so that
Ds(g) is potentially real or pseudoreal,

Ds*(g) =98“1D’(g)95, (436)

and 0;,=0,=0. We thus find that there exists a
unitary ©,, satisfying Eq. (4.6a), and its diagonal
blocks 6;; and 6,, differ at most by a phase from 0,.
We may set ©1;=0, since the phase of the latter is
arbitrary, so O, takes the form

)
USH

where 5 is a phase factor. If this expression and Eq.
(4.29b) are substituted into Eq. (4.6b) one obtains

n=1, and hence,
9¢=< ) )
0,

We observe that 8, is symmetric or antisymmetric as
9, is, and so the representation D*(%) will be of type
1 or 2 in Table II, depending on whether D*(g) is
potentially real or pseudoreal. If Egs. (4.29) and (4.37)
are substituted into Table II, the entries 4 and 8 in
Table IV result, as D*(g) is potentially real or pseudoreal.

We now consider the only remaining possibility,
namely that relation (4.33a) holds. By reference to
Table III, we see that D*(g) is then of type 1 or 2
with respect to extension by 7T, the matrix which
effects the equivalence (4.33a) being T,:

D*(F.g)=T"'D*(g)T,.

(4.37)

(4.38)

If we take the complex conjugate of this equation and
multiply on the left by 7,* and on the right by T.7, we
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obtain
D**(g)=T*D*(F*-)T,T, (4.39)

which establishes the equivalence of relations (4.33a)
and (4.33b). By comparing these last two equations
with (4.31), we find that ©1,=\T, and Oy=uT,7,
where A and p are arbitrary numbers, and so

0 VAR
9¢=< ) )
wlsT 0

since we have already observed that when Eq. (4.33)
holds ©;;=03,=0. From the unitarity of ©,, we con-
clude that |N\|?=|u|?=1. Because the phase of T, is
arbitrary, we may choose =1 and

0 T,

6¢=< > .
wIl' T 0

If this equation and Eq. (4.29b) are substituted into
Eq. (4.6b), multiplied in the left by ©,, one obtains

s (NHT.*
(T uT.TD-’*(fo)>=(“D - T,)'

Using the result of Table III, namely
T.T*=+D*(fo), (4.41)
one finds that p=-1 and hence, from Eq. (4.40),

0 Ts
9¢= < ) 3

+7,7 0
the upper or lower sign holding, according as D*(g) is of
type 1 or 2 with respect to extension by T, At this
point we could already make the final entries in Table
IV. However, one can obtain a more symmetric form
for the corepresentation by making a change of basis.

If Egs. (4.39) and (4.41) are substituted into Eqgs.
(4.29), one finds for D;(k):

Di(g)= (Ds(g)
g - T,TDs* <g) T

D‘((Po)=<1 :l:T,T.*> .

By making the change of basis
Dt(h) — DY (h)=UD'(h)U*,

(4.40)

(4.42)

> ,  (4.43a)

(4.43b)

with
1
U= < ) , (4.44)
+T*

one finds in the new basis, dropping primes,

_ D*(g)

D’(g)=< X ), (4.452)

D (g)

ZUMINO AND D.

ZWANZIGER 164

T,
Do =( ).
+T*

The matrix ©, which effects the transformation (4.6)
in the new basis is simply

o~(, 7).

In Egs. (4.45) and (4.46) the upper or lower sign holds
according as D*(g) is of type 1 or 2 with respect to
extension by 7o, and the matrix ©, is symmetric or
antisymmetric accordingly. By substituting into Table
II the representation (4.45) for D‘(k) and Eq. (4.46)
for ©,, one obtains entry 11 in Table IV for the upper
sign, while for the lower sign, the following corepresen-
tation results:

(4.45b)

(4.46)

D) ]

D(g)= D (g) De(g) , (4.472)
{ D*(g)
, r ]

D (®g)= —T.* .| (4.47b)
\ __Tx* |
[ 1]

peoy)=| _, J (4.47c)
1

This corepresentation may be given a slightly more
symmetric form. By making the change of basis accord-
ing to Eq. (3.9), with
1
7
> ’

i

J
one obtains entry 12 in Table IV in which (—47T,) has
been replaced by T, as may be done since the phase of
T, may be chosen arbitrarily. The analysis of case 3,
De(F-g) not~D*(g), is now complete, and with it
Table IV, giving all types of irreducible corepresenta-
tions D*(k) of K= {G, G®o, GOy, GTo=GPOo)} in terms
of the irreducible representations D¢(g) of G. This
table expresses the principal results of the present
investigation.

In deriving and classifying the corepresentations of
the group K, we have selected out a particular parity
operator ®,. However, a principal tenet of the present
approach is that one could have equally well chosen
another parity operator differing by a factor of g1&G,

(4.48)

U=

Co'=g1Po= CoF - ¢1.
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TasLE V. Trreducible corepresentations of the group K ={G, G@O,Gea,c;(voeo}
when @ is of geometric type, Pg@ =g, ®2= (— ),
Types 1 and 2 Types 3 and 4
D**(g) =6,"1D*()0, D**(g) =0,"1D*(g)0, Types 5 and 6
0,0,*=1 0,0,*=—1 Ds*(g) not~D*(g)
1 8
Du(g)=D"(®) p@-000(" ) px0=("9 L)
Dv(®0) =1 D“((Pu)=:tl®(1 1) D“((Po)=:b(1 1)
D0 =6, prey-e.e(, ') pee9=(; 1)
(This is the generalization to arbitrary groups and Table V, with
eneral parity operator of the familiar freedom of
g panty op D(g)=1, D“(©)=1, D*(®)==1. (5.3)

choice of absolute intrinsic parity in different charge
sectors.) One may easily verify that the classification
of the corepresentation into the types 1 to 13 of Table
IV remains invariant under this change of parity
operator. The same table may be used to give the
corepresentations of K in terms of the new parity of
operator @’ of Eq. (4.48) by making the substitutions

Co— O, (4.49a)

F-g— F-g=gF-ggi! (4.49b)
fo— fo'=g1foF g1, (4.49¢)
P,— P/=D*(g)P,=P.D*(F-1-g)), (4.49d)
T, — T/=D*g)T.=T, D" (F-1-g)), (4.49)
0,—0,/=8,. (4.49f)

V. COMPARISON WITH PREVIOUS ANALYSES

Upon completing the classification of the corepresen-
tations, it is instructive to fit previous analyses, which
re familiar to the reader, into the present scheme.

Wigner'? has given an analysis without explicitly
considering internal symmetry groups, and also without
including all the implications of local field theory. If
we assume that the internal group consists only of the
identity, then D*(g)=1, and so O, exists and 0,=1.
Furthermore, all particles will correspond to Majorana
fields for which

2= (—1)¥, (5.1)
as first observed by Racah,® and as we shall verify in
the following section. We propose to call this the
“geometric”’ parity type. Upon introducing ®y=0c@,
where, as we recall, =1 for a tensor particle and o=1¢
for a spinor particle, we find ®¢*=1, and hence P,
exists and is given by

P,=1. (5.2)
Consequently all particles fall into types 1 and 2 of

2 G, Racah, Nuovo Cimento 14, 322 (1937).

For this simplest of all situations, because ®=o @, all
tensor particles have intrinsic parity =1, and all
spinor particles =41.

Another possibility is that there exists a parity
operator @, which commutes with all elements g of the
internal symmetry group, G,

0= Pg, (5.4)

and which satisfies the “geometric” condition (5.1).
Then Eq. (5.2) also holds, and the corepresentation
D+(k) is of type 1 or 2 of Table IV if D*(g) is potentially
real, or of type 5 or 6 of Table IV if D*(g) is pseudo-
real, or of type 9 or 10 of Table 1V if D*(g) is complex.
These corepresentations are given explicitly in Table
5. We see by inspection of this table and from ®=¢®,
that all tensor particles have intrinsic parity =41, and
all spinor particles 44, and also that all particles have
the same intrinsic parity as their corresponding anti-
particles. However, if all spinor particles carry a con-
served quantum number, as is believed to be the case
for all those observed up to now, then by introducing
a new parity operator

0 =exp(irF/2)®, (5.5)

where F may be baryon number, or lepton number, or
muon number, as appropriate, then the intrinsic parity
is =1 for spinor particles also, but spinor antiparticles
then have opposite intrinsic parity with respect to the
corresponding particles.

It is traditional to introduce a “charge-conjugation”
operator C in discussions of parity, time-reversal, and
internal symmetries. Although from the present point
of view there is no @ priori reason why such an operator
should exist (or why not several), one may suppose,
as a specific additional assumption that the internal
symmetry group G is obtained as the minimal extension
of another group IV by the linear operator C,

G={N,NC}, (5.6)
with

=1, (5.7)
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TaBLe VI. Trreducible representations D*(g) of the group
G={N,NC}, where CnC1=n* and C?=1. The elements # of IV
are linear operators, as is C.

Types 1 and 2
Dr(n*)=D*(n)=C,D"(n)C:

=

Type 3
Dr(n*)=Dr*(n) not~Dr(n)

D)= (D ")

ro-(, )

To complete the specification of the minimal extension,
the automorphism induced by C in N must be given.

One would like to suppose that charge conjugation
reverses the sign of conserved additive quantum
numbers F;,

Dm=Drm) o)

Ds (C) = :i:Cr

CF=—F(C, (5.8)

where the Hermitian operators F; are the infinitesimal
generators of the compact Lie group contained in N.
However, it is not possible to maintain Eq. (5.8) for
all the F,; when the Lie group is noncommutative, for
it contradicts

[FoF;]=4CiF (5.9)

when the structure constants Cyj do not vanish. [Be-
cause of the 7 and the reality of the Cjjx, this objection
does not hold for the antilinear operator ©, which, as
we have seen in Sec. I, does satisfy Eq. (5.8) for all
F;.] Consequently we choose a complete commuting
set of F; and suppose that Eq. (5.8) holds for these.
Such a choice is mathematically arbitrary but familiar
in physics where, for example, Ts in SUs, and T and
Y in SUj; are customarily singled out.

A natural way to achieve Eq. (5.8) for a complete
commuting set of Fy’s is to make the further supposi-
tions that &V is a Kronecker product of one parameter
gauge groups and of the classical unitary Lie groups®
and that for the group elements # and #* (corresponding
to the matrix » and its complex conjugate in the defining
representation)

CnCi=n*EN, (5.10)

so that the signs of the F; (which are the phases of the
diagonal #’s) are reversed. This is not a matrix equa-
tion but rather, in accordance with our convention, an
equation for the operators in Hilbert space that corre-
spond to the group elements # and #* and the auto-
morphism C. Equations (5.7) and (5.10) complete the
specification of the minimal extension (5.6) of N by C
to give G.

We may now apply the results of Sec. II and given
in Table I to obtain the irreducible representations

2 These are defined in H. Weyl, Tke Classical Groups (Princeton
University Press, Princeton, New Jersey, 1946). This assumption
is quite general and includes the gauge group Ui, the special
unitary groups, SU,, the symplectic groups, and the orthogonal
groups.
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Ds(g) of G in terms of the irreducible representations
D7 (n) of N, assumed known. For the classical unitary
Lie groups we are considering, one may choose a basis
for each class of equivalent representations which has
the property?

Dr(n*)=[Dr(n)]*. (5.11)

The irreducible representations of D*(g) for G={N,NC}
are given in Table VI and are obtained from Table I
by the substitutions g—n, k— g, F1-g— n* ®¢— C,
fo—1,s—r, and t— 5. We notice that types 1 and 2,
which are self-conjugate under C, are distinguished
only by the sign of the representative of C and may be
regarded as having opposite intrinsic charge-conjuga-
tion parity.?

The classification of the representations D*(g) de-
pends on the existence or nonexistence of a unitary
matrix C, satisfying

D™ (n)=CD"(n)C, (5.12)

and whose phase may be chosen, by virtue of the
analog of Eq. (2.8), such that it satisfies

Cr=1. (5.13)

However, Eq. (5.12) has the same form as Eq. (3.37)
for 6, and we may immediately conclude that Eq.
(3.38) also holds for C,,

C,Crr==1, (5.14)

and C, is symmetric or antisymmetric, according as
the upper or lower sign holds. From the last two
equations we have

CHr=Cl==%C,. (5.15)

Hence, with the phase of C, chosen to satisfy Eq.
(5.13), the unitary matrix C, is real and symmetric,
or pure imaginary and antisymmetric, depending on
whether Dr(g) is potentially real or pseudoreal. In the
former case C, may be diagonalized by a real orthogonal
transformation. (We restrict to such transformations
so that Eq. (5.11) remains true in the new basis).
Since C,2=1, its diagonal form is

(5.162)

where e; is a sign. In the latter case, the dimension
of C, and D(g) is necessarily even [take the determi-

Crij= €dij,

2 This property is established in Ref. 21, although not ex-
plicitly stated as a theorem. It may be understood from the fact
that all irreducible representations of the one parameter gauge
groups and the classical unitary groups are obtainable by reduc-
tion of tensor products of # and »*. This property does not hold
in general for the representations of other groups.

% This is familiar in SU, as isotopic parity, L. Michel, Nuovo
Cimento 10, 319 (1953), or G-parity, T. D. Lee and C. N. Yang,
ibid. 3, 749 (1956); Y. Dothan [4bid. 30, 399 (1963)] has used
the method of group extension to obtain the charge-conjugation
parity for self-conjugate SUs multiplets, which he calls unitar
garity. K. Tanabe and K. Shima [J. Math Phys. 8, 657 (1967)7]

ave found out for which groups there exists an operator corre-
sponding to this parity, analogous to the isoparity or G-parity
operator G=C exp(—#wT3) in the case of the isospin group.
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TaBLE VII. Irreducible corepresentations of the group K = {G,G®0,G80,G P00} for G={N,NC} and )Parity of geometric
type, in terms of the irreducible representations D (#) of N which satisfy D" (#*)=D"*(n).
Types 1, 2,3, 4 Types 5 and 6
Dr*(n)=C,1D"(n)C, Dr*(n)=C,1D"(n)C, Types 7 and 8
C,=C/T=C* T =C*=—C, Dr*(n) not~D" (n)
D) =D () prm=prwe(* ;) =" L)
D*(O)=%C: po=co(' _,) o=(, 1)
D4(Ge) =1 pu@==(" ) p@==(" )
DH(o)=C, pre)=co(, ) peod=(; ')
nant of Eq. (5.15) with the lower sign to show this] Dr(n)
and C, may be brought, again by a real orthogonal D¥(n)= D" (n) ’ (5.17a)
transformation, to the form? "
C,
0 —1 D“(C)=( ) , (5.17b)
1 0 C*
Cr=1 0 —1 (5.16b)
10 1
D"((Po)=:i:< e (5.17¢)
One can also give 6, a canonical form? by a trans- 1
formation (3.9). If ©, is symmetric it can be trans- D*(6n)= (1 ' G-174)

formed into the identity matrix; if it is antisymmetric,
it can be brought into form (5.16b). For groups other
than SU(2), these results are more detailed than those
given in Ref. 19.

Let us consider the extension of an internal group G
of the type described above, G={N,NC}, by a parity
operator @ of geometric type, ®g=g®, = (—1)%,
and by the CPT operator 6. As before we have P,=1.
If D7(n) is potentially real, then D*(g) is potentially
real with ,=C,, since D** (n)=D"*(n)=C,1D"(n)C,
=C;1D*(n)C, and

D™*(C)=C*=C,=CC,C,=CD*(C)C,.

Consequently the irreducible corepresentations D*(k)
are of types 1 and 2 of Table V, and are recorded in
Table VIL. If D" () is pseudoreal, then D*(g) is complex.
Assume there exists a 9, satisfying D**(g) =0,71D*(g)0,.
Then, for g=n, we find from Table VI that D*(x)
=D"(n) and hence that 6,=C,. Upon setting g=C, we
find

D*(C)=C*=—C,=C,D*(C)Cr=C,,

which is a contradiction and hence no 6, exists and
the representation D*(g) is complex. In this case the
irreducible corepresentations D*(k) are of type 5 and
6 in Table V, and we have explicitly

#F. R. Gantmacher, The Theory of Matrices (Chelsea Pub-
lishing Company, New York, 1964), Vol. I, p. 293.
3 B. Zumino, J. Math. Phys. 3, 1055 (1962).

Upon effecting the equivalence transformation D*(k) —
D* (k) according to Eq. (3.9) with

U=(1 c,> ’

one finds the corepresentations listed as types 5 and 6
in Table VIL. Finally, if D"(#) is complex, then D?*(g)
is potentially real, with 6,=D*(C). The resulting co-
representations for D*(k) are listed as types 7 and 8
in Table VII. The situation which was assumed to
hold before the discovery known as nonconservation
of parity is described in the first and last columns of
Table VII, both of which correspond to cases 1 and 2
of the general Table IV. Parity is accounted for simply
by associating an intrinsic parity to each particle;
extension by the CPT operator © does not increase the
multiplicity of the multiplet and 6, may be represented
by the same matrix as the charge conjugation operator
C. One may introduce a new time reversal operator
T’=C®0, instead of T=®0O, which appears geometric
because it commutes with the commuting set of addi-
tive quantum numbers. However, it will not, in general,
commute with the remaining generators of the internal
symmetry group. As an example, take the familiar
SU(2) isospin group, with generators Ty, T, Ts and
elements #=exp(t0-T). From Ou=u0, we find

GT,B“l = — T, ’
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from
Cu=u®,

CTe1=T,;
from Cu=u*C, we have in the usual representation

CT\Cl=—T,,

CTC1=T,,

CTC1=—Ts3,

and hence, for 7/=C@0,
T’ T1 7 1= Tl ’
T/T2T'—1= - Tz ,
T’ T; T 1=Ts;.

VI. EXAMPLES FROM FIELD THEORY

In this section we give field theoretic examples
illustrating the various types obtained in Secs. III and
IV from group theoretic considerations and collected
in Tables I and IV. Many of these examples describe
situations which are not known to occur in nature,
corresponding to the fact that many of the types in
Tables II and IV are not known to occur in nature.
As a matter of fact, if we consider the approximation
in which only the strong and the electromagnetic inter-
actions are effective, so that the theory is invariant
separately under the traditional P and C, we find
ourselves always in types 1 and 2 of Table IV. If we
add the familiar CP invariant weak interaction, that
violates separately the traditional P and C, we obtain
the situation described by types 1 and Z and by type
11 of Table IV. If in addition to these interactions
there is also a CP violating interaction;® so that no
good parity operator exists, we are in the situations
described by Table II (taking the second interpretation
of the table, namely H— G, the group of internal
symmetries), more precisely by types 1 and 3 of that
table. The other types of Tables II and IV do not occur
in any of the approximate descriptions presently used
in particle physics. Our purpose in giving field theoretic
examples is to show that it is possible, within the
framework of Lagrangian field theory, to realize all
types given in the tables. The explanation, if any, for
the fact that some types are not found in nature
should, therefore, not be sought in requirements, like
e.g., the locality requirement, which are satisfied in
Lagrangian field theory.

Our method will be to construct an interaction
Lagrangian whose symmetry properties are such -as
to force the fields to transform according to one of the
multiplet types tabulated previously. Such a Lagran-
gian is easily found for each multiplet type. From the
field transformation law one may immediately deduce
the corresponding particle transformation law if one
makes the assumption, which is implicit in the frame-
work of standard Lagrangian field theory, that, apart
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from possible bound states, there is a particle corre-
sponding to each field which appears in the Lagrangian.

In order to show that the various group theoretic
types can occur for both integral and half-integral
spin, we construct our examples with Dirac (or Major-
ana) spinors and with vector fields. It would not be
difficult to translate them into examples involving
fields having other spin values. For spinors the operation

‘p—% —'P; (6'1)

which changes the sign of all spinor fields, is always
an element of the internal symmetry group, since one
can realize it by performing a rotation by the angle 2«
about an arbitrary axis. The operation (6.1) changes
simultaneously the sign of all spinor fields; relative
sign differences between spinor fields may have an
intrinsic meaning.

The irreducible corepresentations of an internal sym-
metry group g, to which one has adjoined the CPT
operator © and possibly a parity operator ®, operate
on multiple component fields as follows. The basis for
the representation will be a set of local fields, for
instance of spinor fields ¥, and the effect of a trans-
formation of the group g is described by

g¢¢(r,t)g—1=¢g(r,t)D“pa(g) ’

while the effect of CPT and of parity, when there is a
parity invariance, are described by?¢

e'pa (l‘,t)e_l = ‘l/ﬁ (_ r, — t)’YﬁDuﬁ’a (90)

(6.2)

(6.3)

and
CYo(1,)C=p(—T1, £)y0D"sa(®0) . (6.4)

In Egs. (6.2)-(6.4), in which the index « distinguishes
the different fields of the multiplet, the Dirac indices
have not been explicitly indicated. As implied by the
notation, for a suitable choice of the basis fields ¥q,
the matrices, D*(g), D*(@o) and D*(®,) can be made
to have exactly the forms described in Tables IT and IV
for the various types. It would indeed be possible to
repeat step by step the developments of Secs. III and
IV in terms of representations of the form (6.2)-(6.4)
on multiple component fields with the result that the
same classification of types would emerge. For vector
fields the analogs of Egs. (6.2)-(6.4) are

gV,,a(r,t)g*1= V,,ﬁ(l‘,t)D"ﬁa(g) ’ (65)
evﬂa(t7t)e—l= _Vﬂﬂ(_r’ —t)Duﬂﬂt(eO) ) (66)

and
OV ua(t,)0 = — e,V ,us(—1, )D"5a(®0) . (6.7)

26 For convenience we use the Majorana representation in
which all four matrices v, are real. In this representation yo*=—1,
v®=7v2=7v%=1; the matrix v, is antisymmetric (and anti-
Hermitian), the matrices v1, 72, and v; are symmetric (and
Hermitian). We define ys=vov1v2ys, s0 that vs is real, anti-
symmetric (and anti-Hermitian) and vs?=—1. The projection
operator which enters in the usual form of the weak interactions
is then 3(14-4vs).
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Here ¢g=—1, es=e2=¢;=1, and no summation over
the index y is intended.

A different choice of basis fields would give the
matrices D¥s, a different form and may in concrete
cases be considered preferable according to one’s taste
and background. We wish to point out here that it is
always possible by means of a unitary change of basis
to transform the matrix D%s,(0y) into the unit matrix
and the matrices D%s.(g) and D%s.(®) into real
matrices. This follows immediately from Egs. (1.10),
(1.11), and (1.15) which imply, respectively,

D¥(6) D" (8y)=1, (6.8)
Dx(g) D*(80)=D*(00)D**(g) , (6.9)

and
D(®)D*(00)=D*©)D*(®).  (6.10)

The new basis fields can be taken as Hermitian fields.
The dimension of the corepresentation does not change,
of course, by this change of basis. Its irreducibility is
connected now to the irreducibility of the representa-
tion of the group g extended by ®, given by the matrices
Dx(g) and D*(®) with the restriction that they be
real matrices.

For the case of a single free Hermitian spinor field
¢ the parity operation can only be defined as

P: ¢(r7t) - :|:¢o("‘l', t)'YO’ (611)

where the matrix 7, is real (in the Majorana represen-
tation which we are using). No complex phase can be
introduced in Eq. (6.11) since it would spoil the
reality properties of the Majorana field ¢. For a com-
plex spinor field X the analogous definition

P: X(x,t) = £X(—r1, D70 (6.12)

has the advantage of commuting with the operation of
charge conjugation defined (in the Majorana represen-
tation) by

C: Xx—Xxt. (6.13)
This property

PC=CP (6.14)

singles out the above definition of parity as being in
some sense purely geometric. Its convenience was
particularly emphasized by Racah.? The square of this
parity operator is —1 for spinor fields, and in general

Pr=(—1)%; (6.15)

consequently the eigenvalues of P are =< for one parti-
cle states having half-integer spin. When the fields are
in interaction the parity operation defined in Egs.
(6.11) and (6.12) may not be a symmetry of the theory
and the correct parity operation may require an extra
phase factor or may involve a linear combination of
different fields and their Hermitian adjoints. These
cases are all covered by Eq. (6.4) where the “non-
geometric” part of the parity transformation is con-
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tained in the matrix D*(®). The same considerations
can be made in connection with Eq. (6.7).

We now proceed to the construction of examples.
Examples for Table II (when no parity invariance is
present) are easy to construct. In order to obtain a
Lagrangian which does not admit a parity transforma-
tion we may take the interaction

Xtyoyu(14+iys)eW,+H. c.

involving two spinors ¢ and X and a vector W,. Clearly
(6.16) violates the traditional C and P invariances.
We can violate also CP invariance if we add another
interaction which, for instance, conserves P but violates
C, such as

(6.16)

(6.17)

where v, is a Hermitian vector field which, under C,
does not change sign?”

XT",’Q’Y “X'U "

C: v,—,, (6.18)

but which behaves as usual under P. We restrict the
internal group by requiring ¢ to be a Majorana field

o=¢l. (6.19)
The internal symmetry group of the theory is now
g: X—eex, W,—eW, (6.20)

together with the transformation which changes the
sign of all spinor fields. (Since this transformation is
always an element of the internal symmetry group, in
the following we shall not mention it explicitly every
time). The transformation © is:

0: x(r,h) = xt(—r, —b)ys, XI(r,)) = X(—r1, —1)7ys
I/V“(l',t) - —WMT(—r) —t)) W‘,T(t,t) - —'Wﬂ(_r; _t) .
(6.21)

In the basis ¢= (X,X}) the irreducible corepresentation
is given by Eqgs. (6.2) and (6.3) with

D“(g)=(e;a el) (6.22)
and
D"(60)=<(1) (1)) (6.23)

Clearly we find ourselves in type 3 of Table II for
spin 3. If we take the basis V,= (W,,W,!), we must
use Egs. (6.5) and (6.6) and we see that the expressions
(6.22) and (6.23) still apply: we have an example of
type 3 for spin 1.

We may now impose the reality conditions

x=xt, W,=W, (6.24)
' 27 What we mean is that the other interactions in which the
field v, enters are invariant under the operator C, provided it
operates on 7, as in (6.18). A simple example of such a vector

field would be v,=4a(¢?/dx,, where ¢ is a Hermitian scalar field.
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which restrict the internal group to the simultaneous
sign change

X— =X, Wy—>—W,. (6.25)

Here we take the basis ¢ =X or the basis V,=W,, and
we have an example of type 1 of Table II for spin 3
and 1 respectively. In this simple example ©,=1.

An example of type 2 of Table IT can be constructed
in an analogous way. Let W, and X be isospinors and
take a linear combination of the interaction

Xtyoyu(14iys)oW,+H. c.

and the interaction

(6.26)

XYoYuXVu, (6.27)

where v, has the property given in Eq. (6.18).

In Egs. (6.26) and (6.27) a sum over the isospin
indices is understood. With the restriction (6.19) the
Lagrangian would be invariant under a U(2) group
operating on the fields X and W,. We can restrict the
internal group to be an SU(2) group by adding the
further interaction

XeyoyuXv,+H. c., (6.28)
where e is the 2 by 2 matrix
0 —1
€= ( ) . (6.29)
1 0
The internal group g is now given by
g X—>Xu, W,» W.u, (6.30)

where % is an SU(2) matrix. The transformation 0 is

0: X—Xly;,, W,— —W,! (6.31)

with the appropriate changes of sign in the coordinates,
which we shall not indicate explicitly from now on.
In the basis y= (X,x'¢), we have again Egs. (6.2) and
(6.3) with

Du(g>=(;‘ :) D“(90)=<(: —0) 6.32)

We are in type 2 of Table II, for spin § and D*(g)=u,
©,=e. Similarly, for spin 1, we take the basis

VM= (WquTf) .

We have described the above examples in some detail
in order to show how, by suitably putting together
various interactions, one can restrict the symmetries
of the Lagrangian to agree with a particular type in
the table. Observe that the field theoretic bases for
the various types agree with the following general
forms. For type 1, =X, where X represents a set of
fields on which g acts irreducibly:

g X—xD(g). (6.33)
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In this case one can choose a basis such that 6,=1,
Ds(g) is real, and X are Hermitian fields. For type 2,
¥=(X,x10,71); for type 3, ¢= (X,X"). These forms are
completely general.

We shall now describe briefly field-theoretic examples
for the various types of Table IV. All types will be
covered, but not in the order in which they are given
in the table. All fields are massive and, unless explicitly
stated, different fields are assumed to have different
masses. (The masses appear in the free Lagrangian
which we donot write out.) The very familiar interaction

(6.34)

between a spinor and a Hermitian vector 4, field (which
we take to be massive) provides an example of type 1
for both spin % and spin 1. We have here a phase group
and a charge-conjugation operation. In the basis
¥= (x,x"), Egs. (6.2)-(6.4) apply, with

vor(; 2). ()
vese(l ). () ).

In the basis V,=4,, Egs. (6.5)-(6.7) apply with
D(g)=1, —1, D*(®y)=1, D*(®y)=1. (6.36)

An example of type 2 forspin 1 is given by the interaction

(6.37)

which forces the Hermitian 4-vector B, to be a pseudo-
vector. Here, in the basis V,=B,, the internal sym-
metry group has a trivial representation.

D(9)=1, 1, D*(Og)=1, D*(@)=—1. (6.38)

In the case of spinors, type 1 and type 2 can only be
distinguished by considering the relative sign between
two spinors. For instance, in the interaction

gX vy oy Xad yFige X vy oy sXeA .+ H. e, (6.39)

the two spinors X; and X, will transform with opposite
sign under parity.

Types 5 and 6. Let N, N/, K, and K,/ be isospinors,
A=A" an isoscalar. Take a linear combination of the
interactions

XtyoyuXA,

(6.33)

XYy oy uvsXBy,

K, Ayyy N+H. c.,
1K, "AyegyuysN+H. c.,
iK S AyeywysN'+H. c.,
v, Neyey N+H. c.,
NtygyulVo,,

where v, transforms as in (6.18). The parities of K,
and K,/ are opposite and so are those of N and N’.
The internal group is the SU(2) group on N, N’, K,
K. Take the basis V,=(K.K.'e) for spin 1 and

(6.40)
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¥=(N,Nte) for spin % and similarly with the primed
fields.

Types 9 and 10. One may take any Lagrangian with
a one-parameter gauge group which is invariant under
the traditional parity transformation but not under
the traditional C. The two signs correspond to the
usual distinction, e.g., between vectors and pseudo-
vectors or, for spinors, between spinors having different
parity signs.

Type 11. We may take here the usual weak inter-
actions with an intermediate boson

X1V 1 +'i’Y5)X2W,,+H. C.

Here @ is the traditional “CP”’ and there are two phase
groups. In the basis V,= (W,,W ') we have an example
for spin 1, with

rar( 2). (7).
oi-(. ).

while in the basis ¥= (X3,X,") we have an example for
spin %, with

(6.41)

(6.42)

iatd)

0 1
u (@) =
0 e’““‘”’))’ De(@) (1 0)’

0 1
Du(60)=< ) ’
1 0

and in the basis /= (X3,X;f) also an example for spin
N
7 with

() v )0
0 1 '
Du(e‘)):(l 0)'

Case 13. Let the vector fields U, and W, have the
same mass and take a linear combination of the
interactions

Xityoyu(1+4ivs)XeU,+H. c.
+X1 Moy, (1—dys) X' W, +H. c.

Dx(g)= (e
(6.43)

(6.45)
and

X1Ty oy uXau, (6.46)

where v, is again as in (6.18). The internal symmetry
group is given by

Xl—-% Giﬁxl,
U“_.> e’-l'a‘f'iﬂU“’

Xo—> e""Xg N

W,— eictily,.  (6.47)
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In the basis V,= (W,,U,,W,',U.") we have
(giatis
" _ e—~ia+iﬁ
D (g) - e—ia—iB ’
eia——iﬁ
C oy |
De(@)=|} ik (6.48)
1
)
u _ 1
D (60) - 1 ’
| 1

which shows that we are in type 13 for spin 1. To
obtain an example of type 13 for spin %, just switch
the roles of the vectors U,, W,, and of the spinor X,.
The interaction which replaces (6.45) is now (X1, U,
and W are spinors and K, a vector)

Xi'yoyu(1+ivs) UK, +H. ¢,

+Xryoyu(1—iys) WK, +H. c.,
while we still keep (6.46). The internal group is

X1 — eiﬂxl' K,‘ —_ eiaK” ,

U —s gietib] W — efetiflyy, (6.50)
In the basis = (V,U,Vt,U'), the matrices D* have
the form given in (6.48). Observe that in type 13, both
0 and ® cause doubling of the original multiplet.

Type 4. Take the interaction (6.45) [plus (6.46)]
but impose the restriction that U, and W, be Hermitian,

U,=Ut, W.=W,. (6.51)

This restricts the internal group from (6.47) to a
group of sign changes. In the basis V,=(W,U,) we
have

v, ). ()
(G
() ). o, )

Similarly, for spin %, take the interaction (6.49) [plus
(6.46)] and impose the further restriction that U and
W be Majorana spinors

U=U', W=Ww". (6.53)

In the basis ¢= (W,U) the matrices D* are given by
(6.52).

(6.49)

0) , (6.52)
1
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TasLE VIIL Describes the field-theoretic basis appropriate to
the various types of Table 4. The fields X, x;, and X2 are the
multiple-component fields on which the internal-symmetry group
G acts irreducibly, e.g. gxgt=xDs(g).

Basis

¥y=x
3 Y= (x16:7)

9 Y= (x,x")

4 = (x1,x2)

8 ¥= (x,x2,x110:7,x210,7)
3 v= Gaxexat,xel)

2 v= (x1,x2Ts,x2! Ts*,x1")

Type 3. Consider again the interaction (6.45), but
impose the condition W,=:U,. It is easily seen that,
in terms of the field 2= X,+iX,, the interaction (6.45)
takes the form

X1ty oy (Q+ivs:QNW,+H. c. (6.54)
With this interaction the parity transformation is
(6.55)

where 7 is a phase. It should be noted that an inter-
action like the above forces a particular phase in the
parity transformation of a spinor field. (Similarly, it
is possible to give interactions or Hermiticity condi-
tions which require a spinor field 2 to transform as®®

®: Q— £iQyo, X1— nXyye, Wp— £inW,e,,

®: T — +3v,. (6.56)
The internal group consists of the transformations
X1 — eBxy, W,—efW,, Q—Q, (6.57)

plus the usual sign change for spinors. In the basis
= (2,9") and choosing the lower sign in (6.55), we have

o). (0
pore(; 2): ()

We are in type 3 for spin %. If we take the same inter-
action (6.54) and impose the further restriction X,
=X, the group (6.57) is restricted to a sign group
and the phase 7 in (6.55) must be real. In the basis
V= W,W,"), the matrices D* have the same form
(6.58). We are in type 3 for spin 1.

Type 12. An example can be developed in complete
analogy with that for 13, but using fields U,, W,, and
X; which are isospinors, while X, is an isoscalar (for the
spin 1 example) and fields U, W, and X; which are
isospinors while K, is an isoscalar (for the spin %
example). Let us concentrate on the spin 1 example.
In addition to the interactions analogous to (6.45) and

28 That different spinor fields can transform under parity in
different ways, as described in Eqs. (6.54) and (6.55) was especially

e(mph;tsized by C. N. Yang and J. Tiomno, Phys. Rev. 79, 495
1950). '

(6.58)
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(6.46) (with sums over the isospin indices), we add the

interaction

Xle'YO'YuxlA u+H c. (659)
The internal group is thereby restricted to
Xg—> Xze":a ,

Wy— Wue,

X1— X1u,

U,— Uuei=, (6.60)

where # is an SU (2) matrix. In the basis
V=W, quyUqu:WﬂT)
we have
(eiey
" _ e—-’iau*
D(g) gioy
e—-iau*

D¥(®g)= | € , (6.61)

D= (0g)=

The case of spin 4 can be treated in a similar way. In
type 12, as in type 13, both © and @® are responsible
for doubling of the dimension of the original multiplet.

Type 8. One can proceed as for type 12, but, instead
of adding the interaction (6.59), let us add, e.g.

UE (WU u— 3,U») Ax
+H. .4+ W,E(0W,—3,W)A+H. ., (6.62)

which eliminates the phases from the internal symmetry
group. In the basis V,= (W ,,U,, W /&, U, E), we have

% —u
D= | “ .
u u
u —u
—u ) —u
i —u ’
—u —u
(1
D+ (0= |1 nE (6.63)
L 1
[ —€
D*(00)= . —€
L €

We are in type 8 for spin 1. The example for spin %

can be developed in a similar way.
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Type 7. For spin 3 one may take an isospinor N

which by parity transforms as
N — £iNy,, (6.64)

and one should add an interaction which restricts the
internal symmetry group to be just SU(2). Then, in
the basis y= (IV,N'¢),

ro-(; ). rou-(, )
oo’ 7).

(6.65
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A Lagrangian which achieves the above can be easily
constructed following a method similar to that used
for type 3. Similarly, for spin 1, one may use a vector
K, which is an isospinor and which by parity trans-
forms as

K, — iK 6. (6.66)

In the basis V,= (K,,K,.'¢) the matrices D* are again
given by (6.65).

The basis fields for the examples discussed above
for Table IV fit into general forms analogous to those
described after Eq. (6.33) for the types of Table II.
These general forms are collected in Table VIII, which
is a sort of summary of the results of this section.
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The aim of this paper is to generalize Toller’s work on elastic forward scattering and to expand the general
two-body amplitude for all values of momentum transfer in terms of unitary representations of SO(3,1).

The authors’ concern is covariant inclusion of spin.

1. INTRODUCTION

N a series of recent papers, Toller! has made a funda-
mental advance in noticing and exploiting the extra
0(3,1) invariance possessed by the elastic forward-scat-
tering amplitude. The new invariance leads him to an
expansion of the amplitude in terms of unitary repre-
sentations of the group .SO(3,1). This is in contrast to
the normal partial-wave analysis which is an expansion
in terms of unitary representations of SO(3)—a much
smaller structure. The new expansion—embodying the
higher symmetry—leads to newer insights; for example,
if the new partial-wave amplitude, labeled with the
four-dimensional generalized angular momentum o, is
assumed to be meromorphic for complex o, one finds
that to each pole in the o-plane there corresponds a
family of integrally spaced daughter poles in the com-
plex J plane for the partial-wave amplitude a”/. This
parent-daughter phenomenon anticipated in the works
of Gribov and Volkov,2 Domokos and Suranyi,® and

* Imperial College, London, United Kingdom.

1 On leave of absence from Imperial College, London, United
Kingdom.
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44, 1068 (1963) [English transl.: Soviet Phys.—JETP 17, 720
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rediscovered recently by Freedman and Wang,* finds
its most complete expression in Toller’s development
insofar as, in contrast to the other authors, Toller takes
full account of the very essential complications intro-
duced by spin.

The aim of the present paper is to generalize Toller’s
work- on elastic forward scattering and to expand the
general two-body amplitude for all values of momentum
transfer in terms of unitary representations of SO(3,1).
That such a program is feasible and that it may be
expected to lead to new results has already been
demonstrated by Oakes® and Domokos® for scattering
of equal- or unequal-mass particles when no spins are
involved. In this simple case, the amplitude is a function
of scalar products of incoming and outgoing momenta.
Such a function (or rather its analytic continuation to
a Euclidean metric) can always be expanded in terms
of a complete set of four-dimensional Gegenbauer
polynomials.

Our concern in this paper is covariant inclusion of
spin. One simple suggestion for doing this would be to
separate out all spin-dependent factors and to write
the general amplitude in terms of scalar amplitudes of
Ya. A. Smorodinski, M. Ulhir, and P. Winternitz, Dubna Report
No. E-1591 (unpublished).

4D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967);
M. L. Goldberger and E. Jones, Phys. Rev. Letters 17, 105 (1966).

8 R. Oakes, Phys. Letters 24B, 154 (1967).
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