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L;e(J)= -'go' J(x)t1(x—x') J(x')d'x' (36)

In (35) the boson field @(x) is treated as an elementary
field. However, in (36) the field @(x) is treated as a
composite state. That is to say, the fiel g(x) does not
appear explicitly in the Lagrangian but manifests itself
as a pole in the various tau functions of the fermion
fields.

The Lagrangians discussed in this paper yield bound
states that appear as poles in the various tau functions.
This type of bound state is by far the simplest and most
familiar. More complicated Lagrangians will yield
bound states that will not appear as poles in the tau
functions. Such bound states will manifest their
presence as branch points, and will only confuse the
context of this paper.

In Sec. II an expression for the bound-state operator
was constructed from a knowledge of the two equivalent
Lagrangians. Matrix elements of these bound-state

operators did not in general agree with the ones calcu-
lated where p(x) was treated as an elementary particle.
This observation raises an interesting question as to
whether or not the theory uniquely determines the
properties of bound states. Only in the limit that Z~ —+ 0
did ul/ matrix elements become equivalent. Agreement
might be expected in this limit because the sects of the
free-Geld Lagrangian on the matrix elements vanish in
this limit. It was just this term that accounted for the
di6erence in the various matrix elements.

Closely related to the question of uniqueness is the
construction of bound-state operators. %e were able to
construct such operators only because of a prior
knowledge of the two equivalent Lagrangians. In
general one does not have this information. It is usually
the case that only the bound-state Lagrangian is given.
Therefore, it is not a trivial task to construct such
bound-state operators without assuming it is a bound
state of a certain kind. These and other questions
that were implied in the paper will be discussed
elsewhere.
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It is shown that the insertion of a barrier, in the isotropic harmonic oscillator and in the hydrogen atom,
gives each system the higher symmetry usually associated with the other. The result is more general: The
imposition of a reflection condition can change SU(3) to O(4), and vice versa. This may have implications
for elementary-particle symmetries.

I. INTRODUCTION

'N nonrelativistic quantum mechanics, the harmonic
~ - oscillator and the hydrogen atom are systems whose
energy-level structures possess a higher symmetry than
the symmetry of the space in which the motion takes
place. There appear degeneracies which indicate invari-
ance of the Hamiltonian under transformations in some
higher-dimensional space. As is well known, the invari-
ance group of the three-dimensional harmonic oscillator
is SU(3), ' while that of the hydrogen atom is O(4).s The
purpose of this paper is to point out that physically
selected sets of states of either system possess the higher
symmetry usually associated with the other system. For

* Supported by the U. S. Ofhce of Naval Research under Con-
tract No. 00014-67-A-0305-0005 and by the National Science
Foundation.
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'See, for example, I. P. Elliott, Proc. Roy. Soc. (London)

A245, 128 (1958).
A recent discussion is contained in M. Bander and C. Itzykson,

Rev. Mod. Phys. 38, 330 (1966).

example, under the condition of evenness or oddness on
reQection in a plane, the remaining states of the three-
dimensional oscillator possess the symmetry of O(4),
and those of the hydrogen atom, SU(3). To some extent
similar things happen in a space of e dimensions. The
e-dimensional harmonic oscillator and the e-dimen-
sional Schrodinger equation with an attractive 1/r
potential have the invariance groups of SU(n) and
O(rt+1),' respectively. (The latter symmetry is also
the natural symmetry of a particle constrained to move
on a sphere in n+1 dimensions. ) The imposition of
selection rules under reflection on the "hydrogen atom"
lead to degeneracies characteristic of certain representa-
tions of SU(rt). (The reverse situation is not clear to
us. ) This reciprocity property appears, in fact, to reside
in the group representations themselves, and not only
in the physical systems we have used to realize them.
The relationship between SU(3) and O(4) may be re-

s S. P. Allilnev, Zh. Eksperim. i Teor. Fis. 33, 200 (1957)
/English transl. : Soviet Phys. —JETP 6, 156 (1958)J.
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Pro, 1. States of the
two-dimensional har-
monic oscillator in Car-
tesian representation
(n,n„). Of the complete
set of states shown in
(a), those excluded by
a wall in the x direction
are indicated by a cross.
The remaining states
are separated into two
interleaving sets of
levels, in (b) and (c),
each exhibiting the mul-
tiplicity of SU(2).

ny A„
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garded, perhaps, as a less rigid extension to a higher
dimension of the homomorphism between SV(2) and
O(3)

The relationship is obscure enough to have needed
some accidental stimulus for its discovery. Ke were led
to the hydrogen-atom problem by considering possible
bound states of an electron around an impurity in a
semiconductor. ' When the impurity is close to the sur-
face of the crystal, the electron is attracted both to the
impurity and to its image in the wall, and is almost per-
fectly reQected from the wall itself, because of the high
dielectric constant. Thus the allowed states are those
of a hydrogen molecular ion with odd reRection sym-
metry about the line joining the impurity and its image.
If the vacancy is right at the surface of the crystal, the
system becomes that of a hydrogen atom with an im-
penetrable wall across the middle. That the problem was
soluble in this manner, and that the resulting atom prob-
lem had an interesting higher symmetry, was realized by
us some time ago. It is only now, however, that the
reciprocal relationship with the oscillator has been ap-
preciated and developed.

It seems to us that there are a number of lessons to
be learned from this result, besides the direct, and some-
what useless, information about oscillators and hydro-
gen atoms with walls across them. After examining in
detail the simplest cases, and verifying the group struc-
ture claimed from the observed multiplicities in Sec. II,
we discuss some implications of the results in Sec. III.

II. SYMMETRIES AND GENERATORS

In the following subsections we examine a few of the
simplest cases. The degenerate states for each level of
either the harmonic oscillator or the hydrogen atom are
separated into different sets according to the physical
selection rule of putting an impenetrable barrier across
the system. There remain, in all cases, more degeneracies
than are required by the axial symmetry in space of the
resulting system. By examining the multiplicities of the
Anal system, we guess the higher symmetry implied by
this degeneracy. The coupling of the degenerate states
of one level leads us to expressions for generators of the
symmetry, and we verify that the generators satisfy the
appropriate commutation relations.

A. Toro-Dimensional Harmonic Oscillator:
SU(2) —+ SU(2)

This, the simplest example, illustrates the method.
In Fig. 1(a) the states of the two-dimensional harmonic
oscillator are shown in Cartesian representation (n,n„)
The degeneracy is an expression of the higher-symmetry
SU(2) possessed by this system, in addition to the 0(2)
symmetry of any system isotropic in two dimensions.
In terms of the harmonic-oscillator lowering and raising
operators u„a,*, a„, a„*, and the number operators
&~=a *a„e„=a„*a„,the three generators T+, T', and
Ts of the SU(2) symmetry are

4 See, for example, M. D. Golinchuk and M. F. Deigen, Fix.
Tverd. Tela 5, 405 (1963) t English transl. : Soviet Phys. —Solid
State 5, 295 (1963)j. We wish to acknowledge interesting dis-
cussions with Dr. F. Proix and Professor P. Handler and Professor
J. Bardeen on this system and its properties.

Ts ', (n. n„), Tp————-a,*a—„, T =a.a„*.

These satisfy the required commutation rules

D„T )=2T, . (2)



RAVEN HALL, SHARP, AN D PARDEE 164

Taazz I. The representation S and generators S of the SU(2)
symmetry formed by selecting states of an original SU(2) sym-
metry, which is also the higher symmetry of a two-dimensional
harmonic oscillator. They are expressed in terms of the number
operators n, n„of the oscillator, and in terms of T and T of the
original SU(2). The selection, made by a reflection condition along
the x axis, is as follows: (1) and (2) have odd symmetry, (3) and
(4) have even symmetry; (2) and (3) have even occupation num-
ber e,+n„, (1) and (4) have odd n, +n„. The y factors are given
by Eq. (7) of the text.

From a comparison of Eqs. (4) and (5) we deduce the
correct relationship

(S—M).(5+M,+1)
S~~n,n„)=T~s

(n,+1)(n,+2)n„(n„—1)

X ~n.y2, n„—2). (6)

Set S

(1) ', (n,-+n„1)—=-', (I'——,')
(2) ,'(n, —+n„2)—=-,'(T—1)
(3) -'(n +no)=s2'
(4) ~(n.+ny —1)=s(r—s)

k(&.-&s-1)= s (&s- s)
x, (n —n„) =-', Ts

-'. (n.—n„+1)=as(rsvp))

P1T+JxgT+

JtlgT+ pg

T+Ijf ]P2T+
T~PI T+P,2

This result is given in a more symmetrical form for each
of the four cases in the third column of Table I. S is,
of course, just the Hermitian conjugate of 5+. The
operators p~ and p2 appearing in the table are

pt ——(2n, )
—'~s= (2(T+Ts)j—'~'

us=(2ns) '"=C2(T—Ts)] '".
In terms of M (the eigenvalue of T,) and T

t such that
the eigenvalue of rs is T(T+1)j the states can thus be
expressed as

~
TM), where

T=-', (n,+n„), M=-', (n,—n„).

T+s
( n,n„)= P(n,+1)(n,+2)n„(n„1)j'I'—

X in, +2, n„—2), (4)

Sp ASM'. )= $(5—M,)(5+M,+1)$'i'ASM, +1). (5)

whereas the relationship proper to SU(2) must be

(We use n„n„ for both the number operators and their
eigen values. )

The introduction of an impenetrable barrier perpen-
dicular to the x axis, which allows only states with odd
reflection symmetry in that direction, i.e., e odd, re-
moves the states indicated by crosses. The remaining
states are immediately recognizable as two interleaved
sets of states with the same degeneracy and multiplicity
as the original set. They are shown separately in Figs.
1(b) and 1(c). We now conjecture that since each of
these sets of states has the multiplicity of SU(2), it is
possible to And the generators of that symmetry, call
them S+, S, and S3, and express them in terms of T+,
T, and T3, the generators of the original higher-
symmetry group. We now proceed to do this.

From the multiplicities we deduce the expressions for
the operators S and S3, they are given in the 6rst two
columns of Table I. For completeness, the two sets of
states with e, even are also included; the rows of Table
I refer to the cases (1) n, odd, n,+n„odd LFig. 1(b)j;
(2) n, odd, n +n„even )Fig. 1(c)$; (3) n, even, n, +n„
even; and (4) n, even, n,+n„odd.

The extra factor ~~ in S3, or M„rejects the fact that
all transitions now involve de, = 2, and one is tempted
to write for 5+ just T+'. lt becomes obvious, however,
on evaluating commutators of SS,T+', and T ', that
the algebra in this form does not close. A related diK-
culty is that, acting on a state, T+' produces the proper
transitions, but with the wrong constant factors. %'e
have

e„m„are now the corresponding operators.
It can be verified that the commutation rules analo-

gous to Eq. (2) for S~, S, and Ss are obeyed, and the
algebra does close. The selected sets of states of Fig.
1(b) or 1(c), and the two sets even in n„are in fact
bases of SU(2) representations.

Thus all the states of the two-dimensional oscillator
can be separated into these four interleaved sets of
states, each of which separately are bases for represen-
tations of SU(2),and this can be repeated. Other ways
of regularly selecting states can also be treated in the
same way. In fact, it is clear that our result really per-
tains to SU(2) generally, and is not confined to the two-
dimensional oscillator, which we have used as a realiza-
tion of it. For future reference, the operators in Table I
and Eq. (7) have also been expressed in terms of T, Ts
by means of Eq. (3). The operators S~ depend on T,
which labels the original representation. The operator
Ts associated with T commutes with all the T genera-
tors, so T can be regarded as an operator or an eigen-
value. The expressions for the generators of the SU(2)
symmetries of the four sets of states are very similar.
The differences are enough, however, to prevent commu-
tators among the different sets of SU(2) generators from
being recognizably simple; the diGerences also prevent
the newly found symmetry of the divided oscillator
from being a symmetry of the original system.

In a similar manner, groups of states of 0(3) (integer
l), selected by either a physical mechanism like an im-
penetrable barrier, or the requirement that l—m~ is odd,
become representations of SU(2) (i.e., they include half-
integral 5).The connection is just that given in Table I
with T integral.

B. Three-Dimensional Harmonic Oscillator:
BU(3) —+ 0(4)

Before bisecting the three-dimensional oscillator, we
mention a few facts about SU(3) and 0(4) representa-
tions, and the relation of SU(3) states to the oscillator.

The only representations of SU(3) which appear are
the triangular ones (p,O) with dimensionality s(p+1)
X(p+2), and all the results we quote are as yet ap-
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plicable only to those representations. In terms of the
oscillator, p is the number or energy operator

p=e +e„+e.
The basis states may be denoted by

~ p; 2'3II). The
isospin variables T3f may be identiied with the TM of
Sec. IIA arising from the SU(2) subgroup of- the oscil-
lator associated with the xy plane; the isospin generators
are thus given by Eq. (1) and T by Eq. (3); for these
triangular representations the hypercharge V is just
2T—s p.

The remaining generators of SU(3) (the notation is
that of Sharp and von Baeyer') are ~= —a,*a„
S+=a„~u, and their Hermitian conjugates R, 5 .

The generators of 0(4)' may be taken as the compo-
nents of two 3-vectors J and K; the former induces ro-
tations in the 123 subspace of 0(4) and the components
of the latter generate rotations in the 14, 24, 34 planes.
The representations are conveniently labelled by (j+j )
corresponding to the commuting "angular momenta"
J+=-', (J+K) and J—=-', (J—K); the dimensionality is
(2j++1)(2j +1).The basis states of the representation
are the eigenstates

of the angular momentum J.
The enumeration of states and the selection of sets of

states of the three-dimensional oscillator, shown in
Table II, are analogous to those given in Sec. IIA.

The states selected by the condition that e.- be odd
(an impenetrable barrier in the xy plane, for example)
appear, from their multiplicities, to be bases for two
interleaving sets of representations of 0(4). Square
representations with j+=j =xt(p —1) arise when p is
odd; rectangular ones with j+=j +s=sP arise when

p is even. Similarly, if even e, states are selected, the
multiplicities suggest that even p yields square represen-
tations with j+=j = sp and odd p yields rectangular
ones with j+=j +-,'= s(p+I). We now obtain explic-
itly the generators of transitions within these sets of
states and show that they satisfy the commutation rules
of 0(4).

The SU(2) subgroup of the oscillator associated with
the xy plane remains after imposition of the reQection
symmetry in the s direction, and it seems likely that
those generators correspond to the angular momentum
J needed in 0(4). We thus expect that

()
The operator E3 has the selection rules 6j= ~1,0 and

Am=0. Thus we are led to write

(10a)
5 R.T. Sharp and H. von Baeyer, J.Math. Phys. 7, 1105 (1966).
6 See, for example, P. Roman, Theory of ElemerItary Particles

(North-Holland Publishing Company, Amsterdam, 1964).

TA&&E II. States of the three-dimensional harmonic oscillator in
Cartesian representation (N,e„e,). In (a), the etc. indicates per-
mutations. The states in (b) are those remaining after inserting a
wall in the x direction. The Grst column indicates the multiplicity
of the level.

Mult.

21
15
10
6

1

Cartesian representation of states

(a) Full three-dimensional osciliator
500 etc., 410 etc., 320 etc. , 311 etc., 221 etc.
400 etc., 310 etc., 220 etc., 211 etc.
300 etc., 210 etc., 111
200 etc., 110etc.
100 etc.
000

(b) Remaining states
500, 320, 311, 302, 140, 131, 122, 113, 104
310, 301, 130, 121, 112, 103
300, 120, 111, 102
110, 101
100

The first term in the expression for E3 increases j, the
second decreases j, the third leaves j unchanged. The
I' factors, which depend on the diagonal operators, are
expected from the experience of Sec. IIA; they are de-
termined by requiring that the matrix elements of E3
as calculated from the form (10a) agree with those given

by Sharp. ' Their values for the four sets of 0(4) repre-
sentations are given in Table III.

From Eq. (10a) we deduce

E+——R srt —rts '+J+rp,

E= —S+'rt+ r—t~'+ J' I'p.

(10b)

(10c)

This follows from the fact that the respective terms of
the three parts of Eq. (10) are the components of vec-
tors with respect to J.That the triads K and J satisfy
the correct commutation relations follows from the fact
that they have been chosen to have the correct matrix
elements; this can be veriied by simple algebra. Thus
the selected states are bases for representations of an

0(4) higher symmetry.

C. Hydrogen Atom: O(4) -+ BU(3)

Before bisecting it, we recall some well-known facts
about the bound nonrelativistic hydrogen atom without
spin. ' The constancy of the Lenz vector K is responsible
for its 0(4) symmetry. In fact the commutation rules of
K, suitably normalized, and the angular momentum J
are just those of the 0(4) generators K, J described in

Sec. IIB Because .J is perpendicular to K, the hydrogen
atom is restricted to "square" representations, for which
j+=j; for square representations, we write q=2j+
=2j . Then 0&j(tt; the dimension is (q+1)s.

From the group point of view, the bound hydrogen
atom is equivalent to a particle constrained to move on
a four-dimensional hypersphere. The particle on a hy-
persphere is also restricted to square representations.

7 R. T. Sharp, I. Math Phys. . (to be published).
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TABLE III. Representations (j+,j ) and factors associated with the generators of the O(4) symmetry Lsee Eq. (10)g formed by select-
ing states of an original SU(3) symmetry, also the higher symmetry of a three-dimensional harmonic oscillator. They are expressed in
terms of p, the total occupation number, and T, the isospin of the original SU(3). The selection, a reflection condition along the s axis,
is as follows: (1) and (2) have odd symmetry, (3) and (4) have even symmetry; (2) and (3) have even p, (1) and (4) have odd p.

Set

(3)

(4)

j+=j =k(p —1)

i+=i +s=~~p

j+=j +s=x(p+I)

p+2T+3

(2T+1)(2T+3) (p —2T)

p+2T+3

(T+1)'(p—2T)

p+2T+4

(2T+1)+(2T+3) (p —2T—1)

P+2T+4

(T+1)'(p—2T—1)

4T (T+1)

p+2

4T(T+1)

3-x 0 x x 0 x

X Q

0 I 2 3

The introduction of an impenetrable barrier through
the center of the hydrogen atom removes the states for
which j—m is even. Figure 2 illustrates the situation for
q= 3. The states for which j—m is odd are marked O,
those with j—m even are marked X. The pattern
strongly suggests that the square representation q of
O(4) breaks up into two triangular representations

(q —1, 0) and (q,0) of SU(3).We shall verify this surmise

by expressing the SU(3) generators in terms of the O(4)
generators.

The SU(3) isospin generators T~, Ts are readily ex-
pressed in terms of J~, J3, using the methods of Sec.
IIA Rows. 2 (j—m odd) and 3 (j—m even) of Table
II, with the substitution T —+ J, S—+ T, show the re-
lationship. The hypercharge I' is diagonal and may be
written down by inspection. The generators R, 5 are
chosen as the linear combinations of E+ and EsJ+
which move a state to the right and up, or down, re-
spectively; a factor F is supplied to give the correct
matrix element of the generator. ~, S~ are the Hermit-
ian conjugates of Z, S .The SU(3) commutation rela-
tions are necessarily satisfied since the generators have
the prescribed matrix elements.

The results for the generators are

R:—R+*=(K+(j +m+ 1) KsJ+) I'z, —
(11)S =Sp*= (Kp(j m)+KsJ+) I'p.—

&or the SU(3) representation (q—1, 0),we find

I'= 2T—-', (q
—1),

2j+3
2(j+m+2)(q+ j+2)(2j+1)

(12a)

-2(&— )(q+j+1)(2j+1)-
and for the representation (q,0),

F=2T—3q,

2j+3
2(j+ws+1)(q+ j+2)(2j+1)

2j—1

-2(j— —1)(q+j+1)(2j+1)-

(12b)

Selection of hydrogen-atom states of odd or even
parity (more precisely odd or even q

—j) changes the
symmetry from O(4) to SU(3) in just the same way as
selecting states of odd or even parity in a plane. This is
most easily seen by considering the equivalent particle
on a hypersphere where the operation is equivalent to a
cut perpendicular to the 4 axis.

%ith no additional computation, the hydrogen atom
may be cut in two again by a second plane perpendicular
to the first. Again, it is perhaps easier to think in terms
of the equivalent particle on a hypersphere. The first cut,
perpendicular to the 4 axis, converts the O(4) symmetry
to SU(3) and makes the problem equivalent to the
three-dimensional oscillator from the group point of
view. The second cutting converts the symmetry back
to O(4) according to the results of Sec. IIB.

FlG. 2. Second excited level of the hydrogen atom, q=3 in our
notation, in the (j,m) representation. The states marked with a
cross, removed by a barrier in the xy plane, form a (3,0) basis of
SU(3). The remaining states, marked with a circle, form a (2,0)
basis.

D. Other Examples

Unexplained degeneracies in a physical system have
often turned out to be an indication of a hidden sym-
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metry. ' Many further examples of unexplained degen-
eracies come to mind.

The hydrogen atom in n+ 1 dimensions (or particle on
a hypersphere in n+1 dimensions) is known to have the
symmetry O(++1).s The levels are labelled by an
integer q and have the degeneracies

(2q+I—1)(q+n —2)!
x(q) =

q!(n—1)!

The separation into states of even and odd parity with
respect to one of the axes leads to two sets of levels with
degener acies

(q+I—1)!
+even(q)

q!(I—1)!

These multiplicities are those of the (q,0,0 ) and

(q —1, 0, 0 ) representations of SU(e), and this leads
us to conjecture that the new symmetry is SU(e). This
is just the generalization of the result of Sec. IIC to an
arbitrary number of dimensions.

Analogously, we might expect the bisected symmetric
n-dimensional oscillator to exhibit O(v+1) symmetry.
This does not seem to be the case for n) 3. Thus the
levels of the four-dimensional oscillator, selected for
evenness or oddness in one direction, exhibit degener-
acies which we do not recognize as those of the represen-
tations of any group.

Another generalization of our results is the n-dimen-
sional oscillator or hydrogen atom bisected more than
once; or one may restrict the system to the region in the
angle between two planes making an angle which is a
rational fraction of x. These operations yield systems
with unexplained degeneracies for which we do not in
general know any symmetry.

The converse question also arises. In a given physical
system does the selection of a subset of states with a
definite group transformation property guarantee the

s See, for example, H. V. McIntosh, Am. J.Phys. 27, 620 (1959).

existence of a corresponding physical symmetry con-
dition on the systems For example, if all rth states are
selected from a representation of SU(2) Lor O(3)j, they
transform among themselves according to a generally
smaller representation of SU(2); the new generators
may be constructed from the old in a manner similar
to that used in Sec. IIA. But we cannot think of any
physical mechanism for selecting such states.

rrr. Drscossrom

As a mathematical exercise, the possibility that repre-
sentations of other groups are related in this or similar
ways is interesting to pursue further. Of most topical
interest, however, is the relationship between SU(3)
and O(4).

In nonrelativstic situations involving a single particle,
one would normally conclude from observing mnltiplici
ties characteristic of SU(3) that the basic dynamical
structure was that of the harmonic oscillator. We now
see that an alternative conclusion could be that the
structure was that of a hydrogen atom with a reAection
symmetry. In these two cases, the relative positions of
the different energy levels, which we know, would decide
the matter, of course. But in situations like those en-
countered with the symmetries of elementary particles,
the latter decision is much harder to make. It is tantaliz-
ing to think that the observed SU(3) symmetry there
might in fact arise from a basic O(4) symmetry, with a
strong added selection rule. A highly relativistic situa-
tion, as for example is encountered in the Bethe-Sal-
peter equation with strong binding, can lead naturally
to a broken O(4) symmetry. ' The imposition of a re-
Qection-symmetry rule, for example, connected with
time parity, can then select out states which have SU(3)
multiplicity, and have energy splittings in a given
multiplet. One might suggest that the isospin-hyper-
charge SU(3) structure arises in such a way, from a dy-
namics involving a continuous four-dimensional space.
Some of the difhculties with such an approach are as-
sociated with half-integral values of charges, and with
representations with multiple weights.

' G. C. Wick, Phys. Rev. 96, 1124 (1954).


