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It was previously shown how one can eliminate an arbitrary number of fields from a general Lagrangian
and obtain a new one. Regardless of which Lagrangian was used to evaluate the matrix elements for the
elementary fields, equivalent results were obtained. It is the principal object of this paper to investigate the
matrix elements of the so-called redundant fields, i.e., the fields that do not explicitly appear in the La-
grangian. We see that complete agreement among all matrix elements calculated with either of the Lagran-
gians is achieved only in the limit that the Lagrangian becomes local. It is also shown how one can construct
an expression for the redundant fields in terms of the elementary fields. In the limit that Z3 —+ 0, this ex-
pression for the redundant fields agrees with those discussed by Nishijima, Zimmermann, and Haag.

I. INTRODUCTION

HE numerous resonances in elementary particle
physics forces one to study all theoretical facets

of composite particles. In particular, for a Lagrangian
field theory to treat all these resonances as elementary
is unrealistic. That is, to introduce an elementary Geld
in the Lagrangian for each experimental resonance
would make the theory absurd; it would degenerate to
the status of a mere phenomenological model —a theory
which would not predict charge, mass, or other intrinsic
properties of elementary particles. On the other hand,
if one is to treat some or all of the particles as com-
posite, then the interaction must be more complex than
the historical Yukawa coupling. To perform calculations
with such complex couplings becomes very diKcult if
not infeasible. Therefore, one must in some way approxi-
mate these interactions so that the properties of the
bound states are not lost, yet the problem is tractable.
This task, needless to say, is a very formidable one
which cannot be approached in a trivial way, but a
solution to the problem must be obtained if field theory
is to survive as a useful tool in high-energy physics. This
is one in a series of articles that, in a modest way, is
attempting to shed some light on the above problem by
studying the properties of bound states.

In a previous article' a method for studying com-
posite particles was developed. It was shown how to
eliminate an arbitrary number of fields from a general
Lagrangian and obtain a new Lagrangian. %'e referred
to the eliminated Gelds as redundant fields. These
redundant GeMs correspond to composite states. That
is to say, we call a particle or field composite if there
does not explicitly appear a Geld or linear combination
of fields for it in the Lagrangian. This definition of
compositeness is certainly the most obvious in the con-
text of a Lagrangian Geld theory. We see that com-
positeness is definitely a function of the Lagrangian. In
fact, a particle may be considered composite for one
Lagrangian, whereas an equivalent theory can be
constructed in which the particles are elementary.
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Examples of such Lagrangians have been discussed. ' '
The Lagrangians considered in the previous references
were, in general, nonlocal. Upon requiring them to be
local, we showed that the wave-function renormaliza-
tion constant vanished. It is this limit, i.e., Z3 —+ 0, that
is usually meant when a particle is considered to be
composite.

This procedure of constructing equivalent theories is
very useful in discussing the properties of composite
states. In Ref. 1 it was shown how one could construct
equivalent Geld theories in which the particle was con-
sidered as composite in one case and as elementary in
the other case. What was meant by equivalence was
that the matrix elements for the elementary Gelds in the
two theories were the same. Nothing was ever said
about the equivalence of the redundant or composite
states in the two theories. The purpose of this present
paper is to investigate the matrix elements containing
the redundant fields.

In order to evaluate the matrix elements containing
the redundant fields, we must Gnd an expression for
them in terms of the elementary Gelds. The construction
of such an operator for the redundant Gelds is analogous
to the work of. Nishijima, Zimmermann, Haag, and
others where they studied bound-state operators in the
Heisenberg representation. The construction of oper-
ators for the redundant Gelds may be obtained by com-
paring the equations of motion calculated from the two
diferent Lagrangians.

Kith this expression for the redundant Gelds, its
various matrix elements will be evaluated. Comparisons
will then be made with the analogous matrix elements
calculated with the original Lagrangian, that is, from
the Lagrangian where the fields have not been elimi-
nated. It will be seen that in general these matrix
elements calculated from the two di6erent Lagrangians
will not agree. This is in contrast to the matrix elements
for the elementary fields. However, in the special limit
that the Lagrangian is made local, the matrix elements
for the redundant Gelds will agree in the two cases,

s Robert L. Zimmerman, Phys. Rev. 146, 955 (1966).' K. Nishijima, Progr. Theoret. Phys. (Kyoto) 10, 549 (1953);
12, 279 (1954); 13, 305 (1955);W. Zimmermann, Nuovo Cimento,
10, 59'I (1958);R. Haag, Phys. Rev. 112, 669 (1958).
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Qnly in the limit that the new Lagrangian is made
local will the two Lagrangians be truly equivalent. That
is to say, only in this limit is agreement achieved for el/

matrix elements calculated from the two diferent
Lagrangians.

The outline of the paper is as follows. In Sec. II we

present a short review of the construction of equivalent
Lagrangians and their properties. We then obtain an
expression for the redundant Gelds in terms of the
elementary Gelds. In Sec. III we calculate the matrix
elements for the scalar Geld from a Lagrangian in which
the scalar fieM is elementary. In Sec. IV the matrix
elements for the scalar Geld are constructed from a
Lagrangian in which they are redundant or composite.
Comparisons between the matrix elements of Secs.

III and IV are made and the conclusion follows in
Sec. V.

IL EQUIVALENT LAGRANGIANS

In this section we will briefly review the method of

eliminating various fields from a Lagrangian and the
construction of an expression for the redundant Gelds in
terms of elementary fields.

Let us consider the Lagrangian density

~=1-o(4i . 4-4.i . 4-,4'i 4'-)
+I;(Pi. @„,)I)i .f gi f ), (1)

where I.0 is the noninteracting Lagrangian density and
L; is the interacting Lagrangian density.

The physical vacuum expectation value of a time-
ordered product can be expressed as

&0
~
T(Ai(xi)Az(xz) Ai(x,)) ~0)

fAi(xi) ~ A((xi) exp[if d'x 1()t)i P„pgi )I)„,gi P„)18)i b)t)„gi
(2)J' ~L J'dxl-(e

where Ai(xi), A&(xz) A&(x&) are any set of field operators acting at the space-time points xi,x& x&.

Let us define a new Lagrangian density

by the relation f exp[zfd x1()t'i' '4 6' ' '4A'' '4)j'''&4"'' &4' ' '&4'
exK~d'x1- 4'-, 4;-,S. -( )j= f expt zfd'x I.o(p;) 1 oQ P )j 8Q" bf 5f

The Lagrangian density

4)) )f) ) fi') ()t)1 )t)i 1)pi+1 ))t )1 lgs+1 I8 1 I)e+i )

(3)

is a function of only the Gelds appearing in the paren-
theses. We have integrated over the Gelds that are
indicated by the subscripts and they will be referred to
as the redundant Gelds.

Let us consider the case where all the A;(x~) do not
contain the redundant fields. It was then shown in
Ref. 1 that the evaluation of the matrix element

(0~ T(Ai ~ A~) (0) was the same whether or not we
used the original Lagrangian density in Eq. (1) or the
new one in Eq. (3). We now consider the question
whether or not the evaluation of (0~ T(Ai A~) ~0) is
still independent of the two Lagrangians when the
A;(x,) are allowed to contain the redundant fields.

For the sake of clarity the remainder of the paper is
limited to a discussion of a special class of Lagrangians
and redundant Gelds. The general case contains new
problems and will only obscure the present discussion.
The problems that arise in the more general case will be
discussed elsewhere.

Let us limit our considerations to the case where the
Lagrangian density is of the form

1.(~,og )=+0( )(I+ o)v( )
+l~( )(o-~.')~( )+a&( )~(*), (4)

and J(x) is only a function of the field andlt. We could
now consider P and P to be redundant fields and elimi-
nate them from Eq. (4) by means of (3). In the follow-

ing, however, we will limit ourselves to the case where )gI)

is considered the redundant Geld. This corresponds to
the more familiar case where the scalar Geld is a bound
state of fermions and antifermions.

Using Eq. (3) and eliminating g(x) from the
Lagrangian in Eq. (4), we obtain

1-.(1('))=4( )(P+m)f( )

+ -,'g, z 1(x)~(x x')J(x')d4x', (5—)

A(x —x') = — d4P.
(2)r)' p'+ poz i4, —

As was shown in the previous article, ' if the A, (x;) do
not contain P(x), then the evaluation of the matrix
element (0~ T(Ai Ai) ~0) is the same whether or not
we used the Lagrangian density in Eqs. (5) or (4). In the
next two sections we will investigate the matrix elements
(0~T(Ai. A~)~0) when A;(x,) is a function of the
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redundant 6eld qk We will evaluate it with the
Lagrangians in Eqs. (4) and (5) and compare their
results. We will see that these matrix elements are
equivalent only in the limit that the Lagrangian density
in Eq. (5) becomes local; that is, in the limit that the
bare charge and mass go to infinity in such a way that
their ratio is finite:

The normal-ordering sign is necessary here in order that

(ol4(x)lo)=0. (12)

This expression corresponds to the unrenormaiized Geld.
We can introduce the renormalized field in the usual
manner:

X0—— lim ge'/iso'& ~ .
p ~00 p oo

(6) where
4~(x) =0(x)/~3,

~'= «l~(0) lb,»(2-) (2P.) ~ (14)

In this limit, the Lagrangian density in Eq. (5) becomes and using Eq. (11) we may express Z3 by

1~(J(x))=P(x)(P+m)iP(x)+X0J(x) J(x). (7)

As is the case with all local field theories, the
Lagrangian density in Eq. (7) involves products of field
operators at the same space-time point. Consequently,
its meaning is ambiguous and divergent equations may
result. In order to give it meaning we must displace the
various coordinates of the operators in the term
J(x)J(x). For example, if

v'~3= lao(2~)"'2PO A( —y)(ol:J(r): I»». (»)

lb, P) stands for the one-particle eigenstate of the 6eld
P(x) with energy momentum P„; b indicates any other
quantum numbers that are necessary to characterize
the state. Therefore, the operator for the renormalized
field Pii(x) becomes

J(x)=P(x) I'It (x),

then this will be understood to signify implicitly

J( )=~(*+f)I'S( -|),

@ii(x)= (16)
(2')"'(2PO)'l2 1'A( —y)(ol:J(y): lb,P)

In the limit that makes the Lagrangian density in
(9) Eq. (5) local, we obtain

4(x) =kgo ~(x—y)J(r)d'y (10)

If more care had been exercised in the notation, our
Lagrangians should have normal-ordering signs about
them. If this is done, then Eq. (10) should read

@(x)= lgo ~(x—y):J(r):~'y.

where t is an in6nitesimal displacement. The limiting
case of i —+ 0 may then be considered for appropriate
ratios where the divergences cancel.

In order to evaluate the matrix elements containing
the redundant 6elds by means of the Lagrangian density
in Eq. (5) or (7), we must be able to express the re-
dundant 6elds p(x) in terms of the elementary 6elds
Ib(x) and p(x). So let us show how one can get such an
expression for the redundant field.

The relation for the redundant field p(x) in terms of
the elementary fields g(x) and P(x) may be obtained by
equating the interacting terms in the equations of
motion derived from the interacting Lagrangian densi-
ties in Eqs. (4) and (5). In this manner, we obta, in the
following expression for the redundant field P(x) in
terms of elementary fields implicitly contained in the
operator J(y):

:J(y):
@ii(x)=

(27r)'~'(2P0)'~'(ol: J(o,f): lb,P)
(17)

Recalling that the product of operators at the same
space-time point is not de6ned, Eq. (17) really means

:J(y,f):
pic(x) = lim (IS)

r ' (2n-)'~'(2PO)'i'(ol: J(0)l'): lbP)

III. GREEN'S FUNCTIONS FOR
ELEMENTARY FIELDS

In this section we are going to consider those matrix
elements containing boson fields and evaluate them by
means of the Lagrangian density in Eq. (4). Our
principal concern is to compare these matrix elements
with the equivalent ones calculated in the next section
from the Lagrangian density in Eq. (5). In order to draw
a comparison it will be necessary to recast the matrix
elements in this section into a form not containing boson
fields. This can conveniently be done by means of the

where the operators in J(y, i ) are not at the same space-
time points.

This result is a generalization of the bound-state
operator studied by Nishijima, Zimmermann, and
Haag. '
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Matthews-Salam equations'

i(Cl+m')(Ol T(P(x)A, A,) I 0)
= (Ol T([B/Btf)(x)]At ~ A&} I0)

+igp(OI T(J(x)Ai' ' 'Ai)IO). (19)

Let us now express the tau functions containing boson
fields into a form of only fermion 6elds.

The simplest matrix element containing the boson
fields is

we can invert Eq. (21) to give

(oI~(4(*)& (»)" ~i()»)Io) ~gsf& iM&(* —)

X (0 I T(J(o)i)A i(xi) A &($&)) I
0&. (23)

A convenient expression of Eq. (23) in terms of re-
normalized fields P~(x) can be obtained by noticing that

(Ol T(4(x)Ai(»). -.A~(xt)) I o&, (20) where
QZo ——(2m)'"(2P )'"(Olp(0)

I b)P„&.

Analogously to Eq. (15), QZo can be expressed as

(25)
where the A i(xi) are not functions of p(x).

Using the Matthews-Salam relations, (20) becomes

1(C]+vs') g(0 I T(y(x)A i(xi) A ((x()) I 0)
=go(OIT(J(x)Ai(xi)' ' At(xt))lo& (21)

Using the Green's function

gZ, =;gp(2~)o ~o(2Pp)»o

&& J'd»~( —o)i) (o I T(J(»)) I »P.& (26)

i (0+m') A(x y) =—f')4(x y)—,
Substituting Eqs. (24) and (26) into Eq. (23), we get

(22) the matrix element for the renormalized field:

J'd»6($ —o)i) (0 I T(J(o)l)A 1($1) A t(xi)) I 0)
(0

I
T(@g($)A i(xi) ' A &(xi))

I
0)=

(2w)@'(2Po) "'J'dooi~( —pot) (0 I
T(J(o)t)) I

f),P.&

(27)

We have succeeded in expressing the matrix element containing one renormalized boson field in terms of only
fermion fields. This is the form needed for comparison with the results of the next section.

Let us now consider the next hardest matrix element, that is, the matrix element containing two boson 6elds:

(oI T(4(x)4(y)Ai(») . A)(xi)) I o)

As above, these boson fields may be eliminated, with the aid of the Matthews-Salam relation, to obtain

(&+~')*( +~').(Ol T(&(x)&(y)At(») "A)(xt)) Io&= —i(&+~').~'(x—y)(ol T(Ai(»)" At(«)) Io)
+gp'(Ol T(J(x)J(y)A, (x ). A)(x()) IO). (29)

Converting the di6erential equation into an integral equation, we get

(o I T(4(x)4(y)Ai(»)" -4)(xt&) I
o&= ~(x—y)(o I T(Ai(x ) . . A ~(«)) I o&

Xgp' do) tdo)26(x —o)i)2 (y —o)p) (0 I
T(J(o)i)J(o)p)Ai(xi) A i(xi)) I 0) . (30)

In terms of the renormalized 6eld P~(x), Eq. (30) becomes

(oITQ~($)e~(y)A1($1) ' ' 'A((xt&) I0) Z3A(x y)(OIT(Ai(xi)' ' At(xt)) I0)

go
d~id~, ~($—»)~(y —o)&)(0 I T(J(»)J(»)A i(xi) A &(xt)) I o), (31)

Z3
where Zo is given by Eq. (26).

In the same manner we may obtain an expression for an arbitrary matrix element in terms of only P and P. After
this is done, then the comparison of the various matrix elements calculated by means of the Lagrangian density
in Eqs. (5) and (4) is trivial. The reason it is trivial is thatas w,as shown in Ref. (1), the matrix elements containing
only fermion 6elds are the same whether Eqs. (5) or (4) are used to evaluate them.

IV. GREEN'S FUNCTION FOR REDUNDANT FIELDS

In this section let us consider the matrix elements containing the redundant field and evaluated by the
Lagrangian density in (5). Since the Lagrangian density contains only fermion 6elds, the redundant 6eld in the
matrix elements must be replaced by some appropriate function of fermion 6elds. Such a relation between the

' P, T, Matthews and A, Salam, Nnovo Cimento, 2, 120 (1955).
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redundant and fermion fields is given in (16). Consider the tau function that contains only one redundant field:

(Ol T(y, (x)a,(x,) . .W, (x,)) IO). (32)

Substituting Eq. (16) for Pz(x), we obtain

fA(x —y)&0IT(:J(y):~i(»)" -«(»)) lo)d'y
&Ol T(4,(*)a,(x,) "a,(x,)) IO) =

(2~)"'(2&o)"'fA(—y) &o I:J(y): I b,I')d4y

where it is implicitly implied that the Lagrangian density in (5) is used to evaluate Eq. (33).
The matrix element containing two redundant fields at x and y is given by

(33)

fa(x—~,)a(y —«) (0 I T(:J(»):J(so):2 i(xi) 2 i(xi)) I
0)d'~id'~g

&olT(4 ()4 (y)4 (- ) .~ (*))Io)= (34)
(2or)'2Pp f6(—»)&(—«) &0 I:J(ooi): I b,P)&0 I:J((uo): I b,P)d'oiid'ooo

In a similar manner the expression of all higher-order matrix elements containing redundant fields may be
constructed.

Let us now compare the results of the matrix elements discussed in this and the previous section. Compare
Eq. (27) with Eq. (33): f~(x—&i)&oI T(:J(»):~i(») ~i(»)) Io)d4»

(33)
(2~)"'2&of&(—~i)(0 I:J(oii): Ib)E)d'oo,

and Eq. (31) with Eq. (34):

f~(x—»)&ol T(J(»)~i(xi) Ai(xi)) lo)d'~,

(2~)"'2&of&(—oui) &0 I T(J(poi)) I b,P)d'po,
(27)

)A(y — )&oIT(:J( ):J( ):4,(,) .w,(.,))lo)d,d,
&"IT(~~(x)@a~y)-4i(x ) ~i(xi)) IO)=

(2&)'2&pf~(—~1)A( —~o)(0 I:J(oii): I bE)(0 I:J(~,): I
bP)d'Mid'M,

—~( —y)&olT(~ (*) . ~ ( )) Io)

g'(2 )'2~o»( — )~(— )&oIT(J( ))lb,&)&olT(J( ))lb,&)d' d'

f~(x—ooi) &(x—~o) &0 I T(J(»)J(«)A i(xi) A i(xi)) I
0)d'oiid4oio

(2~)'»pfA( —»»(—»)&ol T(J(~i)) IbJ )&ol (T(J«)) I
w»do~, d'»

(34)

(31)

Recall that Eqs. (27) and (31) are evaluated by means
of the Lagrangian density in Eq. (4), whereas Eqs. (33)
and (34) are evaluated by the Lagrangian density in (5).
However, since all the matrix elements contain only
elementary fermion fields, their evaluation is the same
whether or not the Lagrangian density in Eq. (4)
or (5) is used.

From these observations we see that Eqs. (33) and

(27) are equivalent. The only difference is the normal-

ordering signs, and these just make the product of the
operators at the same space-time point well defined.
However, Eqs. (34) and (31) do not agree and, in

general, neither will the higher-order matrix elements.
With a little consideration this result is to be expected.
In deriving the Lagrangian density in Eq. (5), we have
decoupled it from the boson field. The information
concerning the boson field has been neglected. Therefore
we would only expect to obtain agreement when the
boson field does not aRect the results. This situation is
realized in the limit where Z3 vanishes.

Let us now consider the limit where Z3 vanishes.
We force the Lagrangian density in Eq. (5) to be

local, i.e.,

such that

implies

go,Po ~ '0
&

go /po ~)~p+ ~

gp'a(x —y)
.- 0.

$+gf

Therefore, in the limit that Z3 —+ 0, the first term in

Eq. (31) drops out and equivalence with Eq. (34) is
established. In a similar manner, all higher-order matrix
elements of the redundant field agree in this limit.

This finishes the proof that all matrix elements
calculated from either the Lagrangian in (4) or (5) are
equivalent in the limit that Z3 —+ 0. For Z3~0, only the
matrix elements for the elementary fields are the same.

1.,(y,J)= gpJ(x)P(x) (35)

V. CONCLUSION

In Secs. III and IV we considered the specific inter-

acting Lagrangian densities
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L;e(J)= -'go' J(x)t1(x—x') J(x')d'x' (36)

In (35) the boson field @(x) is treated as an elementary
field. However, in (36) the field @(x) is treated as a
composite state. That is to say, the fiel g(x) does not
appear explicitly in the Lagrangian but manifests itself
as a pole in the various tau functions of the fermion
fields.

The Lagrangians discussed in this paper yield bound
states that appear as poles in the various tau functions.
This type of bound state is by far the simplest and most
familiar. More complicated Lagrangians will yield
bound states that will not appear as poles in the tau
functions. Such bound states will manifest their
presence as branch points, and will only confuse the
context of this paper.

In Sec. II an expression for the bound-state operator
was constructed from a knowledge of the two equivalent
Lagrangians. Matrix elements of these bound-state

operators did not in general agree with the ones calcu-
lated where p(x) was treated as an elementary particle.
This observation raises an interesting question as to
whether or not the theory uniquely determines the
properties of bound states. Only in the limit that Z~ —+ 0
did ul/ matrix elements become equivalent. Agreement
might be expected in this limit because the sects of the
free-Geld Lagrangian on the matrix elements vanish in
this limit. It was just this term that accounted for the
di6erence in the various matrix elements.

Closely related to the question of uniqueness is the
construction of bound-state operators. %e were able to
construct such operators only because of a prior
knowledge of the two equivalent Lagrangians. In
general one does not have this information. It is usually
the case that only the bound-state Lagrangian is given.
Therefore, it is not a trivial task to construct such
bound-state operators without assuming it is a bound
state of a certain kind. These and other questions
that were implied in the paper will be discussed
elsewhere.
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It is shown that the insertion of a barrier, in the isotropic harmonic oscillator and in the hydrogen atom,
gives each system the higher symmetry usually associated with the other. The result is more general: The
imposition of a reflection condition can change SU(3) to O(4), and vice versa. This may have implications
for elementary-particle symmetries.

I. INTRODUCTION

'N nonrelativistic quantum mechanics, the harmonic
~ - oscillator and the hydrogen atom are systems whose
energy-level structures possess a higher symmetry than
the symmetry of the space in which the motion takes
place. There appear degeneracies which indicate invari-
ance of the Hamiltonian under transformations in some
higher-dimensional space. As is well known, the invari-
ance group of the three-dimensional harmonic oscillator
is SU(3), ' while that of the hydrogen atom is O(4).s The
purpose of this paper is to point out that physically
selected sets of states of either system possess the higher
symmetry usually associated with the other system. For

* Supported by the U. S. Ofhce of Naval Research under Con-
tract No. 00014-67-A-0305-0005 and by the National Science
Foundation.

f On leave from McGill University, Montreal, Canada.
'See, for example, I. P. Elliott, Proc. Roy. Soc. (London)

A245, 128 (1958).
A recent discussion is contained in M. Bander and C. Itzykson,

Rev. Mod. Phys. 38, 330 (1966).

example, under the condition of evenness or oddness on
reQection in a plane, the remaining states of the three-
dimensional oscillator possess the symmetry of O(4),
and those of the hydrogen atom, SU(3). To some extent
similar things happen in a space of e dimensions. The
e-dimensional harmonic oscillator and the e-dimen-
sional Schrodinger equation with an attractive 1/r
potential have the invariance groups of SU(n) and
O(rt+1),' respectively. (The latter symmetry is also
the natural symmetry of a particle constrained to move
on a sphere in n+1 dimensions. ) The imposition of
selection rules under reflection on the "hydrogen atom"
lead to degeneracies characteristic of certain representa-
tions of SU(rt). (The reverse situation is not clear to
us. ) This reciprocity property appears, in fact, to reside
in the group representations themselves, and not only
in the physical systems we have used to realize them.
The relationship between SU(3) and O(4) may be re-

s S. P. Allilnev, Zh. Eksperim. i Teor. Fis. 33, 200 (1957)
/English transl. : Soviet Phys. —JETP 6, 156 (1958)J.


