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Approximation in the Unitarity Condition and the Neutral
Scalar Theory*
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A method for the approximate determination of the elastic scattering amplitude is applied to the static
neutral scalar meson model of meson-nucleon scattering. It is shown that under appropriate conditions the
approximate solution reduces to the exact solution in the static limit of the usual neutral scalar theory. The
eBect of recoil and more general static interactions on bound-state poles is discussed in relation to dif-
Gculties previously encountered in applying this approximation method to the equal-mass case. The latter
diKculty can be avoided at the cost of other problems with the bound-state poles.
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I. INTRODUCTION

'HE problem of computing the scattering ampli-
tude for a process starting from the assumptions

of an analytic, unitary, crossing symmetric 5 matrix'
has not been satisfactorily solved even for elastic two-
body processes. It seems worthwhile to investigate all
likely approximations in order to assess their relative
strengths and weaknesses. It is the purpose of this paper
to continue the investigation of an approximation sug-
gested previously. '

One method of checking the validity of an approxi-
mation is to apply it to an exactly soluble problem and
to compare the exact and approximate solutions. This
is the approach adopted in the present paper. In par-
ticular, the static neutral scalar model of meson-nucleon
scattering can be solved exactly, ' and recoil corrections
have been investigated. ' In what follows we will apply
the approximation of Ref. 2 to the scattering of a
neutral scalar meson from a spinless neutral nucleon.
In Sec. 2, the approximate solution will be derived and
the static limit of the solution and recoi1. corrections wi11

be determined. The evaluation of the static limit of the
solution involves the estimation of a number of inte-
grals; these estimates are made in the Appendix.
Section 3 presents the conclusion of the investigation.
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The approximation made is that
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with K(s, t) some known function, so that in general
ImT will not exactly satisfy the unitarity condition.
Kith this assumption the dispersion relation can be
solved for T(s,t). The solution is

T(s,t) =X(s,t)/D(s, t),
where
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The residues of the poles at 3f2 must be g', which gives
one condition

(s)D(M', t) =1

toward determining the two functions X(t) and A(t).
which appear in the solution; the complete determina-
tion of these functions must depend on information
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The basic development of the equations has been
made in a previous paper, ' so only a brief statement of
the results obtained there will be given here. %e take
the meson mass to be y and the nucleon mass to be M
and start with the 6xed-momentum-transfer dispersion and
relation'
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Because of our choice of limits on co and t,

(/3/M)'"& (/3'/Mo/) & (/3/M)'"
( t[/M/d& (/3/M)'".

which is not contained in the 6xed dispersion relation
and unitarity in the s and N channels.

The next step is to investigate the properties of the
solution where 3E&&p. The appropriate energy variable
for this investigation is the laboratory energy or defi

by

The denominator function presents a more compli-
cated problem. In the expansion of the integrand in D

(6) it is convenient. to expand three pieces separately and
then recombine them. First there is the factor

s=M2+/32+ 2Mo/.

If we are to expect the solution to reproduce the static
limit of the neutral scalar model, we should make the {p'—(M+/3)2jL2' —(M—/3)2j}'/2/s'

assumptions that are necessary to reduce Eq. (1) to the
Low equations for that model. From previous investiga-
tions appropriate restrictions appear to be

(~I2 ~2)1/2
. (9)
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No power-series expansion is possible here because the
limits on co' are determined by the range of integration.
Next, the bracket with g' and P is the same as the

I

In terms of the new variable ~, the numerator func- numerator function except co replaces co,' so we use
Eq. (8). Finally there is the combination
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This involves the dimensionless quantities /t3'/2M»nd
t/Mo/. With the above restrictions on o/ and t we have
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As a consequence of this, the multinomial theorem can
be used to expand the two terms in power series. Making
these expansions, the pole terms become
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This result is obtained by expansion in, terms of (t/Mo/')
and Lt/M(/d+1o')j and then recombining the terms.
The recombining could be performed after substitution
in the integrand, in which case factors like (/d/o/ ), which
are not small, would not appear.

After the above expressions are introduced into the
integrand and all the products multiplied out, integrals
of two types occur in D. It is convenient to introduce a
notation for these integrals. Ke de6ne

The result involves the combination (g2/M2) which is $~= P, 0)
assumed to remain constant as /3/M -+ 0 in extracting
the static limit. The result of the expansion is
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+x(t).
(8) The second type of integral can be written in terms of
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Notice that the integrals depend on ~ and also on t

through the t dependence of E. These integrals, and in
particular their behavior as p/M -+ 0, are discussed in
the Appendix.

After performing the operations indicated above
and introducing the notation for the integral, we
obtain
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First consider the static limit. Even in the limit, the
numerator will contain t dependence, so the solution
can not be the pure S-wave solution of the usual model.
This seems to be a common problem in taking the static
limit of dispersion relations. The same effect is present
in Ref. 4 where they find that their solutions also con-
tain both S- and I'-wave contributions in the static
limit.

Since the dispersion relation, Eq. (1), does not contain

explicit information about the interaction, while the
derivation of the Low equation solved by CDD does
depend on the form of the interaction, we argue that
the static limit of Eq. (1) may include the sects of more

general interactions than the one in the usual static
model. In particular, the presence of I'-wave contribu-
tions in the static limit is a reAection of this. In order
to compare the solution (14) and (15) with the solution
of COD we must not only eliminate the recoil terms

but, like Barger and Razes, make the ad hoc assumption
that the I' wave vanishes. The result of these assump-
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Terms of the same order of magnitude are grouped in

The 6nal step for this section is to extract the leading square brackets and in each curly bracket the largest
terms as t4/M-+0. This is done using the results of the terms appear first.
Appendix, Eqs. (A4), (A5), and (A6). From Eq. (13)
we keep only the static limit and the leading recoil 3. CONCLUSIONS
corrections. For the numerator function we have
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tions is the solution

T,t,t;.= 16m'$16n.9 p
—2 (p/M) itj—', (16)

Barger and Kazes' in similar circumstances And
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where Bo is a constant and Eo can be interpreted as the
ratio of the total to elastic S-wave cross section. The
two solutions are identical if

Bp —Xp a——nd K(s, t) =Rp(pp). (18)

From the definition of E it is seen that the identification
is quite reasonable. The solution (16) is also of the form
which was obtained in CDD. The conclusion from this is
that the approximation method of Ref. 2 does reduce to
the exact solution of the static neutral scalar model
when it should, but that even in the static limit the
solution corresponds to a more general situation than
the usual model.

Next it is of some interest to assess the inQuence of
the recoil corrections and the effect of the g'/M' inter-
action, which was eliminated from the static limit by
our assumption of no P-wave scattering. The inclusion
of these effects to leading order leads to the approximate
solutions

E=X(f)y (g'/2M') (M/ot) j(p, '/Mtp) '—(f/2M') j
D =A (t)+(lt(f)/16rr')

&&~2(./M)'. +(./M) «/M-) j..j, (19)

since the other terms in (14) and (15) are of higher
order. If this is assumed to be the solution for all t and
the condition D(M2, t) = 1 is imposed, then

A(f) =1+it(f)O(Q/M)'), (20)

where we have introduced the (now angle-independent)
constant

Xp=A/X

problem. Unfortunately, this is not the end of the
discussion, for there is another problem. The numerator
has a term linear in f, so even if the t dependence of X(f)
and D is of the same order as neglected terms and thus
ignorable, there will be both 5- and P-wave scattering,
and both will share the same D and thus have a pole at
the same location. While this is not as undesirable a
result as the moving zeros, it is still peculiar.

We are compelled to conclude that the zeros of D
present a significant challenge to the validity of the
approximation under investigation. It is hoped that the
imposition of unitarity will introduce a t dependence
in D which will remove the de.culties encountered in
Ref. 2. Such a calculation is underway. The problems
encountered in the static limit described above have
the additional complication that any eRect of order
(p/M)' must be neglected and further investigation of
the problem is probably unwarranted.

A final comment concerns the relation between the
solution (19) and the results of Ref. 4. Unlike the static
limits in Eqs. (16) and (17), there is no simple identifica-
tion possible between the two results. If the S-wave part
dominates strongly, then the static-limit relations of
Eq. (18) should hold and the two will be similar; how-
ever, the P-wave parts will be quite diRerent because
the integrals in the denominator which give the right-
hand cut contribution to the P wave will be very
diRerent.

To summarize the conclusions, we have found that,
in the static limit, the results of the approximation of
unitarity, Barger and Kazes, and CDD agree in an
understandable way. The inclusion of recoil corrections
introduces difficulties if D is allowed to have zeros. The
connection between the solutions derived here and
Barger and Kazes's solutions is not easy to establish.
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since it and jt,& are both O((p/M)') at s=M'.
The point which is of most interest here is the

behavior of the zeros of D as t is varied. The zeros of D
are of interest in bootstrap arguments, and in Ref. 2 it
was observed that the approximation led to zeros which
changed location as t was changed.

In the solution (19) it is possible that the zeros will
move as t is changed, but the additional freedom
provided by the choice of X(t) allows us to avoid this

' Ref. 4, Eq. (30). A difference of a factor of 16~ in the de6nition
of T has been taken into account.

APPENDIX

In Eqs. (11) and (12) the integralsi„and j„, were
introduced. It is necessary to know how they behave as
p/M ~ 0 throughout the allowed range of cp and f In.
doing this we will assume that E(s', f) is a bounded
positive-definite function for values of s' and t required
in Eq. (13). First, just the integrals will be estimated,
and then an improved estimate will be made for some
cases, making use of the combination of factors which
occur in Eq. (13). Before proceeding with this, we note
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two relationships between the integrals:

i„+r= ()((/s&)i„—j„+r.r

i-.-r=() /~)i .-+i~r.-
Also, with the above assumption about E,

j„&0.
For the integral i„we have
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and for e= 1,
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where, here and in the following, C is an unspecified
finite positive constant. Recall also that

p(x)=(1—g ) /(p/M+z~g+p x/2M )

The above estimates can be improved upon by
noticing that the terms in the sums where m/0 always
have the form

(t/M(d)" ~j -&

with 1~& E~& m, ns»&2 and E&»1. This can be combined
with the inequality

When n) 2 nothing peculiar happens as p/M -+ 0, but
for v=1 and 2 the integral diverges for ~ at the upper
end of its range. For m=2 we have
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The integral can be performed and the large ~ behavior to give the estimate

extracted to give m—K
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A similar attack when m= 1 leads to
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In the case of the j„we have
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This gives an improved estimate when m&»2K.
Summarizing the results, we have the inequalities
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For e»&3 there are no problems; the cases m=1 and 2

we treat separately. The problems and approach are
similar to the above. For e=2,
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Finally, when m»& 2K,

((/M~)m Kg~ (C( /M)m (sl2)K— —

(AS)

(A6)


