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APPENDIX

parametrized by Eq. (18), provide a more convenient dence to be in a resonance denominator, so we can write

description than the corresponding eigenphases.

In this appendix we derive the form of S(E) in the
vicinity of an isolated resonance. This result has been
given previously by Davies and Baranger, ' who term it
the "generalized Breit-%igner formula. "

By only requiring that the form be valid in the vi-
cinity of a resonance, we take its only energy depen-

where Bs, P="background"], Ts„and E„=Es iF/—2

are constants.
The determinant of 5 in general has only simple

poles; equivalently, the pole occurs in only a single
eigenvalue of S. This requires that Tb be a dyad;
write it Tb, =tbt, .

Finally, S must be unitary, 5~5= i, i.e.

—i(E—Es) (Bcs'ts/. /.*4*B—se)+ f~:t,*t,/. 'F(B—t-/, t +/ *ts'Bs.)j
b

In a representation in which 8 is diagonal, we can write

(A2) Bs,=e"s /is (p, real) and te=e'~~F, "
(I' real, g F,=F), so

iP 1/2I 1/2-,

Ss nw(E) = e'(t4+tta)

Ey—8— (A4)

This provides the conditions

~cb +be ftIca )
t

gs J/st'=F.
It might be noted that

detS'w(E) =1+iF/(E„E)= (E,'—E)/(E, —E). —
(A3)
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Explicit calculations have been presented for the I= 2 electromagnetic mass di6erence between particles
of a given isomultiplet using the superconvergent-dispersion'-relation approach suggested by Harari. We
obtain, in particular, the electromagnetic mass differences (i) n —ss, (ii) o+—p', (iii) Z++Z —2 Z, (iv)fge+++Ã*e 2/l/*+, and (v)—Fs ++ Yr +—2 Fr*'. The agreement of our results with experiments is exce/lent.

C. INTRODUCTION

HE calculation of electromagnetic mass diGerences
between members of various isomultiplets has

attracted a lot of attention in recent times. It is well
known that attempts to calculate electromagnetic mass
differences, taking into account only certain low-lying
pole terms in the self-energy diagram, lead to confusing
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results. The notorious wrong sign is obtained for the
mass differences n —p and E+ E', while the c—orrect
sign and magnitude is predicted for the mass di6erence
~+—7f-'. Recently, Harrai' put forward a simple criterion
based on the use of superconvergent dispersion relations
to understand this anomaly. As is vrell known, in pertur-
bation theory the electromagnetic self-energy of a
strongly interacting particle is given by'

T„,(qs, t )
go~ V~

g
—te

' H. Harari, Phys. Rev. Letters 17, 1303 (1966).' W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).
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where T„„(q',v) e„e, is the forward (non-spin-Hip) Comp-
ton scattering amplitude for a virtual photon of mass
q'~0 and energy go=& with any hadron. In isospace
DM is a sum of two terms 63f&" and AM&2&, transform-
ing like a vector and a symmetric traceless tensor of
rank two, respectively. One can now decompose T„„(q',v)
in terms of invariant amplitudes as

T..'*'(q', )=Z &" &-"'(q',v),

where o. runs over the number of invariant amplitudes
which survive in the forward direction and the super-
script (i) indicates the isospin transformation property,
1=1 or 2 corresponding to ~&') and 63f(", respec-
tively. The E„„'sdenote the kinematical factors associ-
ated with the invariant decomposition of the Compton
scattering amplitude in the forward direction.

In order to calculate the mass difference 235 from Eq.
(1), in practice, one assumes a suitable dispersion rela-
tion satisaed by the invariant amplitudes t &"(q', v) and
saturates the dispersion integrals by a few low-lying
single-particle states. The question of when the above
dispersion relation would need subtractions is of course
the standard difIiculty in this approach. Harari' sug-
gested that the convergence properties of these disper-
sion integrals can be resolved by looking at the asymp-
totic behavior of the crossed t-channel (yy~ H8, H
being a hadron) Compton amplitude as predicted by
Regge-pole analysis. It is interesting to note that the
mass di6erence 835(" is controlled by the Regge-pole
exchange in the t-channel Compton amplitude, having
isospin quantum number i only. Thus, in order to cal-
culate 63f&", one needs to know the t-channel Regge-
pole exchange in isospin state I= i.The resulting asymp-
totic behavor of the Compton amplitude is s '& ), where
rr, (0) is the 1=0 intercept of the Regge trajectory with
isospin i. Since there is no boson trajectory with I= 2
known so far, it is reasonable to assume' that nr=s(0) (0.
Thus T„„r '(q', v) will satisfy an unsubtracted dispersion
relation. For the I=1 case, the trajectory of the A2
meson (I=1, C=+1, G= —1) which has rr~, (0) 0.4'
will govern the behavior of the Compton amplitude.
Therefore, one mist introduce a subtraction in the dis-
persion relations. In order to avoid calculating this es-
sentially unknown subtraction constant, ' we con6ne our
attention, in this paper, to I=2 electromagnetic mass
differences only.

It can be easily seen that the mass differences (i)
s+—s, (ii) p+—p, (iii) Z++Z —2Z', (iv) X*+++X
—2Jli'*+, and (v) Ft ++Fr* —2F't*' transform like

'7. de Alfaro, S. Fubini, G. Furlan, and G. Rossetti, Phys.
Letters 21, 576 (j.966).

4 R. J. N. Phillips and W. Rarita, Phys. Rev. 140, B200 (1966};
V. Barger and M. Olsson, sWd. 146, 1080 (1966).

'Recently Cottingham and Gibb (W. N. Cottingham and J.
Gibb, Phys Rev. Letters .18, 883 (1967}jhave shown, using Jost-
Lehmann-Dyson representation for g„„T»(q~,v), that if the disper-
sion integral for the Compton amplitude requires a subtraction,
the electromagnetic self-energy diverges.

I= 2 in isospace. Definite experimental data exist' only
for (i), (iii), and (iv); p+—p' is highly uncertain, r while
nothing is known about (v). Our present calculations,
based on the superconvergence principle and the disper-
sion integrals being dominated by a few low-lying states,
yield results which are in remarkable agreement with
experiments. The numerical values for the mass differ-
ences (ii) and (v) could be checked as soon as the experi-
mental data are available. Ke discuss below the various
cases separately.

1 dq2 +~

4x p
2

g q

dv(q' —v') '~s

&& L3q't t &"(q', iv) —(q'+ 2v') 1,&'&(q' iv) j (4)

As mentioned before, to calculate the I= 2 type of mass
differences, we can write unsubtracted dispersion rela-
tions for the t 's':

2 "imt r=s(qsv')
t '='(q', v) =- — — dv'.

7p 0 p 2 p2

The low-lying poles in y —x scattering are due to x,
p, co, y, A~, and A2 contributions. The p meson cannot
contribute to the x+—x' mass difference because only
G= —1 (s.y) states can contribute to the I= 2 type mass
difference. The coupling constant g„~ is known from
the electromagnetic decay width I'(co -+ s y) = 1.08
MeV. ' Since the decay q

—+ my is not seen, the coupling
constant g„~ is probably very small. In fact, from vari-
ous theoretical models such as the quark model, SU(6)
symmetry, current algebra plus partially conserved axial
vector current (PCAC), and vector dominance model,
one finds g„~ equal to zero. Therefore we will simply

~ A. H. Rosenfeld, A. Barbaro-Galtieri, %. J. Podolsky, L. R.
Price, Matts Roos, W. J. Willis, and C. G. Wohl, Rev. Mod. Phys.
39, 1 (1967).' See footnote (h) of Ref. 6.

8 This expression for hM relates electromagnetic self-energy to
the Compton scattering amplitude for spacelike photons, thus en-
abling one, in principle, to use experimental data on electron scat-
tering directly in Eq. (4).

~ We have included the below-threshold pole terms also in the
dispersion integral in (5), hence the lower limit for v integration is
zero in our case.

2. CALCULATION OF ELECTROMAGNETIC
MASS DIFFERENCES

A ~+ ~o

For the Compton scattering of pions, we express
the amplitude T„„('& in the forward direction as

T""'(q', ) =1 "'(q'g"—q.q.j
+1"'L 'g .+(q'/ ')P P.+( / )(P.q+P.q )j (3)

p„being the 4-momentum of the pion. Using the pre-
scription of Cottingham, ' we rotate the qo integration
contour in (1) from the real to the imaginary axis in the
complex ~ plane. Ke can then write for ~ the form'
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neglect it.. Further, since nothing is known about
A& —+ xy and A2~ m-p decay widths, we shall neglect
their contributions as well.

The relevant expressions for these pole terms (sum of
s and I channels) are

T (q', v)=2g ~'[(q4+4m sq')+8m svsj/

(q4+4m 'v'),
(6)

1 6m. ' g„.,'( m. '+q' —m ')(q'+v')
T„(q',v) =-

((m '+q' m—')'+4m. 'v'5

In Fq. (6), the isospin Clebsch-Gordan coefficients have
been left out. For the form factors associated with the
coupling constants in (6), we have assumed a vector-
meson pole dominance model. Substituting (6) in (4),
one can easily evaluate the x+—z' mass difference. Our
result is m +—nz o=4,54 MeV. This value should be
compared with the earlier result of Coleman and
Schnitzer" who get a value of 5 MeV. Recent calcula-
tion by Das et al. ,

"using the algebra of currents, PCAC,
and the superconvergent spectral function sum rules,
yields a value 4.8 MeV. The experimental value is
4.604&0.014 MeV.

It should be remarked that in our calculation we
needed an infrared cutoff parameter (1/400)m '.
Varying this parameter to $1/(4&&10')$m ', the mass
dif'ference alters by about 2.5%.Thus, our calculation is
not in any way sensitive to the infrared cutoB procedure
even over such a wide range of variation.

& e+—e'

The Compton scattering of p mesons can be ade-
quately described in terms of p and x poles. The x-
meson pole terms cannot contribute to the p+—p' mass
difference because only G=+1, py states can give rise
to an I= 2 contribution. Since one does not know any-
thing about the higher (electric and magnetic) moments
of the p meson, we have restricted ourselves to the
simplest ppy coupling of the form

~~ ppy= gppypp pv'~ p,v & )
i 7'P k ijk

where i, j, and k are isotopic indices. The coupling (8)
means that we have neglected the isoscalar photon cou-
pling with p. The coupling constant gppy is now known
as the charge of the p meson multiplied by a form factor
for which we will again use the vector-meson pole domi-
nance model. The p-pole term in yp scattering is given

by

2g„,'(q'/m, ') (5mv'q' 2q' 10m, 'v—')—
T,(q', v) =-

(It 4+4m, svs)

"S. Coleman and H. J. Schnitzer, Phys. Rev. 136, 8223 (1964)."T.Das, G. S. Guralnik, V. S. Mathux, F. E. Low, and J. E.
Young, Phys. Rev. Letters 18, 739 (1967).

Using (8) in (4) as before, we obtain m, +—m, o=3.68
MeV. Varying the cutoff parameter from (1/400)m '
to (1/4&(10s)m we get mv+ —moo=3.9 MeV, demon-
strating once again the insensitivity of our results to the
infrared cuto6. There is no direct experimental evidence
for the p+—p' mass diQerence; however, there are two
tentative figures for this number, ' esp+ —mpo 8 MeV
and 3 MeV. Our result is certainly consistent with
these. On the other hand, it is interesting to note that
on the basis of SU(4) symmetry (electromagnetic inter-
action transforms like a member of the 15-piet), one
6nds"

+ Jg 0= fg —gg 0 ~ (9)

The present superconvergent dispersion relation cal-
culation is not in gross disagreement with the SU(4)
symmetry result.

C. X++X —2X'

The nearby poles contributing in pZ scattering are
the A., Z, and F&*. For the spin- —,'baryons, we have
chosen the charge and magnetic couplings"

tTpvg~

~~BBy gBBrN(p) VvF1(q )+ 'F2(q ) N(p )&v(q) ~ (10)
2m+

In calculating the Z-pole terms, we have related gqq~
and gvtv ~, using SU(3) symmetry, "while for the A-pole
term Fr(q') =0, and Fs(0), which is nothing but ttzo„qo„,
is related to ttv, using SU(3) symmetry. The SU(3)
symmetry value gives rise to a I'(Z'-+ h.sy) which is
consistent with the experimental upperbound.

For F~*Zy coupling we have assumed the form

=4 (p) ~,G(q')+ (q') 7 (p') (q) (11)
mg

"S.N. Biwas, V. S. Mathur, and R. P. Saxena, University of
Delhi (1966) (unpublished).

"In what follows all the form factors will be assumed to have
a form F(g') =F(0) (g'+b)' where b~30m '.

"M. Gell-Mann and Y. Ne'eman, Eightfold Q'oy (W. A.
Benjamin Inc., New York, 1964).

~~ C. H. Albright and L. S. Liu, Phys. Rev. Letters IB, 673
(1964).

Here Gr=(1+m&*/mtt)Gs. For the coupling constants
G&, Gs(0), one can either use SU(6) symmetry and relate
them to XEy couplings, or use the experimental values
found by Albright and Liu" from an analysis of the
high-energy E*production process by neutrinos. I'&*Zp

couplings can be related to E*Ey couplings, using
SU(3) symmetry as before. In Fq (11) we ha. ve ne-
glected higher derivative couplings, since they turn out
to be rather small in the work of Albright and Liu."

The 2, A, and I'~* pole terms in y —2 scattering can
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now be written as

m~(k'+4m''v')
(12)

(13)
2(A+Bv'+Cv4)

Tg*(q',v) =
(X'+4m 'v') (Y'+4mgPv')

where

X=mgP+q', Y=m~' ms»'+—q',

A =AgX'Y+3:x Y, C= Sm~'Bg
+4m~2C2

2m@Dr�(—

X+Y),

8= C,XF+2&4m&' 2m~A—(&+Y)

—2m~8gX' —4m''A ~I',

L2q2(2mn2ji 12 q2P~2) (Sms2P12 q2P~2)v21
T~(q', v) =

For the 8*8' vertex we retain only the charge and
magnetic moment couplings (since nothing is known
about the higher moments of 8*)
JIB"B~v k, (p)L'r~&i(q')+20~. q.&2(q') jest'(P')~~(q) (16)

Here H~(0) and H2(0) may be related to the baryon
charge and magnetic moments using SU(6) symmetry.
The relevant pole terms are

(32/3) Lm~eq'(Hg' —3k Hg ) —2mgyeH) v ]
(»)

(k4+ 4m~"v')

Our results for the mass di6erences are

4@2
A g=2(m~ —mg. )G)'—— (my+2m~a)q',

3 mg

4 (Gg'
A2= —

~

— (my+ms )q4 G~G2—mg q~ ~,
3 &ma' ~

4 G2'q' m~*
8 =2G '—— — -- —GyG2—

3 5$+ mB

4 Gg'
8;=—— Lq'(q2+2m~(mn+2m~ ))g

3 8$+
mg~——;G,G, (m~'+q2),

4 G2'
C2 ——L2—m—~q'+ming(m~+2m~a) j 43GrGg—m~. ,

3 5$+

N* ++N*' 2N*+=—4. /9 MeV,

Yy~+ Fy* —2Fg*'=5.7 MeV.

Experimentally, the former is 4.81&5.39 MeV, while
no information is available on the latter.

3. REMARKS

To summarize, we give the following table of our re-
sults on I=2 type mass diBerences among hadron iso-
multiplets based on the use of superconvergent disper-
sion relations. The fact that a11 of them show a remark-
able agreement with experimental data suggests that
the dispersion integrals for 1 '='(q', v) do indeed get
saturated by the nearby poles. The success of the present
calculations indicates that the superconvergent disper-
sion relations are a powerful tool for investigating ha-
dron dynamics.

We now obtain for mr++mr, -—2mr0 a value of 2.01
MeV. This result should be compared with the experi-
mental value 1.79&0.10 MeV. The Coleman and
Schnitzer'0 value for this mass diQerence is 4.5 MeV.

tA'e may add in passing that the contribution of other
higher resonances like the Fa*(1405), Fq*(1//0), etc. ,
for which we can at best give estimates, tends to im-

prove the agreement of our result with experiments.

D. (¹+++N*' 2N~+) and ( Y~~+—+ Yq~ —2 Y~*')

Here we consider only baryon (8) and decuplet
baryon resonance (B~) poles. The baryon-pole terms
can be directly evaluated by using (12) and the same
coupling constants as before to give

T&(q', v) = (—2t (m&e' —m&'+q')
X(4GP(ma* —ma)+2(m~. +2m')G2'q'/ms')g
—Sm~.v'(2G~'+ G2'q'/ms') )/

Dm~" m~'+q')—'+4mjy "v'j (15).

TwsLE I. Table showing E=2 type mass differences among
hadron isomultiplets in MeV with infrared cutofF parameters
(1/400)m ' (a) and j1/(4X10'))m~' (b).

Mass difFerence

7 +—7r'
p+ pO

Z++Z--2Zo
E*+ +A" —2E +

~1*++~1*-—2I'1'0

Present
calculation

a b

4.54 4.63
3.68 3.9
2.01 2.06
4.79 4.83
5.70 5.74

Experiment

4.604&0.014
3—8

1.79 +0.10
4.81 ~5.39

None
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