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Eigenyhases and the Generalized Breit-Wigner Approximation*
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(Received 13 July 196'I)

The relation between the repulsion of S-matrix eigenphases and "crossing" branch points (complex
energies at which two or more eigenphases are equal) is examined in some detail. It is exploited to obtain a
unitary one-pole approximation to the S matrix for the description of an isolated resonance superimposed on
a nonelastic background.

I. INTRODUCTION

T an energy between thresholds E and %+1 of a
multichannel scattering system, the E&(E open-

channel 5 matrix in a single partial wave S(E) Lwhich
we refer to as "the S matrix") has E eigenvalues
a.„(E)=e"'"tn&, where 8„f"eigenphases"j are real for
real E.The a „(E)are of course functions of the elements
Sb, (E) of S(E). If these 5-matrix elements can be
analytically continued into the complex energy plane,
the eigenvalues a„(E) can be as well. In particular, if
the Sb,(E) have a pole at an energy E~, orte of a„(E)
will have a pole there (only one, because normally detS
has only single poles). If the pole occurs near the real
axis it will manifest itself as a scattering resonance, and
a conjecture seems to be abroad that only one eigen-
value will show a rapid energy dependence at real
energies near the pole, enabling the resonance to be most
economically parametrized in terms of a one-pole ap-
proximation to the resonating eigenvalle. Our purpose
is to point out that this conjecture is quite false. Because
of %igner's eigenphase-repulsion phenomenon, aQ 1V of
the eigenvalues will normally be active near the reso-
nance, so that the one-resonating eigenphase approxi-
mation is inadequate. This is quite evident, e.g., in the
two-channel example of Fig. 1(a), which occurs in d-n

scattering.
Equivalently, we can say that a one-pole approxima-

tion for the eigertvalles tr (E) fails because the a (E)
have additional singularities, namely branch points. At
each value of E, the O.„are the E roots of the /th degree
equation

detLS(E) —xlj=0. (1)

Consequently, the solution of this equation, x=tr(E), is

an g-valued function, whose X values are the a' (E).
Therefore, except for trival cases, the function a(E)
has branch points. Fig. 1(b) shows the distribution of
singularities corresponding to the two-channel case of
Fig. 1(a). The branch points of a (E) (Cl) are closer to
the real axis than the pole ()(), since the energy width
of the "repulsion bend" in the eigenphases is narrower
than the width of the resonance. I.et us call at(E) the
branch of a(E) which has the p. ole reached by a path

from the real axis such as the one labeled "o.r", as(E)
has the pole if a path "02" going the other way around
the branch point is taken. For real energies less than
"A," at(E) is the "active" eigenvalue because it has a
nearby pole, and so bt has the resonance shape Lsee
Fig. 1(a)), but as is "dormant. "Hut when the energy A
is passed, the roles are reversed; it is now 02 which has
a nearby pole, and so for E greater than A, 5& has the
resonance shape and b~ is dormant. One observes in
Fig. 1(a) the "no-crossing" or "repulsion" of the phases;
obviously this prevents the 8„(E) from having normal
resonance shapes.

In Sec. II w'e discuss some properties of the branch
points of a (E). In Sec. III we show that branch points
normally do occur in the vicinity of an isolated reso-
nance, and in Sec. IV we explicitly do the algebra for
the 2X2 case to locate the branch points. Finally, in
Sec. U we exhibit a matrix S(E), simply related to S(E),
whose eigenvalues do rot have branch points, and which
can be used to obtain a simple one-pole approximation
to S(E) which is a unitary generalization of the Breit-
Wigner form to the case of a nonelastic background.

II. SOME PROPERTIES OF THE
BRANCH POINTS

(a) If one takes a path in the E plane which encircles
a branch point, the branches of a (E), i.e. the a (E), are
per muted. '

(b) Those a „(E)which are permuted are equal at the
branch point; consequently the branch points have
been called "crossing points, " Eq, by Goldberger and
Jones. ' In general only two of the a„will be equal at a
point (the case that more than two are equal can always
be considered as a limiting case of two different pairs
being equal at nearby points); so, in general, the Ea are
square-root branch points.

(c) The crossing points occur at complex conjugate
energies. This follow's from the statement of unitarity
of 5 (reality of the eigenphases for real E) in the form

a„(E)&r„~(E")= 1,
with E and E~ at energies reached by direct continua-
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tion from the rea, l axis between thresholds S and 1V+1,
one of them being on the physical sheet.

(d) Two eigenphases can cross at real E only if a
crossing point coincides with its conjugate there to form
a "double" crossing point, which is not a branch point.
The fact that this is "unlikely, " and occurs only if S
satisfies special conditions, is Wigner's "no-crossing"
or "eigenphase repulsion" theorem: The eigenvalues
o (E)=e"'"'~l are normally not equal for real energies.
Equivalently, the eigenphases 8„(E) are not equal
modulo m for real energies; they do not cross.

As a simple example, the 2)&2 Smatrix can be written
in the form

(S(1 ~S)1/2&i(bi+bs)

S(1 r/S)1/Sei(by+bs))

)I (3)

with 8~, 82, and g real, 0&g'&1, for E real. The condi-
tions for the equality of its eigenvalues at a real energy
are

br ——8s(modz. ) and r/ =1,

which are normally not both satisfied at the same real
energy.
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S,.(E)=ab.—sLfbf./(E„—E)3, (5)

where E~= Eo—-', iI'. The 6rst term is a constant "back-
ground"; the dyadic or "factorable residue" form of the
second term ensures that detS t Eq. (3)j has only a
single pole.

By the resonance being isolated, we mean that E„is
sufhciently far from other poles and threshold branch
points that Eq. (5) is valid in a region //E Er

~

(6of-
the complex plane whose radius 6 is much larger than
F. In the outer part of this region, where

A»
(
E—E„~&&I',

Sb.(E)=Bb.
(6)

a constant, so the eigenphases 8„(E) of S tend to the
constant eigenphases P; of I3 as E tends to infinity" in

any direction. In particular, if E& is a real, positive
energy satisfying A»E&&I', the 8„(E) remain constant
as E passes from Es Et to Es+Er along a—large semi-
circle in either the upper or lower half of the E plane.
On the other hand, the presence of the resonance forces
PP 8„(E),which is half the phase of detS, to rise by z.

as E increases from Es—Et to Es+Et. As Weiden-
miiller has recently pointed out, ' the eigenphases can
accomplish this, respect the no-crossing theorem, and

b H. A. Weidenmiiller, Phys. Letters 24B, 441 (1967).

III. THE EXISTENCE OF CROSSING POINTS
NEAR AN ISOLATED RESONANCE

In the vicinity of an isolated resonance we can ap-
proximate S(E) by the one-pole form A~g ~8

g ~~~I ~

gX

l 2

Xt
x

R@(E)

equal the Ig; (modulo z.) at both ends of the interval,
only if their values at Es+Er are some permutation of
their values at Eo—Ej, as indicated in Fig. 2 for the
case X=3. Thus 8„(Es+Et) takes on different values
depending on the path followed from Eo—Ej, and so
must have branch points within both the upper and
lower halves of the region ~E—Es~ (h. LThe branch
points in fact occur in complex conjugate pairs,
Sec. II(c).) As we mentioned in Sec. II, we expect these
branch points (i.e., the crossing points) to be simple and
hence square-root, so that encircling one interchanges
a pair of eigenvalues. Since it requires Ã —I such inter-
changes to make a cyclic permutation of all X eigen-

(b)

Fro. 1. (a) Eigenphase energy dependence for a two-channel
7=1+ resonance observed in d nscattering LL.-C. McIntyre and
W. Haeberli, Nucl. Phys. 91, 392 (1967)P. The eigenphase re-
pulsion is centered at the energy marked A, and the center of the
resonance is at B. Note that the background eigenphases are not
constant, but decrease with energy much like hard-sphere phase
shifts do. (b) Eigenphase singularities in the complex energy plane
corresponding to the resonance of Fig. 1(a), showing the pole
(S(), conjugate zero (o), and crossing branch points (Q) possessed
by both eigenphases.
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Pro. 2. Kigenphases for a typical 3-channel resonance, showing
two eigenphase repulsions; constant backgrounds have been
assumed for clarity. Note that as the resonance energy is passed,
5~ rises from pI to p2, 5g rises from py to p3, and b~ rises from p3 to
Pi (IQOd 2).

PgG. 3. A two-channel resonance with the special property that
its eigenphases are equal oG resonance. In this case the eigenphase
"repulsion" occurs at an energy very distant from the resonance,
and so allows the resonance to appear in only one of the
eigenphases.

posltlolls

2(~1+~2) (I 112~1~2)=E2+ 2 (I'1—I'2) -W 2 (11)

values, there will in general be X—1 square-root cross-

ing points in each half plane.

IV. EXPLICIT EIGENVALUZS FOR A
TWO-CHANNEL RESONANCE

An isolated resonance coupled to two open channels

provides an example simple enough to permit the alge-

bra to be worked out explicitly. Without loss of gen-

erality we may write 5 in the Breit-Wigner (BW) form

of Eq. (A4),

=E&+2 (I,—I 2) cot($1—p2)

+i(1'1I'2)'~2 csc(yi —y2) .

Because of the crossing points, these eigenvalues
clearly do not have a simple Breit-Wigner form in
general, but there are two limiting cases in which they
do. One is the case in which one channel is completely
decoupled from the resonance, e.g. F~——0. This makes
the 5 of Eq. (7) diagonal, so the physical phases are the
eigenphases, and if we associate 0.+ with channel 4,
Kq. (9) becomes

with p, and Pt, the real, constant background phases.

The eigenvalues of a general 2X2 matrix are

O~(E) 2 (+11+~22)+2L(~11 ~22) +4~12 j I (g)

which for the Breit-Wigner matrix (7) become (de-

fining X,=e"»')

o~(E) = {Xi(E—E„—ii'1)+X2(E—Ey—iI'2)

~ t (X,(E—E„—ii,)—X,(E—E„—ii,))'
—41'11'2).1X2ji"}/2 (E—E„), (9)

which exhibit the pole and square-root branch points

explicitly. The latter can be made more evident by com-

pleting the square inside the square-root bracket, to
give

~~(E)= {X,(E—E„—ii'1)+&2(E—E,—il 2)

& () —'A )L(E—E,) (E—E.*)O'I'}/2 (E—E ), (10)

with the crossing points occurring at the conjugate

As is evident from Eq. (11), the two square-root
branch points have in this case moved onto the real axis
and "annihilated" one another there, allowing the two
(decoupled) eigenphases to cross at that energy.

The opposite extreme is that in which the background
phases $1 and j2 are equal. In this limit, according to
Eq. (11),the crossing points move infinitely far from the
pole, in a direction determined by I'2/I'1. Eq. (9) again
reduces to a simple B % form, which we can write as

o ( )E=e" O ~+(E)=~".—E, f' (13)

The eigenphases now "cross" only at E—+~ ~; in the
Gnite energy range near E„the resonance is aHowed to
remain entirely in one eigenphase because it has just
"room" enough to rise by x without intersecting the
other, as indicated by I'ig. 3.

In the general case, the branch points are near the
pole and oQ the real axis, causing the eigenphases to
repel one another for real E. The energy interval over
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which the repulsion occurs is approximately equal to
ImE., i.e., (I'rl's)"'/sin(P& —Ps), and so depends on both
the background phases and the relative coupling of the
two channels to the resonance.

V. GENERALIZED HREIT-WIGNER
APPROXIMATION

The traditional Breit-Wigner approximation, Eq. (7),
is applicable only to an isolated resonance superimposed
on an elastic background. Its generalization to the case
of a nonelastic background was given some time ago by
Davies and Baranger, 4 whose argument is reproduced
in simpli6ed form in Appendix A. %e outline here an
alternative derivation which shows that the result,
Eq. (18), can be obtained as one-resonating eigenphase
approximation, not to S(E), but to a closely related
matrix 5(E); further details can be found elsewhere. '

Near an iso1ated resonance we assume S to have the
one-pole form

S(E)=a—itt/(E —E„),
with 8 a constant background matrix, t a complex
column vector, I, its transpose, and E„=E0——,ir; the
channelwise factorability of the residue at the pole
follows from the assumption of a simple pole, i.e., a pole
in only one eigenvalue per sheet.

The only question at issue is the relation which must
hold between 8 and t in order that S be unitary. It can
be obtained by noting that S(E) can be unitary identi-
cally in E only if 8 is as well. 8 is also symmetric
because S is, so its constant matrix of eigenvectors V is
real and orthogonal. Denote by e"I'= VBV the diagonal
matrix of eigenvalues of 8, and consider the matrix

S(E)=e'~VS(E) Ve- (15a)
=1—ii'/(E —E,)uu,

with
I=I' '/'e '&VI.

Although the transformation is not unitary, 5 is readily
seen to be symmetric and unitary if and only if S is;
since it differs from S(E) by a constant transformation,
its elements clearly have no branch points.

The merit of S(E) is that its background eigenphases
are equal, so that their crossing points are infinitely
far from the pole, allowing the resonance to remain en-

tirely in one of its eigenphases. That this indeed occurs
is apparent by inspection of Eq. (15), which shows I to
be an eigenvector of S, with eigenvalue 0=1—il'/
(E E„)=(E E~*)/(E E„),—while the—rest of t—he

eigenvectors, being orthogonal to I, have eigenvalues
"dormant" at 0.=1.

' K. T. R. Davies and M. Saranger, Ann. Phys. (N. Y.) 19, 383
(1962).

~ K. %'. McVoy, in Fundamentals iw S'ucleur Theory (Inter-
national Atomic Energy Agency, Vienna, 1967).

The condition that S be unitary is that u be real and
normalized, IN= NtN=1, or, froxn Eq. $15(b)),

(16)

since ~t,
~

is the partial width for decay of the resonance
into channel u, this is merely the statement that the sum
of the partial widths equals the total width. From
Eq. $15(b)) the reality of I can be written in terms of
5 as

e'/'VF = e '/'VI, ,

which, since 8= Ve"&V, is equivalent to

This is our desired result, for Eqs. (16) and (17), which
guarantee the unitarity of 5 and so of S, are expressed
entirely in terms of the components of S.Consequently,
in summary, if Bb, ~B~e"&' and I',= (t, (, the desired
generalization of the Breit-Kigner approximation can
be written

P I/2P I/2-

».(E)= P'vb
~
&b.

~

is'.~—

where nb, is the phase of tbt, relative to that of Bb, i.e.,
the "phase of the resonance relative to the background. "
The matrix is unitary provided the conditions (16) and
(17) are satisfied, and reduces to the BW approxi-
rnation, Eq. (7), if

~
Bb,

~

=8b, (no direct reactions) and
O.b

——0, for all b and u.
The resonance zeros of the S„(E)of the BW approxi-

mation all have the same real part as the pole, Eo. This
is not true of the corresponding zeros in Eq. (18), which
are found to be "tipped" relative to a verticalline
through the pole by the angles e„.Further discussion
of these tip angles, as mell as a consideration of over-
lapping resonances, can be found in Ref. 5.

VI. CONCLUSION

Our principal result is that the eigenphases, because
of their branch points, generally have a more compli-
cated energy dependence than the physica1 S-matrix
elements, and for this reason it would normally seem
unwise to use them for representing experimental data.
A two-channel isolated resonance is something of an ex-
ception, since the expression for the energy dependence
of the eigenphases in terms of the resonance parame-
ters, Eq. (9), is not significantly more cumbersome than
the Breit-Wigner expression for the Sb, (E). LFor
example, the experimental data of Fig. 1(a), were
analyzed directly in terms of the eigenphases, rather
than by the Breit-Wigner expression. ) However, if the
resonance is coupled to more than two open channels,
it would seem that the physical S-matrix elements,
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Tbc
Ss.nw(E) =Be.+

E„—E
(A1)

APPENDIX

parametrized by Eq. (18), provide a more convenient dence to be in a resonance denominator, so we can write

description than the corresponding eigenphases.

In this appendix we derive the form of S(E) in the
vicinity of an isolated resonance. This result has been
given previously by Davies and Baranger, ' who term it
the "generalized Breit-%igner formula. "

By only requiring that the form be valid in the vi-
cinity of a resonance, we take its only energy depen-

where Bs, P="background"], Ts„and E„=Es iF/—2

are constants.
The determinant of 5 in general has only simple

poles; equivalently, the pole occurs in only a single
eigenvalue of S. This requires that Tb be a dyad;
write it Tb, =tbt, .

Finally, S must be unitary, 5~5= i, i.e.

—i(E—Es) (Bcs'ts/. /.*4*B—se)+ f~:t,*t,/. 'F(B—t-/, t +/ *ts'Bs.)j
b

In a representation in which 8 is diagonal, we can write

(A2) Bs,=e"s /is (p, real) and te=e'~~F, "
(I' real, g F,=F), so

iP 1/2I 1/2-,

Ss nw(E) = e'(t4+tta)

Ey—8— (A4)

This provides the conditions

~cb +be ftIca )
t

gs J/st'=F.
It might be noted that

detS'w(E) =1+iF/(E„E)= (E,'—E)/(E, —E). —
(A3)
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Suyerconvergent Disyersion Relations and I=2 Electromagnetic
Mass Differences of Ha(Irons

Dar~tt&t J. DrrA&yt YU. V. NovozHILov, f AND R. P. SAXENA)
Internatsona/ Atornsc Energy Agency, Internatsona/ Center jor Theoretica/ physics, Trseste, Ita/y

(Received 29 June 1967; revised manuscript received 17 August 1967)

Explicit calculations have been presented for the I= 2 electromagnetic mass di6erence between particles
of a given isomultiplet using the superconvergent-dispersion'-relation approach suggested by Harari. We
obtain, in particular, the electromagnetic mass differences (i) n —ss, (ii) o+—p', (iii) Z++Z —2 Z, (iv)fge+++Ã*e 2/l/*+, and (v)—Fs ++ Yr +—2 Fr*'. The agreement of our results with experiments is exce/lent.

C. INTRODUCTION

HE calculation of electromagnetic mass diGerences
between members of various isomultiplets has

attracted a lot of attention in recent times. It is well
known that attempts to calculate electromagnetic mass
differences, taking into account only certain low-lying
pole terms in the self-energy diagram, lead to confusing
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versity of Delhi, India.

t Department of Physics, University of Delhi, India.
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address:. Physics Department, University of Leningrad, USSR.
$ On leave of absence from Physics Department, University of
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results. The notorious wrong sign is obtained for the
mass differences n —p and E+ E', while the c—orrect
sign and magnitude is predicted for the mass di6erence
~+—7f-'. Recently, Harrai' put forward a simple criterion
based on the use of superconvergent dispersion relations
to understand this anomaly. As is vrell known, in pertur-
bation theory the electromagnetic self-energy of a
strongly interacting particle is given by'

T„,(qs, t )
go~ V~

g
—te

' H. Harari, Phys. Rev. Letters 17, 1303 (1966).' W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).


