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The problem of understanding the asymptotic behavior of hadron electromagnetic form factors is con-
sidered. It is shown that if the hadrons form a bootstrap, each hadron must be a bound state of an in6nite
number of particles, or infinitely composite. A simple model containing an infinitely composite particle is
constructed, and the form factor of the particle is calculated. The form factor decreases exponentially for
large spacelike momentum transfers. On the basis of this, it is suggested that a criterion for a bootstrap
should be exponentially decreasing form factors for all hadrons.

I. INTRODUCTION

A. Form Factors

'HIS paper is the beginning of an attempt to gain
theoretical understanding of strong-interaction

scattering amplitudes and form factors at large mo-
mentum transfers. The experiments which have been
ca,rried out in this region have shown some striking
features which invite theoretical explanation. In the
best known cases of pp, ' ' srp, ' and pp' collisions, high-

energy large-angle elastic-scattering measurements show
cross sections which are falling extremely rapidly with
energy at fixed angles. Aside from this common feature
of rapid decrease with energy, the three cases differ in
detail, it being possible to fit the pp case with a simple
formula proposed by Orear, ' whereas the behavior of
the srp and pp cross sections is more complicated. With
regard to form factors, the latest evidence on the electro-
magnetic structure of the proton shows that the form
factors of the proton decrease very rapidly at large
momentum transfer, consistent with either inverse
fourth power or exponential decrease. 7 8

Theoretical work up to now has been largely con-
fined to approaches based on statistical considerations'
or qualitative .suggestions, and while a number of
interesting ideas have been advanced, "it is safe to say

* Supported by the U. S. Once of Naval Research under Con-
tract No. N00014—67—A—0305-0005.

' G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Ruben-
stein, D. B. Scarl, W. F. Baker, E. W. Jenkins, and A. I,. Read,
Phys. Rev. Letters ll, 499 (1963).' W. F. Baker, E. W. Jenkins, A. L. Read, G. Cocconi, V. T.
Cocconi, A. D. Krisch, J. Orear, R. Rubenstein, D. B. Scarl, and
B.T. Ulrich, Phys. Rev. Letters 12, 132 (1964).' C. W. Akerlof, R. H. Hieber, A. D. Krisch, K. W. Edwards,
L. G. Ratner, and K.Ruddick, Phys. Rev. Letters 17, 1105 (1966).

4 J. Orear, R. Rubenstein, D. B. Scarl, D. H. White, A. D.
Krisch, W. R. Frisken, A. L. Read, and H. Ruderman, Phys. Rev.
Letters 15, 309 (1965).

~O. Czyzewski, B. Kscoubes, Y. Goldschmidt-Clermont, M.
Guinea-Moorhead, D. R. O. Morrison, and S. De Unamuno-
Escoubes, Phys. Letters 15, 188 (1965).

e J. Orear, Phys. Rev. Letters 12, 112 (1964).' K. W. Chen, J. R. Dunning, Jr., A. A. Cone, N. F. Ramsey,
J. K. Walker, and R. Wilson, Phys. Rev. 141, 1267 (1966).

8 W. Albrecht, H. J. Behrend, F. W. Brasse, W. Flauger, H.
Huttschi. g, and K. G. Steven, Phys. Rev. Letters 17, 1192 (1966).' See, for example, G. Fast and R. Hagedorn, Nuovo Cimento
27, 208 (1963); G. Fast, R. Hagedorn, and L. W. Jones, Nuovo
Cimento 27, 856 (1963).

"See especially T. T. Wu and C. N. Yang, Phys. Rev. 137,
11708 (1965).

that no really convincing explanation of the behavior
of hadron scattering amplitudes or form factors at large
momentum transfers exists. Aside from its intrinsic
interest, the elucidation of such questions may be of
great importance for further progress in the subject of
low-energy dynamics. Recent experience has shown
that many low-energy strong-interaction quantities are
much more sensitive to the details of far-away singu-
larities than was originally hoped. " Consequently, a
better understanding of high-energy boundary condi-
tions on scattering amplitudes may be an important
ingredient for further progress in this direction.

In this paper we concentrate on form factors which
represent the simplest of the broad class of problems
discussed above. Fundamental to our considerations is
the familiar notion that a composite particle shouM
have a form factor which decreases at large spacelike
momentum transfer. Such behavior is readily inter-
preted semiclassically and may well be a characteristic
of any composite particle in quantum mechanics, re-
gardless of the speci6c dynamical context. Simple cases
where it can be studied in detail are particles which are
bound states of two elementary particles, either in a
nonrelativistic Schrodinger equation framework or rel-
ativistically, using the Bethe-Salpeter equation. Our
purpose here is to apply these ideas to the problem of
understanding hadron form factors, under the assump-
tion that the hadrons form a mutually self-consistent
set of composite particles. From this viewpoint, the
observed rapid decrease of the electromagnetic form
factors of the nucleon should be a consequence of the
fact that the nucleon is a, composite particle.

B. In6nitely Composite ParticIes

It is clear at the outset that if the collection of
hadrons forms a bootstrap or a mutually self-consistent
set of composite particles, they have a unique property
not shared by simpler systems in which composite
particles occur. This is that the set of particles being
generated is the same as the set of particles being bound
together. This unique feature has a great impact on the
question of choosing a set of channels to be used in
generating a given particle. The problem of generating
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the nucleon as a composite particle provides an excellent
illustration. The traditional approach to this problem
has been to use only the mE channel, attempting to
ignore multiparticle channels. The numerical failure of
this approximation is well known by now. "What is less
widely appreciated is that the approximation is a priori
inconsistent. This can be seen as follows: Consider zE
scattering, ignoring the coupling to any other channel,
and assume there is a bound state E' generated in the
wlV channel. LSee Fig. 1(a).j The fact that 37 and X'
cannot be self-consistent particles follows by considering
+ATE scattering which will certainly occur in this ap-
proximation. LSee Fig. 1(b).j There will be poles in
each of the two xE subenergies at the mass of the E'.
The residue at the pole in either one of the two initial
subenergies is proportional to the amplitude for m.E' —+

xwE."In the general case of nonzero residues, E and
E' cannot represent the same particle, i.e., they are not
self-consistent, since the transition ~E' ~ xwE occurs,
whereas the mE system has not been allowed to couple
to mmE. This is quite independent of the mass ratio of
E and E' or the value of the wEE' coupling constant.
Stated less formally, the two-body approximation for
the nucleon bootstrap is inconsistent in that it attempts
to generate the nucleon as a two-body bound state'4
while at the same time it treats the external nucleon as
an elementary particle. Ignoring the coupling of ~E to
+ATE is tantamount to treating the external nucleon as
elementary.

What is needed is an improved approximation which
allows the external nucleon to be treated as composite
at the same time as the particle represented by the
direct channel pole is generated. A first step can be
taken by allowing the xE system to couple to mmE,
but ignoring any channels of greater particle multi-
plicity. This allows the external nucleon to be treated
as a two-body bound state. While this approximation
represents an improvement at the mxE level, it will be
inconsistent at the 3~E level, just as the two-body
approximation was inconsistent at the mgE level. Using
the same terminology as above, in this approximation
the external nucleon is a two-body bound state whereas
the particle being generated in the direct channel is, in
fact, a three-body bound state.

It is clear that in order to achieve complete con-
sistency between the external nucleon and the particle
associated with the pole in the direct channel, the
number of ~'s treated must become in6nite. In other
words, a necessary condition for consistent treatment
of the nucleon as a composite particle is that it be a
bound state of an infinite number of particles or an
"infinitely composite" particle.

.
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FIG. t. (a) The generation of X' as a ~E bound state in the
elastic unitarity or two-body approximation. (b) Some terms in
the mm

S' amplitude in this approximation, showing explicitly terms
responsible for the nonvanishing wE' ~ ~wE amplitude.

So far the discussion has centered on the nucleon. Sy
analogous arguments one can establish that any par-
ticular hadron in a theory in which all are composite
must be infinitely composite. The mE problem merely
provides an example where the problem of consistency
of the external particles and those being generated
arises immediately rather than at some higher stage in
the bootstrap.

The present paper makes an attempt to explore the
consequences of these ideas by considering an analyti-
cally tractable model which contains an infinitely com-
posite particle. As mentioned earlier, the emphasis is
on gaining insight into the asymptotic behavior of form
factors. In Sec. II, the model is constructed by using
the mE bootstrap problem discussed above as a guide.
In Sec. III, the electromagnetic form factor of the
composite "nucleon" is calculated. The form factor
shows an exponential decrease for large spacelike mo-
mentum transfers. This model is highly idealized. Non-
relativistic kinematics is used. In addition, a number of
other simplifying assumptions is introduced in order to
achieve an analytically tractable situation. In Sec. IV
arguments are presented which suggest that the rapid
decrease found in the model is not dependent on the
simplifying assumptions made, but only on the presence
of an infinitely composite particle. If so, then a boot-
strap among the hadrons should manifest itself by
showing exponentially decreasing form factors for all
hadrons.

II. MODEL FOR AN INFINITELY
COMPOSITE NUCLEON

In Sec. I it was pointed out that for the consistent
treatment. of the nucleon as a composite particle, even
if only nucleons and pions are present, it is necessary
that the nucleon be allowed to couple to channels con-
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taining arbitrarily large numbers of particles. In this
section we construct a model which attempts to take
this requirement seriously, while relaxing other require-
ments which would have to be imposed in an exact
bootstrap theory. The model is constructed by imposing
the requirement of self-consistency for a composite
particle in a stepwise way.

The starting point is a system consisting of an ele-
mentary spinless charged "nucleon" Nl and an ele-
mentary spinless neutral "pion" m, each having the
same mass. They scatter under the action of forces
which represent strong interactions to generate an s-
wave bound state E2. This starting point is a highly
simpli6ed version of the familiar one-channel bootstrap
calculations which attempt to generate the nucleon
using the pion-nucleon channel. The idea is to proceed
from this point in stages as the number of x's treated
increases, attempting at each stage to make the external
nucleon and the one generated as a bound state self-
consistent. At the nth stage, for example, the bound
state E„ 1 of Nl and n —2 x's which was generated at
the previous stage is used as an external particle which
scatters with an additional 7t- to generate a new bound
state N„, bound of Nl and n —1 m's. In the limit as
n ~~, it becomes possible to make the particles E
and E„fully self-consistent. It is clear, of course, that
such a theory does not create a bootstrap world in
which all particles are composite. The particles Nl and
w are treated as elementary throughout. However,
loosely speaking, the present theory does contain one
composite particle E„which is consistent with itself
and therefore imitates to some extent a true bootstrap
situation where all particles are composite and mutually
self-consistent.

In order to be able to carry out the program outlined
in the preceding paragraph analytically, it is necessary
to make a number of special assumptions. The first of
these is that nonrelativistic kinematics is used and the
forces between El and m are described by a potential
X3V(r). To avoid having to solve the 38-body Schrodinger
equation in full generality, it is further assumed that
at the nth stage the forces between E„ 1 and m can be
described by a potential of the same form X V(r), acting
between the m and the center of mass of E„ l. This
means of course that the m's are not really treated as
identical particles in this model. The coupling constant
X„ is adjusted so that E has the same wave function
regarded as a bound state of E 1 and m as does N„ 1,
regarded as a bound state of Ã„2 and x. In the limit
as 33 —+~, X 3/X„and B„ i/B„both approach uni-

ty, where X3„represents the energy of E„ in the
mN„1 system. This means that the force between N„
and +, and the position and residue" of the E„pole in
the gN„» scattering amplitude, all become self-con-
sistent as e —+~, so that within the con6nes of the

~5 The usual relation between the residue and the square of the
asymptotic vrave function holds here.

—Q2 g2 g2-
P3 — ——+ + — +X3V(ri—R33)+X3V(r3—r3),

2m 2m 2m

Vl V2 V'g V'4

H» — ——+ + + +)«V(ri —R„,)
2m 2m 2m 2m

+&3V(r3—R33)+X3V(r3—r3),
etc.

At the eth stage, the coordinate of El is r„, the co-
ordinates ri, r3, r„ 3 refer to 3r's, and R,;...3 is the
center-of-mass coordinate of the system consisting of
particlesi, j, k. The e-particle Schrodinger equation
separates if instead of the variables rl, r2, r„, the
variables Ri3...„, Ri(3...„» R3&8...„), . R~i(„) are used,
where R;&;3...))——r; R;3 —(C.o. .n.sider, for example, the
case of n=3. The Hamiltonian can be written as

~123 ~l (23) ~2 (3)
JP3

2~123 2Q 1(23) 2~2 (3)

+ 8V(Ri(»))+X3V(R3(3)), (2)

where M)33——3m, Mi &38) ——m(2m)/(m+2m) = 2m/3, and
M3(8) ——m(m)/(m+m) = 3m. In general, M;;...( denotes
the total mass of the (i,j, t) system, and M;(;,...»
denotes the reduced mass of the i, (j, l) system. Eigen-
functions of B3 are of the form

e"3»+3(Ri(38))i(3(R3(3)),

e(P3 Rag (R )

is an eigenfunction of H3(R)3, Ri(3)). In the case of
interest here, namely, scattering of m from the bound
state of E2 of H2, the eigenfunctions have the form

|t8(R1(33))4'B(R3(8))

where $3)(R3(3)) is the wave function of X3 in the 3rEi
system, which is taken to be the ground state. The
Schrodinger equation for $3(Ri(»)) becomes

2~1(23)
+ % V(R3(38)) )J'3 (Ri &33))

= L&—B3jl)"8(Ri(»)) (3)

where 82 is the energy of the bound state E2 in the ~E&
system. As mentioned earlier, the condition of self-
consistency is applied in this model by requiring that

special assumptions made, a situation is achieved in
which the "physical nucleon" N„=lim„„E is treated
consistently both as an external particle and as a bound
state.

The model can be specified in full detail by writing
down the Hamiltonian which is operative at each stage.

-P2 g2-
P3= — + +X3V(ri—r3),

2m 2m
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n —1 n —2
&a= &n-i=

n n —1

n —1 n —2
~ ~ ~ 1

n n —1

the wave function of E„ in the ~E„& system be the exactly this same form
same as that of E~~ in the mE~~ system. For the
present case of n=3, this means 2M/(23)~3 —2M2(3)~2 or
3X3= ~X2. For this choice of X3, the Hamiltonian Ba has
a bound state E3 with bound-state wave function
pp(R)(23))1)t)&(R2(3)). The energy of E2 measured with
respect to the mE2 threshold is

M2(3) —,'m
Bg =82-—-= 438'.

3E~(23) —,'m

The residue of the Es pole in the energy plane of the
m%2 scattering amplitude is

3f2(3)
=-,r„F2

~~(23)

The recursion relations for the position and residue of
the X„pole in the xN ~ scattering amplitude are of

where F2 is the residue of the E2 pole in the xE~ scatter-
ing amplitude. From these results for n=3, the next
step is to generalize to arbitrary values of n. The bound-
state wave function of 1V„will beg~(R1&2. ..„))f&)(R2&2...„&)
~ ~ fz(R 1&„)).The self-consistency condition on the
wave function requires for the coupling constant that

n —1 n —2
~a= ~n ~=" =-,~~.

It is clear that in the limit as n ~~, all three of these
quantities approach definite limits. This along with the
self-consistency condition on the wave function implies
that the particles E„~and Ã„become completely self-
consistent as n —+~.

III. FORM FACTOR OF THE
COMPOSITE NUCLEON

The main motivation for the construction of the
model of Sec. II was the desire to be able to investigate
large momentum-transfer quantities for an inhnitely
composite particle. In this section, the electromagnetic
form factor of the particle E„=—lim „E is calculated.
This is done by erst calculating the form factor for
finite n and then letting n —+~. The form factor of E
can be calculated in an elementary way by noting that
the coupling of the electromagnetic field to E„will be
given completely by the coupling to the elementary
charged particle E~. The Born amplitude for scattering
of an electron from Ã„ is given by

()2(P'+k' —P—k)f(k—k') =— 1 (m, ) (nm)

(2m)' m,+nm
e'& '&'R"" "~pe(R)(2...„)) . Qg(R„1(„))j2

—Z8
X e'&" "'& "d'r1 'd'r„d'r, (6)

lr.—r
I

Ze' 2m, (nm)=P(P'+k' —P—k) F„(k—k')
my nm

F„(k)=F2 (k/2) F2(k/3) F2 (k/n)

for a charge +Ze on particle Er. The quantity F„(k) Using this expression for r„ in (7), the integration
is by definition the form factor of S„.Comparing the breaks up into a product of integrals. In the present
two terms in the second equality in (6) and changing case of equal masses, the result for F„(k) can be written
the variables of integration, F„(k) can be expressed as

(9)

&.&K=f " ' " 'I((~(2")(''-.-)")" ta(2-)(.))I'
Xd R1(2...„)' d R 1&„). (7)

where

F2(k) = e'"'[f»(r) ('d'r and k=
( k). (10)

mg
R12.~ N Rj (2o ~ ~ ~)

N 12e ~ o g

m~g
R2&2....)" — R. 1&.) . (8)

3f„g,„Qo ~ o gM

For the case of general masses, r„ is expressed in terms
of R»...„,etc. by

Before undertaking a general discussion of the prop-
erties of (9) and the formula it implies for F„(k), it is
useful to consider a special case which allows a closed
expression to be evaluated. Such a special case is pro-
vided by the Coulomb potential, X2V(r) = —p2/r, where
f»(r) is the wave function of the lowest Bohr level. Then

(2~)' -'
F2(k) =

k'+ (2n)2
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where

(2n)s
F-'(k) = II

n=s (k/~)2+ (2rr)2
(12) /k)-

(»)
&e)

k'—
F.(k)= IIII 1-

n=2 i=1 ~2k 2

Using the standard infinite product representations for
hyperbolic functions, this expression for F„'(k) can be
evaluated to give The asymptotic behavior of F„(k) follows after evalu-

ating the part due to the zeros of Fs(k) explicitly and
converting the sum in the argument of the exponential

(13) into an integral. The error made in doing so is proven
negligible by applying the Euler-Maclaurin sum for-
mula. "One obtains

(k~/') L'+ (k/'~)'j '
F„'(k)=

sinh (s.k/2n)

For large k, F„'(k) approaches

where &k, are the zeros of Fs(k), which must occur in
= —~a,= (mP /2) . complex conjugate pairs. Es(k) has the same domain of

regularity and evenness properties as Fs(k) does, but
Substituting this into (9) and letting rk —+eo, F„(k) is free from zeros. Rewriting (9) and taking the hmit
becomes as n, —+~, F„(k) becomes

~(k/2~)s&T(wk/a)

where the upper (lower) sign refers to the right {left)
half-plane in k. Thus F„'(k) vanishes exponentially at
inanity in every direction in the k plane except the
imaginary axis. Regarded as a function of k, Ii ' is
analytic in the finite k' plane except for a series of double
poles on the negative k' axis at k'= —4n2n2, m = 2

The appearance of double poles is characteristic of the
Coulomb potential and does not occur for Yukawa-like
potentials. Aside from this unreasonable feature, the
Coulomb potential has the saving grace of providing
an example where the strikingly rapid decrease of form
factors predicted by the present model can be seen
explicitly.

For the potentials which resemble strong interaction
forces most closely, namely Yukawas or superpositions
thereof, it is not possible to evaluate (9) explicitly.
However, it is still possible to give a rather complete
discussion of the properties of F„(k).First some prop-
erties of Fs(k) are needed: For the case of an s-wave
bound state, F&(k) is analytic in the ks plane, except
for a cut on the negative k' axis which runs from —4o.2

to —~, whererr'= —mBs. Furthermore, Fs(k) is O(1/k4)
as k —+~. Both of these properties are easily proven,
using the Schrodinger equation for superpositions of
Yukawas regular near the origin, i.e.,

r nm

near r=0. Using these properties for Fs(k) in (9), it
follows that F„(k) is analytic in the cut k' plane where
the cut runs from —16n2 to —~.

The asymptotic behavior of F (k) can also be ascer-
tained. First introduce a modi6ed function Es(k) which
has no zeros.

k2

Fs(k) —=II 1——Fs(k),
j. k~2

sin(s k/k~)
F-(k) .- II e &k, (16)

[k[ ~~, Rek)o i=r {sk/k, )$1—(k /k s)g

where y is a constant defined by

dk'
lnPs(k')

(k')'

The quantity p is easily seen to be finite and positive
since ~Fs(k)

~
(1 on the real axis and Fs(k) = 1+0(k')

near k= 0. The corrections to y are O(ink/k) and there-
fore asymptotically negligible. The asymptotic behavior
of F„(k) for Rek(0 is also given by (16) since F„(k)
is even in k. Note that only in the case where Fs(k)
has no zeros does F„(k) vanish in every direction except
the imaginary k axis. However, in every case, there is a
6nite range of directions in the k plane symmetric
about the real k axis in which F„(k) vanishes
exponentially.

To summarize, the present model produces form
factors for Yukawa-like potentials, including the limit-
ing case of the Coulomb potential, which are analytic
in the cut k' plane, and fall off extremely rapidly for
spacelike momentum transfers. The type of falloff is
the same as that conjectured by Wu and Yang, "
namely, e &~' ",where t= —k'. This widely conjectured
behavior represents a maximal rate of decrease for a
relativistic form factor, either from the viewpoint of
axiomatic quantum field theory'7 or the analytic S
matrix. " Faster decrease would represent a violation
of locality from the 6eld-theory viewpoint, or in 5-
matrix terms would necessarily preclude a finite number
of subtractions.

E. T. Whittaker and G. N. Katson, A Course of Modern
Aealysss (Cambridge University Press, New York, 1958l,
4th ed."A. M. Jaffe, Phys. Rev. Letters 17, 661 (1966).

A. Martin, Nuovo Cimento 37, 671 (1965).
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It is also of interest to consider the distribution of
charge in X„.Defining p„(R) by

p„(R)= e'" RF„(h)d'k
(24r)'

(2ir)'

4m "sinkE.
F„(k)k'dk, (18)

p kE

FrG. 2. The scattering process
for m=3.

it is easily seen using the properties of F (k) that p (R)
is a function only of Z=

~
R ~, is even in E, is O(e 4 ~)

as 2 —+~, and is analytic in 8 in
~
ImR~ (7. Further-

more, the fact that the wave function fg is a ground-
state wave function and therefore positive implies that
p„(R) is positive for real R. Thus p„(R) is a perfectly
acceptable function with no pathologies and describes
a charge distribution qualitatively similar to that of an
ordinary two-body bound state. There is one crucial
difference, however, which is that p„(R) is an analytic
function of the components of R in a finite neighborhood
surrounding every real point, as can be seen directly
from (18), making use of the rapid decrease of F„(k).
AnaLyticity in components of R is also impLied by
evenness and analyticity in E.. This unusual property
is the feature which rejects itself in the k plane in the
rapid decrease of F„(k).This is easily seen by the suc-
cessive application of Green's theorem to the pair of
functions e'~'a, p„(R), which gives rise to the following
equation for F„(k):

( 1)n

(k2) n

(k2) n
e'"'R(P) "p (R)d'E. (19)

The singularity in E~ at E=0 limits the rate of decrease
of F2(k) to O(1/k4). The use of Green's theorem for
n&2 gives rise to terms of the form (7')~ 'b'(R) in
(P)"p(R) which prevent successively higher inverse
powers of k' from being obtained. In general, if a
function p(R) is analytic in 8 and even up to terms of
the form R'"+', the operator V can be applied at most
44+2 times without generating terms in V%'(R), and
therefore F(k) falls no faster than (1/km)"+~. Thus,
barring essential singularities in R, analyticity in the
components of R is a necessary condition for F„(k) to
fall faster than any inverse power of k.

For analytic p„(R), e can be taken as large as desired.
Therefore, F„(k) decreases faster than any inverse
power of k. The precise rate of decrease is of course
controlled by the singularity in E2 nearest the real
R axis.

By way of contrast, consider F&(k) for the Coulomb
case. Here

pg(R) = (u'/m)e '~i'.

An example where all of the properties of p„(R) can
be seen explicitly is again provided by the Coulomb
potential. The integration in (18) can be carried out
to yield

d
1— fR cothnR). (20)

4~8 dE.' 4n' dE'

IV. GENERALIZATIONS AND CONCLUDING
REMARKS

The model of the preceding sections supports the
basic contention of this paper, namely, that an in-
finitely composite particle will give rise to a rapidly
decreasing form factor. The purpose of the present
section is to argue that this behavior is not a special
feature of a particular model but will occur whenever
an infinitely composite particle is present, and therefore
may provide the explanation for the observed rapid
decrease of hadron form factors.

As a preliminary step, it is useful to try to understand
qualitatively the rapid decrease found in the model.
Consider the formula (9) for F„(k):

F„(k)= F2 (k/2)F g (k/3) F2(k/e) . (9)

The factors in (9) can be understood by visualizing the
scattering process as a sequence of transfers of mo-

mentum, first to N~, then to the center of mass of N2,
etc. , and 6nally to the center of mass of E . (See Fig. 2.)
The jth factor in (9) represents the form factor associ-
ated with the distribution of N; in N;+&, j=1,2,

e—1. In these terms then, the (1/k4)" ' behavior
of F„(k) comes about because the charged particle Ei
is at the beginning of a chain of m —1 transfers of
momentum, each one of which carries with it a form
factor which behaves as 1/k4 as k —+~.

The question that must be answered is the extent to
which the (1/k')" ' behavior of F (k) is a consequence
of the assumption of a center-of-mass potential, this
clearly being the most objectionable feature of the
model. To answer this question, consider models of the
same general character, in which a sequence of more and
more composite particles N is generated and in which
nonrelativistic kinematics is used, but in which the
n-body dynamics is treated in as realistic a way as
possible. The simplest way to do this, conforming with
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the general features of strong interactions, is to have
potentials of Yuk.awa type" act between all pairs of
the elementary particles in the problem. Then at the
nth stage, the bound state E„will be described by a
solution of the full n-body Schrodinger equation. Exact
solutions in closed form are now out of the question.
In addition, little is known about the analytic prop-
erties of multibody bound-state wave functions. The
arguments that follow therefore make little pretense at
rigor. Nevertheless, it is strongly suggested that the
asymptotic behavior of F (k) will continue to be
(1/k')" ', in other words that the assumption of a
center-of-mass potential is in no way crucial. Consider
first the expression for F„(k),written in more symmetric
variables and allowing any number of charged particles
in S„.

F.(k) =Q
a=1

XZ.e'""'P( Rrr. ..„)d'r r . .d'r„. (21)

Reasoning similar to that of the Riemann-Lebesgue

lemma would suggest that F„(k) should fall at an
increasingly rapid rate as k ~00 for successively greater
values of n. Before a more precise statement can be
made, some knowledge of the smoothness properties of
lt„(r,, r„) is needed. If use is made of known results
for two-body wave functions to make plausible assump-
tions about the smoothness properties of P„(rr, ~ r„),
the result conjectured above is obtained. As a specific
case, consider a three-body bound state with zero total
angular momentum. Translational and rotational in-
variance allow fs(rr, rs, rs) to be written as fs(rrs, rst rsl)
where r&s

——
~

r&—rs(, etc. If such a wave function be-
haves in a similar fashion to a two-body wave function
when any pair of particles gets close together, then a
wave function of the form

fs(rr rs rs) —Qe—tlar12+Prss+'rrel]

should provide a form factor with the same asymptotic
behavior as a real three-body wave function. " Sub-
stituting in (21) and representing Ps(rt, rs, rs) by its
Fourier transform, the following formula is obtained:

Fs(k) = 2e1PnPy d'k',
[(k')'+n']'[(k'+-'k)'+ p']'[(k' —r k)'+ y']'

(22)

where, for simplicity, particle 3 is assumed to be the only particle with charge and the masses are taken to be
equal. This clearly exhibits the conjectured (1/k')' behavior as k ~ac. The generalization of this result to the four-
body case is provided by the wave function

$4(rl 12 13 14) tV exp( s g ncsr s') 1, j= 1 2 3 4 (23)

and its form factor

F4(k) =

d'kid'k2d'k3
X

[(rek ks —kr)—'+nt4']s[(&k+kt k)—'s+ ns]4'[( 'k+k-s+k )'s+ n4's]'(k ts+,n)s's(k s+nsss)sX, (24)
~2 Q~32 2

which approaches (1/ks)' as k ~co, where again for
simplicity all masses are equal and only particle 4 is
charged. Corresponding results are easily obtained for
higher values of n. Thus if multibody wave functions

'9 Here, as in Sec. III, we restrict the discussion to potentials
such that r V(r) can be expanded around the origin.

~0 It is really only the behavior of fi in the limit r;; -+ 0 which
is relevant. Since the potentials are analytic functions of r;—r;
everywhere except x@=0, and the Schrodinger equation is an
elliptic equation, analyticity of $3(r&,rm, r&) everywhere except
r@=0 is guaranteed by general theorems on the analytic properties
of the solutions of elliptic equations. See, e.g. R. Courant and
D. Hilbert, Methods of Matheotaticat Physics (Interscience Pub-
lishers, Inc., New York, 1953), Vol. II.

are no more singular than two-body wave functions
when pairs of particles move close together, their form
factors will behave as (1/k4)" ', when k —+~.sr This
would imply that the result of the model studied earlier
is a special case of a much more general result, and that
visualizing the scattering process as a sequence of n —1
transfers of momentum provides a sound intuitive basis
for understanding the asymptotic behavior of F„(k),
even for a realistic n-body system.

"The fact that it is 1/h' that appears is a direct consequence of
the 1/ra behavior of the potentials when rg ~ 0. More general
potentials can easily be incorporated, but for simplicity are not
considered here.
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Assuming that the above results are correct and
taking the limit n ~oo, it is clear that F„(k) will fall
faster than any inverse power of k. Exponential decrease
will be guaranteed if p„(R) is analytic as a function of
the components of R, as mentioned earlier. As can be
seen from (18), analyticity at all real points except
R=O is guaranteed by the cut-plane analyticity of
F„(k). The question therefore hinges on the behavior
of p„(R) at R= 0. In the model of Secs. II and III the
singularities of the two-body wave functions fz(R.;U...»)
at

~
R;&;...&& ~

=0 become increasingly smoothed out in
their effects on p„(R) at R=O, giving rise in the limit
n —&~ to a function p (R) which is analytic at R=O.
For a realistic e-body system, the singularities of
P„(rt, -. r„) lie at the points r;,=0 rather than

~
Rg, (;...t) ~

=0. However, the problem of the resultant
behavior of p„(R) at R=O is mathematically similar
for the two cases, since both involve deducing the
sects of singularities at translationally invariant points
on a distribution referred to the center of mass. The
smoothing will be the same in the two cases if the
behavior of multibody wave functions near r;,=0 is
governed by the behavior at the origin of two-body
wave functions as conjectured above. This suggests
that p (R) will be an analytic function of R here also
and therefore that the exponential decrease found in
the model does not depend on the assumption of a
center-of-mass potential but only on the presence of
an inhnitely composite particle.

For application to bootstrap theories of hadrons,
treatment of the dynamics in a fully relativistic way is
a necessity. The dynamical framework which stays
closest to the spirit of the preceding nonrelativistic
discussion is provided by the Bethe-Salpeter equation
and its multibody generalizations. " For forces which

~ On-the-mass-shell methods are unlikely to be of much use for
understanding asymptotic behavior of form factors. The usual
approximations always lead to constant asymptotic behavior.

are not too singular, it is plausible that a generalization
of the above nonrelativistic results can be achieved,
since the result depends only on the behavior of rela-
tivistic wave functions in the bound-state region, where
it is known that the Bethe-Salpeter equation is no more
pathological than the Schrodinger equation. " Direct
relativistic extensions of the nonrelativistic models con-
sidered so far would of course be subject to the same
objection that they contain some particles which are
not composite. Nevertheless, if results in the limit
e —+ could be achieved, they would give valuable
insight into realistic bootstrap theories through the
presence of at least one infinitely composite particle.

To conclude, it is suggested that the collection of
hadrons form a set of infinitely composite particles, and
that this property provides the natural framework for
understanding the asymptotic behavior of form factors.
In particular, if the results of the present work really
are capable of relativistic generalization, a criterion for
a bootstrap theory should be exponentially decreasing
form factors for all hadrons.
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