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In Jarge classes of models, we show formally how to reconstruct canonical field theories of the strong
interaction in terms of electromagnetic, weak, and gravitational scattering data (the currents and the

stress-energy-momentum tensor).

I. INTRODUCTION

N this paper, we wish to call attention to the fact
that, in a very large class of models, the (canonical)
field theory of a strongly interacting system can be
formally reconstructed through electromagnetic, weak,
and gravitational probing. That is to say, one can
reconstruct the fields, interaction Hamiltonian density,
etc., as functionals of the matrix elements of observables
like the electromagnetic and weak currents, and the
stress-energy-momentum tensor. In fact, one can in
general (formally) construct an equivalence class of
canonical field theories from the data, at most one of
which in general may be “simple” or “ordinary’ in the
usual sense that it has no derivative coupling, or some
not-too-complicated derivative coupling. Our ideas are
closely related, and complementary to the ideas of
Dashen and Sharp! that observables like the currents
may form a complete set of coordinates for the strong
interactions.

The basic idea of the reconstruction procedure is
simple and common to all our models. If one can
measure an irreducible set? of observables, say, at fixed
time, and if one can guess a representation of the
algebra of these observables which is unitarily equiv-
alent to the data, then the transformation function
between the data and this representation is determined
(by Schur’s lemma for infinite matrices). If one has
chosen the representation wisely, one finds that the
transformation function is very close to the “theory”
itself. For example, our first model is potential theory;
in this case we imagine the determination, through
electric dipole radiation experiments, of the matrix
elements of p, x between states of definite energy. A
suitable representation space for the algebra of these
observables is the coordinate representation. Because
p, x form an irreducible set, the transformation function
between the energy representation (data) and the
coordinate representation is determined. The trans-
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formation function is, of course, the wave function.
This is the subject of Sec. II.

In Sec. IIT we begin discussion of field theory. As an
introduction, we discuss in this section the simpler
subproblem of constructing the field from an irreducible
set of explicit bilinear functions (currents) of the field.
In practice, facing a set of data, one does not know the
explicit field dependence of the currents; this added
complication will be discussed in Sec. IV, where we
propose a much more general method than that of
Sec. III. In particular, Sec. IIT discusses the reconstruc-
tion of the pseudoscalar field ¢ from the irreducible set
of scalar bilinears S=¢? S=[¢,¢], at fixed time. The
procedure is very similar to that used in potential
theory. We represent the “data,” matrix elements of .S,
S, on a space whose basis is the set of eigenvectors of S,
The transformation functions from the data to this
representation are thus determined. Then we write
the field in terms of the transformation functions.

In Sec. IV, we propose a more general and more
formal method of reconstruction. Illustrating our
remarks in a universe of charged scalar mesons, we
propose representation of the algebra of the irreducible
set of observables on the space of eigenstates of the free
Hamiltonian. In this case, the transformation function
between the data and the representation is the familiar
operator U (0, — o )—assuming temporarily the absence
of bound states. Having U(0, — ), one can easily
reconstruct the interacting field from the free field. One
does not know a priori the explicit field dependence of
the currents, and each representation of the algebra in
terms of canonical fields leads to a different U (0, — ®)
and different fields. For example, if one can represent
the algebra in terms of bilinear forms, one reconstructs a
field theory in which the currents are bilinear. If one
represents the data with quartic currents, one recon-
structs a field theory with such currents. However, the
set of all field theories obtainable in this way is a unitary
equivalence class, in the sense that each theory is
unitarily equivalent to the data. Although the matrix
elements of the currents are invariant under the
unitary transformation that characterizes the equiv-
alence class, the matrix elements of the fields come out
differently in each theory (but related by explicitly
unitary transformations). One could search through
the equivalence class for the “simplest” or “garden-
variety” field theory, if such existed, on the basis’ of
nonderivative coupling, or the_simplest  derivative
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coupling. There is likely to be at most one of these
“simple” theories under the data. Toward the end of the
section, we speculate on a possible approach to the
reconstruction in the presence of bound states. Finally,
we shall also mention the possible relation between our
class of field theories and what one might obtain as the
set of all canonical extrapolations of the S-matrix off
the mass shell, i.e., a more conventional inverse problem.
Several points need to be made before beginning the
exposition.

The most obvious problem in principle with our
speculations is definition of the various operators and
matrix elements used. For example, Haag’s theorem? is
relevant to Sec. IV. Although U(0, — ) could be
reconstructed with our methods in potential theory and
in various static models, Haag’s theorem guarantees us
that no such operator exists in a translation-invariant
relativistic field theory with a bare vacuum. Thus we
must imagine dotng all reconstructions in a box, say with
the experimental volume as a parameter. Presumably
the reconstructed U(0, —») would diverge as the
volume became infinite, although one might hope that
the reconstructed Heisenberg fields etc. could remain
finite. Alternatively, one might try working in a trans-
lational-invariant universe with the so-called inequiv-
alent representations® (no bare vacuum), and this
possibility will be mentioned from time to time during
the discussion.

Another problem which may be one of principle is
ultraviolet divergence. U(0, —») diverges in the
perturbation expansion of known field theories* for
much the same reason as do the wave-functionrenormal-
izations, etc. There is some hope that U(0, — «) is
finite in some nonperturbative sense, of course, and
certainly our reconstruction of the strong interactions
will in no sense be close to perturbation theory. It would
be interesting in this connection to define a reconstruc-
tion procedure with the data cutoff in some manner
above certain energies, etc., and to study the infinte
cutoff limit. Again, because of vacuum and ultraviolet
divergences, we must imagine doing the functional
derivatives of Sec. I on a three-dimensional grid. Thus
we can forget about normal ordering products of
operators in this section. About the box and/or grid
limit, we really have nothing to say.

By virtue of our use of grid and/or box at appropriate
places, and because we work at fixed time, we have not
really said anything about reconstruction of fields in
theories of local rings of observables,’:¢ although we

3 R. Haag, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
29, 12 (1955); D. Hall and A. S. Wightman, Kgl. Danske Viden-
skab. Selskab, Mat.-Fys. Skrifter 31, 5 (1957); A. S. Wightman,
lecture notes at Cargese summer school, July 1964 (unpublished);
M. Guenin, Commun. Math. Phys. 3, 120 (1966).

4 E. C. G. Stiickelberg, Phys. Rev. 81, 130 (1951).

5 A good referencing of papers in local-ring theory is found in
D. W. Robinson, Lectures in the 1965 Brandeis Summer Instituie
in Theoretical Physics (Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1965).

6 H. J. Borchers, Commun. Math. Phys. 1, 281 (1965). In more
specific models, the problem of constructing fields from bilinears
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hope our arguments may perhaps suggest a more
rigorous approach to the problem. One small thing
should be mentioned here about rigor. We know that
our use of Schur’s lemma for infinite matrices depends
on the operators being bounded. At such points, one
can avoid the use of grids by forming bounded functions
of the currents, say by exponentation.

Moreover, we stress that to completely determine an
underlying theory, one needs all the matrix elements of
an irreducible set, including the highly inelastic ones.
We are under no illusions about the practicality of such
experiments, especially ones involving gravitational
scattering. In spite of this, we give ourselves all these
matrix elements, as one feels they can be determined in
principle.

Having coped with these matters of principle and
practice, we can ask about the possibility of the scheme
working in reality. The basic problem say in our
approach of Sec. IV is threefold. First, can one measure
an irreducible set? In our models, the answer to this
question is yes. Moreover, it can be shown to be the
case in much larger classes of field theories. The question
of irreducibility of the currents and the stress-energy
tensor in the quark model will be discussed elsewhere.!
In fact, we know of no realistic field theories in which
such an irreducible set cannot be found. On the basis
of this, it seems reasonable to conjecture that an
irreducible set can be measured in reality. The second
question to ask in the reconstruction is whether a
(canonical) field-theoretical representation of the
algebra, of the observables can be found. For example, if
all the hadrons are composite, then a field-theoretical
representation of the algebra will be difficult if not
impossible. Finally, the representation must be unitarily
equivalent to the data. This means that, if the recon-
struction is attempted in a translation-invariant system,
one may be forced to use representations of the algebra
which are unitarily inequivalent to any Fock-space
representation. Another problem of this nature would
arise if the algebra turned out to be that of the quark
model, but no quarks are observed ; then only a quark-
less representation of the quark algebra could be
unitarily equivalent to the data. It may turn out then
that, for one reason or another, no such field-theoretic
(etc.) representation could be found in reality, in which
case, there being no underlying canonical field theory,
one would have to be satisfied with a noncanonical
theory, or an S-matrix theory, or perhaps a theory based
on the currents themselves,' as described elsewhere.

II. RECONSTRUCTION OF POTENTIAL THEORY
FROM AN IRREDUCIBLE SET OF
OBSERVABLES

For simplicity, we shall discuss only the case of a
single charged particle of unit mass moving in a one-
has also been considered by J. Langerholc and B. Schroer, DESY

report (unpublished); and E. Prugovecki, Nuovo Cimento 45,
327 (1966).
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dimensional potential. The reconstruction is easily
extended to many particles in three dimensions. More-
over, we shall assume at first that the potential is
velocity-independent, i.e., that p, the momentum
conjugate to #, is exactly the velocity v. After the
reconstruction with this proviso, we shall return to
include the case of velocity-dependent potentials.

In electric dipole radiation experiments, one can in
principle measure the matrix elements of the position
operator between states of definite energy (say, at
zero time):

(Em|2(0)| En)=[2Tma-

Without arguing the attainability of such quantities in
detail, we shall assume we have them. From these data,
we can construct the matrix elements of the velocity
operator as

(En|v(0)| En)=4(En—En)En|(0)| En).

The fact that the potential is velocity-independent
will be manifest in the data, i.e., one will observe that

(En|[2(0),2(0) ]| Eny=4Em| En). (2.3)

Hence we can identify the matrix elements of the
velocity with those of the canonical momentum [ Jma.
Because the matrices (2.1) and (2.2) form an irreducible
set (say ), we can recover the wave functions uniquely :
The wave functions are the transformation functions
between the energy and coordinate representations

Ym(®)=(x| En). (2.4)
(x| 0] )= Ym(@)[OTmatpn*(&'). (2.5)

2.1)

(2.2)

Hence

The matrices on the left of Eq. (2.5) are certainly
known,
& |#|a")=a"8(z"—2""),

14 (2.6)
(| pla’)y=-—d(&'—a").
1 dx

Eq. (2.5) states simply that ¢ is the transformation
function between two explicitly known representations
of the irreducible set ©. By Schur’s lemma, then, Eq.
(2.5) determines ¥, (x) up to an energy- and coordinate-
independent constant. The normalization requirement
reduces this ambiguity to a phase. In practice, one would
probably use Eq. (2.5) in the form

(%) =2 ¥m (@)% Tmn,s (2.7a)
1d
;d—x%(x) =2 ¥m@)LpInn- (2.7b)

A possible method of solution of Egs. (2.7) is the follow-
ing: Assume some particular y,.(x) is known, say
Yo(x), and solve Eq. (2.7a) for all other ¢’s in terms of
Yo. Then Eq. (2.7b) becomes an equation for ¥, alone.

B. HALPERN
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Formal Reconstruction of the Wave Function

It is of interest to see in more detail how one might,
at least formally, go about actually reconstructing ¥ (x) :
By multiplying together the matrix elements of x, we
can construct the matrix elements of higher powers of «.
The nth power of x is the #th moment of the charge
density—whose operator form is a & function at a
particular point. Using all the moments, we can
reconstruct the matrix elements of the charge density
itself

<Em! Po (x) lEn)
=<Em15(x_¢7)lEn>
1
=1l Enlexp] — (x—0a)%/e]|E,). (2.8
é_f}.}m |exp[— (x—0)¥/ ]| En). (2.8)

The convergence of this limit is only the statement
that the charge density is well behaved. In the same
way, one can construct

(Em|d(x—0)p| En). (2.9)
In the coordinate representation, we have that
(Em|d(x—0) | Eny=vn*(@)n(o),
(2.10)

d
1<Em\ 6(95"" U)PI En>=‘l’m* (U>;Z;'/’n(a) .

Having (2.10), we can immediately solve for ¢, (x):

"n__ i 1’<Eml8(x—‘7)PlEn>
%(x)—%(xo)exp[ / T } (2.11)

The constant of integration can be fixed by the normal-
ization requirement. In terms of the y,, we can recon-
struct the Hamiltonian

H(x’xl) = Zn '&l’n(x)Enkbn* (x’) .

This generates, of course, the Schrédinger equation of
motion

(2.12)

f W H G Wn (@) =Eun(@). (2.13)

The potential can be obtained if desired by constructing
V(x,a')=H (x,0")— (&/da?)o(x—2"), (2.14)

or alternately, by operating with (d?/dx*+}E.) on ¥n
and dividing by ¥n.

Inclusion of Velocity-Dependent Potentials

In the presence of a velocity-dependent potential,
the momentum conjugate to % is not £=v. This will be
manifest in the data for x, v because one will observe
that

(En|[2,9]| En)5~ K Em| En). (2.15)
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In order to proceed with the reconstruction program
as outlined above, we need to discover, from the data,
the matrix elements of the canonical momentum p.
A way to go about this is first to search in the data for an
irreducible set of observables. Let us assume such a set
can be found, and, for simplicity, that the set is just

2. If the set is more complicated, the method can be
generalized. Now, because a self-adjoint irreducible set
is also complete, we can expand the data for the
commutator (2.15) in powers of x, v

[x)v:]:f(x;v) )

where the functional dependence of f on #, v is now
assumed known. Toward finding p, we consider v as a
function of p, x and write (2.16) as a differential
equation

(2.16)

d
i;;v (p,2) = fLx0(p,%) ]. (2.17)
The formal solution of this equation is
dv(p,x)
= / +C(x), (2.18)
fL=, v(f’,x)]

where C is arbitrary. Equation (2.18) gives us the
matrix elements of p in terms of the data.” Having p
and x, we can now proceed to find the wave functions,
etc. in the way outlined above.

Evidently the reconstruction procedure is somewhat
more difficult in the presence of velocity-dependent
potentials. The reason why we have do do more work
in this case is simply that the algebra of observables is
not so simple as in the case of only velocity-independent
potentials: Because we do not in general know rep-
resentations for complicated algebras, we must search
among the polynomials in the observables (here x, v)
for some quantities (here x, p) which have a simple
algebra that we know how to represent (here the
coordinate representation). As we shall see, this
difficulty is mirrored in the field-theory case when we
include derivative coupling.

III. SIMPLE EXAMPLE OF FIELD RECONSTRUC-
TION FROM IRREDUCIBLE SET
OF BILINEARS

In this section we want to show that methods similar
to those discussed for potential theory can be used to
reconstruct the field from an irreducible set of bilinears
in a simple relativistic field theory. In particular, we
set ourselves the task of reconstructing the pseudoscalar
field ¢ from the matrix elements of the set of scalar

7 In practice, the formal integration of (2.18), say, ignoring the
noncommutativity of x, v, results in only a formal p, which is in
general a very useful guide toward constructing the canonical p.
An arbitrary function C (x) in p gives rise to an energy-independent
phase in the reconstructed wave functions.
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bilinears?

0={S®)=¢*(x), S®)=i[H, S(x)]
=[¢(x), ()11}, (G.1)

where ¢, ¢ are canonically conjugate. It is proved in
Appendix A that 0 is irreducible in each parity sector.
(Because the mesons are pseudoscalar, the data break
cleanly into even and odd numbered meson systems,
separated by a superselection rule.) By working on a
3-dimensional grid we can take ¢?(x) as defined without
normal ordering. We shall have nothing to say about
the limit of fine grid.

Construction of the Transformation Functions

We begin by giving ourselves the matrix elements of
O between in-states

£0,(b| 0(x)| @)in?0, (3.2)

where E, 0 denotes the even-odd parity subspace. The
notation will remind us that ©(x) allows no transitions
between the sectors. This set of matrix elements is
irreducible in each parity sector, and satisfies the

algebra .
[S®), 8(y)]=4i8® (x—y)S(x). 3.3)

Having in hand the matrix elements of an irreducible
set, our next step is to guess another representation of
the algebra of this set. Because we know there are fields
under the data, it is natural to introduce the eigenstates
of S with explicitly positive semidefinite eigenvalues®

S(x) [ )E0=2(x) | )% (3.4)

The representation is done separately in each sector.
In this functional representation, we take S as

E,0, S /Eo_1 X s E,0 \E,0 5
(x| 8(0)|¥) '—;[ (x%ml SX|X)E. (3.5)

In analogy to our treatment of potential theory, the
transformation function between the in-state basis and
the X representation

Y[ X]=(X| @)sn (3.6)

is determined (after normalization) up to an unimpor-
tant phase by the relation

£ox| 0(x) IX')E"’=% ¥ OLX] (] 0(x) | @)in™
Yot 2] (3.7)

8 Because we cannot probe these particles with electromagnet-
ism, it is not clear that .S (x) is observable. Qur motive in consider-
ing such a model is simplicity ; all the considerations of this section
go through in principle, e.g., in the charged scalar case, where the
analogous bilinears, related to the electromagnetic current, are
observable.

9 The x representation for a neutral field is, of course, well
known. See, e.g., S. S. Schweber, An Introduction to Relativistic
Quantum Field Theory, (Row, Peterson and Company, Evanston,
Tllinois, 1961), Sec. 7e.
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and the irreducibility of 0. In analogy to Egs. (2.7) in
the potential case, we can rewrite (3.7) as

x? (x)\[’aE'OEX]= Z b \[’bE'OEXJE'Oin(b ] S(X) I a’)inE'O
1 )
—,[x<x>, ]mﬂm

1 X (x)1y
=35 ¥ B X]E 00| S(x) | a)in 0. (3.8)

One can even do a formal functional integration of
these equations, constructing first a functional & func-
tion, in complete analogy with the potential theory case.
We shall not go into this here. Having the wave func-
tions or transformation functions ¢ in each sector, we
can construct a Hamiltonian in each sector

HEX X [=3 0 Yu® [X]Eapa™ L X' ].
These Hamiltonians have the property that

(3.9

/ X HEOX X o B [X J=Ebu®[x]. (3.10)

Construction of the Field

In terms of the eigenstates of S we define the field
¢(x) as that operator which crosses sectors with eigen-

value X(x)
¢ (x) [X)F0=X(x)[ )"~ (3.11)

This guarantees that S=¢?% Similarly, the canonical
momentum is defined to be

1
B |7 (x) [ %) F = X [x)E0,  (3.12)

(x)

and to be zero between two vectors of the same sector.
We can say more about the properties of ¢. Its eigen-

vectors are
(3.13)

(3.14)

[%)L=3V2(|)Fx | X)),
(X) [X)=X(x)[X) 4.

Most important is that we can write ¢ explicitly in
terms of the transformation functions calculable from
the data; e.g., using (3.14), we can write,

in(b] ¢ () | @)in®= [ X P IX X (e [X ], (3.15)

Finally, the field at all times is simply
in(b] ¢ (%) | @yin=e"Fr=Et 1, (B[ (x) | @)in.  (3.16)

With this prescription, and its analog for #(x), it is
easily checked that the canonical commutation rela-
tions are invariant under time translation.

IV. MORE GENERAL AND MORE
FORMAL METHOD

The approach through functional representation out-
lined in Sec. III is not very general. For one thing, it

B. HALPERN
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would be difficult, although not impossible, to construct
Fermi fields from bosonlike currents in this manner.
Moreover, there is the difficulty, as yet undiscussed,
that one does not know a priori the functional depend-
ence of the currents on the fields. In this section, we
want to propose a more general approach, one that
should work independently of the quantum numbers
involved, and which is flexible enough to allow for not
knowing the field dependence of the currents. We
propose representing the data on the space of eigenstates
of the free Hamiltonian H,. The transformation function
between the data and the H, representation (or interac-
tion picture) is (in the case of no bound states) the
familiar operator U (0, — ). We shall work out the
details of this approach for the case of charged scalar
mesons, but it will be clear that the method is much
more general. For simplicity we shall also assume the
absence of bound states.. After the exposition under
these conditions, we shall return to include this
interesting variant.

Universe of Charged Scalar Mesons

Let us imagine ourselves in a universe of charged
scalar particles (and photons, weak interactions, and
gravity). Assuming we know the lowest-order weaker-
than-strong interactions, our task is to reconstruct the
unknown (strong) interaction between the mesons.
Toward reconstructing this theory, we would begin by
making what observations we can.

First, one can measure in principle the matrix
elements of the electromagnetic current at, say (=0,

out(bl jll(x) | a>in- (4.1)

Now, toward discovering an irreducible set of observ-
ables, we begin studying commutators among the data.
Suppose the commutator of jo, 7* was found to have the
form

[0(®), 7*(y)]= =20 ' [S($)3® (x—y)], (4.2)
where S(x) is defined by (4.2). From the matrix
elements of S, we can calculate the matrix elements of
S, the time derivative of S,
out{D | S(X) ! Qin=1 out<b! EH;S(X):” Q)in=1(Epy— E,)

Koutld|S(X) | @Yin. (4.3)
Suppose further that the commutators of § back with
S, 7* were found to be

[8(x),S(9)]=—2i® (x—y)S (),

[F@SMI=2 0 a—y),
and all other equal-time commutators among
J(x)={;*(x),5(x),S(x)} (4.5)

10 Tn fact, the inversion of (3.2) is simply

1 e=ipy .
s =—75 [d"’x e *[o(x), ;*(y)J,
independent of %, p.



164

were zero. Suppose finally that the set J was observed
to be irreducible in each charge sector, in that no
nontrivial operator commuted with all members of J
(except the charge of the sector).

This particular algebra of the observables would not
surpise us. We would recognize it as the algebra of any
nonderivative coupling canonical field theory of charged
scalar mesons coupled to the electromagnetic field—in
which the electromagnetic current, etc., was

4 = — 16 (x),0°(x) s,
SE) =¢'®)p(x), Sx)=¢'X)dx)+¢'(x)p(x). (4.6)

(In Appendix B we show that, in fact, this set J is
irreducible in each charge sector if ¢, ¢, ¢f, ¢ are
assumed irreducible.)

As in Sec. II, ITI, our next task is to guess a represen-
tation of the algebra of observables.

From our field-theoretic experience then, we would
first guess this field-theoretic representation (4.6) for
the set of data J. One expects in general that other
representations of the algebra of J exist, the entire set
of which forms an equivalence class with (4.6). After
the reconstruction with this representation, we shall
return to discuss the equivalence class.

Construction of U(0, — «)

Having measured an irreducible set of observables,
and guessed an explicit representation of the algebra in
terms of canonical fields, we are in a position to re-
construct the theory. The first step is to multiply the
data for J by the adjoint of the (purely strong) .S
matrix to construct

(0| T (%) | @)in=2"c inlb] CYout outlc| J (X) | @)in.  (4.7)

Now introduce the (formally unitary) operator which
transforms an eigenstate of the free Hamiltonian H,
(with the physical mass) into an eigenstate of the full
Hamiltonian

U0, — ) |a)=|a)n. (4.8)

The state |a) can also be thought of as an interaction-
or Dirac-picture state at infinite time. The U operator
relates the data [in the form (4.7)] to analogous matrix
elements between free states (i.e., in the interaction
picture):

in<b | J(x) la>in= Zd (U—l) bc(Cl](X) Id) Ug. (4.9)

Taking Heisenberg operators and interaction picture
operators equal at /=0, we can calculate the matrix
elements between the interaction picture states explic-
itly by hand, assuming the usual Fock representation
and the forms (4.6) (i.e., these are just interaction
picture operators between bare or infinite-time interac-
tion picture states). These calculated matrix elements

1 Notice that, in the case of the vacuum, what we call U (0,— =)
is really the less singular operator U (0, — «)/(0| U (0, — =) [0),
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form a representation of the algebra of J. Hence U is a
unitary transformation function between two known
representations of an irreducible set. Equation (4.9)
thus determines U up to an energy-independent phase.
Roughly speaking, U is the outer product of eigen-
vectors of the data for J times the eigenvectors of J
between free states.

We have assumed that the Fock representation
generates a representation for the current which is
unitarily equivalent to the data. In a box, this must be
true (if we are to find any underlying theory at all),
but in a translationally invariant universe, it may be
necessary to take a so-called inequivalent representa-
tion? for the fields in order to generate a representation
of the currents unitarily equivalent to the data (ie.,
to get an essentially unique unitary solution for U).

It should also be noted that the procedure of solving
for U(0, — ») is in a sense a test for J’s irreducibility.
If there are many solutions for U, we would know J is
not yet irreducible, and we would have to go back and
add more matrix elements to J.

In practice, one might go about solving Eq. (4.9) in
the following manner: write

Joa=iu(b| J(®)|@)in, Jo’=([J(X)|a), (4.10)
and look for U in the explicitly unitary form
U=1—ix/1+ik. (4.11)
The resulting equation for « is
i, JY]=T"FxJx, JE=JLJ°. (4.12)

One can imagine trying to solve (4.12) on a computer
in the following fashion: In some suitable manner, cut
off the data above what is known experimentally, and
put the rest on an energy grid. To avoid difficulties
with Haag’s theorem, the translational invariance of
the data should be broken by introducing the experi-
mental volume or size of the apparatus as a parameter.
Before passing on, it is amusing to note that the form
of (4.12) is ideal for a possible perturbation expansion
in some small parameter: If one had reason to believe
that J were close to J°, then k, J~ would be first order
in this difference, while xJ—x would be third order. Thus
one might hope to start an expansion around the first
approximation to (4.12):

L, Jt]=J". (4.13)
Again, because J+ is irreducible, this first approximation
is unique (up to what amounts to a phase in U).
Construction of the Fields, etc.

Having U (0, — «), it is straightforward to construct
the fields from the matrix elements of the interaction
picture field in the interaction picture.

in(0| 6 (x) | @in=e# P (B[ ¢ (x)] 2)1n
=BT (U)1le| 6 ()| Vn. (4:14)
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These latter matrix elements (in the interaction picture)
are of course constructible by hand. From these matrix
elements of the (unrenormalized) Heisenberg field, one
can construct the mass and wave-function renormaliza-
tions etc. in the ordinary way.

Also of interest is the finite time evolution operator
U(tz)tl))

U(t2’t1) = giHopt2g—iH (t2—t1) g—iHoDt1 ,

(4.15)

where Hop is the unperturbed Hamiltonian in the
interaction (Dirac) picture and H is the full Hamil-
tonian in, say the Heisenberg picture. Taking matrix
elements of (4.15) with eigenstates of Hop, we have

Uba (tz,tl) = ¢i(Ebta—Eat1) Z ¢ Upoe—iBelta—t) (U—l) ca- (416)

Explicit Field Dependence of the Interaction

Once we know U(0, — ), we can reconstruct the
interaction Hamiltonian as well. The Hamiltonian in
the interaction picture is simply

(B|Hp()|ay=eEEt S Uy Ee(U N ea  (4.17)

To reconstruct the interaction part of the Hamiltonian
in the interaction picture, we subtract off the (explicitly
constructible) usual kinetic energy and mass terms

(b|Hip(t)| @)= (b| Hp(t)| a)—(b| /dX{WD* (x)mp (x)
+ Voo (x) - Vop (x)+u’dp" (¥)pp (%)} | @),

where p is the observed mass of the mesons. Because all
the matrix elements of Hyp(#) are known, we can find
its explicit field dependence by doing an expansion of
Haag’s type!? with a (Dirac picture) field for each
observed particle. Of course, this procedure will only
determine the interaction Hamiltonian density up to a
spatial divergence.

We can go further and completely determine the
interaction Hamiltonian density with gravitational
scattering data. Because a gravitational probe ‘‘sees”
T,, (stress-energy-momentum tensor), we can in
principle use gravitational scattering to determine

outlB] TO() | @)in= outld| 0 (X) | @Y. (4.19)

From these data, we easily reconstruct the Hamiltonian
density in the interaction picture:

(®]3¢p (2)|a)
=i BBt Y [y 50(c|30(x,0) | @)in (U Daa.  (4.20)
cd

(4.18)

The interaction part of the Hamiltonian density is
constructed, just as above, by subtracting off the
known matrix elements of 3Cop. Again, its explicit field
dependence can be found by an expansion of Haag’s
type in terms of the interaction picture fields.

2 R, Haag (Ref. 3); V. Glaser, H. Lehmann, and W. Zimmer-
mann, Nuovo Cimento 6, 1122 (1957),
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Equivalence Class of Field Theories

Thus far, we have reconstructed the field theory
whose current is given as in (4.6). In general one expects
that other (canonical) field-theoretic representations of
the algebra of observables [Eqs. (4.2) and (4.4)] exist.
It is quite easy to write down other representations of
the algebra, but one has also to require that the resulting
current, etc., has the correct Lorentz transformation
properties. For example, the forms (4.6) with

¢—¢, w=¢'—o>rt¢,
¢,1'___>¢,1" 7|.T=q[,,__>.,r’r+¢1"

form another representation, but the resulting current
does not transform as a four-vector (and the resulting
fields will not transform as scalars). The problem of
finding all representations with the correct Lorentz
properties is evidently a very difficult one, and we shall
not attempt to solve it in generality here. Specific
examples of other four-vector currents with the current
algebra Egs. (4.2) and (4.4) can presumably be gen-
erated through a trick recently used by Weinberg!é:
Define new fields ¢, ¢' in terms of the old, by a time-
dependent unitary transformation which leaves the
fields as scalars, e.g.,

¢(x) = (x)exp[ird ()b ()],
¢! (#) = (r)exp[— N (1)(x)],

where X is a constant. Next rewrite, say, the free
Lagrangian for ¢, ¢! in terms of ¢, ¢ and vary this
Lagrangian with respect to ¢, ¢! to obtain the current
as a function of the new fields. According to Weinberg,
if the new fields are now taken as canonical, this current
will satisfy the old commutation relations. (We only
take the functional form of this current, ignoring its
origin in such a procedure.) This and other currents
generated with other prescriptions like (4.22) will be
in general rather complicated functions of the fields,
and will imply complicated derivative coupling in the
underlying Lagrangian.

In any event, for any such representation that can
be found, one could go through the procedure outlined
above to calculate U(0, — «) and the fields, etc. Both
U(0, — ») and the matrix elements of the fields will
come out differently with this second representation.
One thing that can be said about the new matrix
elements of the fields is that they are unitarily related
(at fixed time) to the matrix elements of the field
in the previous theory: Denoting the first and second
U(0, — ») as Uy, U etc., we have

in(0]$1(x) | @)in=2_ (Ui slc| ¢ (x) | &) (U1)da,

cd

(4.21)

(4.22)

(4.23)
in(8|$2(x) | @)in=2 (UsVselc| ¢ (%) | ) (U2)da,

cd

13 S, Weinberg, Phys. Rev. Letters 18, 188 (1967). Care should
be taken that this trick does not create or destroy Schwinger terms,
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so that
inb l¢2(x) [@)in=2_(UsU1) e
cd

X in{c|61(X) | )in(Ur U 2) da-

Of course, a time-dependent unitary transformation is
necessary to relate the fields away from zero time.

By finding all these “physical”’ representations of the
algebra, one can reconstruct the entire class of canonical
field theories under the data. This class is a unitary
equivalence class in the sense that each representation
is unitarily equivalent to the data (and hence to each
other representation in the class). In general, there will
be at most one simple or ‘“‘garden-variety” theory in
the class, in the usual sense that it have no derivative
coupling or some not too complicated derivative
coupling.'* Note that, in a box, all the representations
in the equivalence class will be equivalent to a Fock
representation, whereas, in a translation-invariant
system, if one representation in the equivalence class is
inequivalent to the Fock representation, then they
all are.

Suppose the algebra of observables came out more
complicated than Eqs. (4.2) and (4.4); e.g., the algebra
of the irreducible set might not be closed (finite).
This would indicate the presence of derivative coupling
in all the members of the underlying equivalence class.
Our task remains basically the same, of course: If we
can represent the algebra of an irreducible set in terms
of canonical fields (such that the representation is
unitarily equivalent to the data), then we can recon-
struct the fields. Tricks for representing the complicated
algebras by looking for simple subalgebras (as men-
tioned in Sec. II for the case of velocity-dependent
potentials) can be devised, but we shall not go into
detail about this here.

(4.24)

Bound States

In the absence of bound states, our procedure is
fairly well defined: One measures observables, hoping
to find an irreducible set. One represents the algebra of
the observables in terms of canonical fields correspond-
ing to the observed particles. For each representation
we can reconstruct another field theory in the (unitary)
equivalence class of theories “under” the data. The
possibility of bound states, on the other hand, is a
very difficult complication; that is to say, having
observed a particle, should we assign it an (elementary)
field (by using it in the currents)? We really have no
solution to this problem, but we offer a few speculations.

For definiteness, suppose we are examining a universe
of pions and nucleons, there being some suspicion that
the pion is a nucleon-antinucleon bound state. The first
thing to do would be to try to represent the algebra of

1 On the other hand, in nature one would not be surprised to
find no “simple” theories in the class.
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observables in terms of nucleon fields only. Suppose that
this worked, and that the equation for the transforma-
tion function between the data (including all states
with pions as well) and the representation (only
nucleon states) had a unique solution. [ Notice that the
transformation function, still formally unitary, is no
longer U(0, — ). Nonetheless, it is to be used just
as was U (0, — o) above in the constructing fields, etc.]
In this theory, one would then say that the pion is a
nucleon-antinucleon bound state. The question of
interest is, assuming that this one theory (with no
explicit pion field) underlay the data, whether another
representation of the algebra (and another theory)
can be found with a pion field in addition to the nucleon
field. It seems reasonable to us that, if such a representa-
tion could be found, then, on reconstructing the wave-
function renormalization of the pion field, it would turn
out zero, but we do not wish to get involved here in the
well-known problems of the Z=0 approach in field
theory. Evidently, if all the particles in a system are
composite, our approach through field-theoretic rep-
resentation finds itself uncomfortably deep into these
Z=0 arguments.

Comparison with a Conventional Inverse Problem

We have here discussed the problem, at least formally,
of reconstructing all the canonical theories underlying
the data for an irreducible set of observables (currents,
etc.). The conventional “inverse problem’ in potential
theory®® and field theory is, on the other hand, to
reconstruct the theory from the S matrix. It would be
very interesting to compare our equivalence class of
theories with the set of all possible canonical interpolat-
ing fields for a given S matrix. Unfortunately, essentially
nothing is known about this latter set, and we shall
have very little to add beyond a few almost obvious
remarks.

On the one hand, our scheme evidently feeds in a
great deal more information via the currents etc., and
the S matrix than is contained in the .S matrix alone.
That is, certainly the currents are not determined by
the S matrix.!® Thus one feels that our equivalence
class of theories, say (J), must be in some sense more
restrictive than the class (S) obtained from the S matrix.
On the other hand, despite our having introduced more
information, we have never really included any informa-
tion about the off-mass-shell behavior of a strongly
interacting particle; thus one feels our class (J) could
not be significantly smaller than the set (S). One can
say immediately, of course, that the S-matrix recon-
struction would not yield the fields as functionals of the
data in any ordinary sense, because one needs an

15 For a review of the inverse problem in potential theory, see
L. D. Faddeyev, J. Math. Phys. 4, 72 (1963).

16 The currents may be calculable from the S matrix if certain
assumptions are made about the high-momentum behavior of the
currents. See R. F. Dashen and S. C. Frautschi, Phys. Rev. 143,
1171 (1966) ; 145, 1287 (1966).
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irreducible set in terms of which to expand the fields
(as we have done). Rather, the S-matrix approach
would be more a matter of guessing field theories and
trying them.

Let us for the moment take the most optimistic view
of the S-matrix approach and assume that, having
constructed the class of theories (S) (say in the charged
scalar universe), we find it identical to our class (J).
There would still remain the problem in the S-matrix
approach of determining the real or physical currents in
each theory of (S). That is, even if one gave oneself the
algebra of the currents, there would be in general an
infinite set of structures in each theory of (S) which
satisfy the algebra. [These would have the functional
form of the various field theoretic representations of the
current algebra.] One must then choose the current
from among an equivalence class of currents. The S
matrix alone unfortunately contains no information
about this choice, and some additional principle, like
minimal electromagnetic coupling would have to be
invoked.
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APPENDIX A: IRREDUCIBLE SET IN
NEUTRAL PSEUDOSCALAR THEORY

To see whether S, S, as defined in (3.1), are irreducible
in each parity sector, we inquire as to what dependence
on ¢, = (assumed irreducible) can remain if a func-
tional f of ¢, ¢ is required to commute with both S, S
at fixed time (say {=0)

[/{¢:6}:S®)]=[/{¢,6},8(x)]=0. (A1)

There are many ways to see that (A1) limits f to be a

multiple of the unit operator. Perhaps the most elegant

demonstration proceeds in the following manner.
Define “spinors”

-l 4 o)

Because ¢, ¢ satisfy canonical commutation relations,
the ¢’s satisfy

[¥s(®),¥s (¥)]= 865:6® (x—1y),
Ws(x),¥s () 1=[¥s (x),¥s (¥)]=0.

In this notation

Sx)=yoy, S=ifos,

«.=§<ﬂ-m)=(‘l’ 2) =<(1) _(D' (a9)

(A2)

(A3)
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In the spinor space, S, S are the generators of a local
rotation and a local scale change, respectively. That is,
the unitary operators

U)=empli / dx'a.<x'>s<x'>} ,
(43)
Ulaz)= exp{i/dx'as ()8 (x") } s

[o—(®), as(x) being arbitrary ‘“‘smearing” functions ]
have the effect

U () (x) U™ (as) =330 (x)

U (as)d (x) U~ (as) =P (x) e 288 |
U (x) U7 (o) === (x),
U W (x) U (o) =y (x)e o=@,

The important point is that o3, o_ are an irreducible set
in the spinor space; that is, there are no “rotations”
which commute with o3, o— that are not multiples of
the null rotation. Thus f(¢,¢)=F,¥) must be a
functional at most of 1 in the spinor space, which is
the commutator of ¢, ¢, and hence a constant. Thus
{S,S} is an irreducible set in each parity sector.

(A6)

APPENDIX B: IRREDUCIBLE SET IN
CHARGED SCALAR THEORY

The proof of irreducibility of the set J as defined in
(4.6) is very much like that presented in the neutral
case. Introduce the “spinors”

¢=[iﬂ, ¢=[—z‘¢*,¢f1=¢f(§’ :)) (B1)

These quantities have the same commutation relations
as the analogous ‘“‘spinors” defined in the neutral case,
namely (A3). In this notation

Fo@=pX)=—¢@W (), SE)=¢)oy(x),
SE) =i (x)osp(x). (B2)

As in the neutral case, because o, o3 are irreducible in
the spinor space, we can be sure that the requirement

[S(),f{¢:4,6"6"}]=0,
[S(),f{,4:¢',61}]=0,

f=flo(x)=—y1¥]. (B4)

This much is identical with the neutral case—except
that now ¢1y is not trivial. We can remove the p
dependence through the requirement of commutativity
with 7*. Using (4.2)

LA (9)1=—2iS(y)a W {sf[p]/op(y)}=0. (BS)

Hence, any operator f which commutes with the full
set J(x) is a multiple of the unit operator, and J(x) is
irreducible in each charge sector.

(B3)
implies



