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A composite model of Z as a bound state of A 21. and XE is developed in terms of dispersion relations for
form factors and an approximate Bethe-Salpeter equation. The eGective coupling constants of Z to its con-
stituents are predicted to be 8 7& (geol o( &10 7 and 64& (gzo tr( &7 9 for the range50& (gq tr-( &13 5.
The relative sign of gg0q 0 and gq0„~—is found to be opposite to the relative sign of g» 0 and gq„~—.The model
is further applied to a calculation of the on-shell electromagnetic form factors of the Zh. system. Under the
assumption of p dominance of the kaon isovector electromagnetic form factor, the ZA. transition moment
is determined to be Gs (0)=gs„tr-ggo„tc&.9X10~ nuclear magnetons, whereas the form factor which would
vanish in the limit of equal X and A masses is two orders of magnitude smaller than the transition moment.

1. INTRODUCTION

''N this paper a simple composite model of the Z
~ - hyperon is developed. It is based on the conjecture
that Z may be regarded as a bound state of a limited
number of other hadrons, specilcally of Asr and EE
pairs. In the following paragraphs the basic de6nitions
and assumptions used by the model vrill be stated,
some plausibility arguments presented, and the plan
of the calculations outlined.

Various definitions of compositeness have been pro-
posed in a relativistic context. In field theory a particle
may be considered composite if its description does not
require the 6eld operator of the particle explicitly. ' A
more directly applicable definition of a bound state,
provided that it is formed from pairs of other particles,
may be stated in terms of the Bethe-Salpeter equation. '
In field theory this equation is assumed to play, at
least in principle, a role analogous to that of the
Schrodinger equation in quantum mechanics. In
practice, the equation is very involved in the presence
of spin, even if a "ladder" approximation is made. Other

types of eigenvalue equations characterizing, if not
completely describing, composite particles have also
been discussed by many authors. In particular, the
requirement of vanishing wave-function renormaliza-
tion constants for composite particles has been in-

vestigated in detail in Ref. 3. The requirement of zero
vertex function renormalization constants and related
conditions, which arise in certain theories, have also
been discussed in many works. 4

$ Work supported in part by the U. S. Atomic Energy Com-
mission. This paper is based on a thesis submitted to the Uni-
versity of Rochester in partial fulfillment of the requirements for
the Ph.D. degree.*Present address: University of Illinois, Urbana, Illinois.

' See, e.g., W. Zimmermann, Nuovo Cimento 10, 597 (1958);
K. ¹shijima, Phys. Rev. 133, B1092 (1964); also Ref. 3.

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84 1232 (1951).
s C. R. Hagen, Ann. Phys. (N. Y.) 31, 185 (1965); M. M.

Broido and J. G. Taylor, Phys. Rev. 147, 993 (1966), and refer-
ences therein.

4 See, e.g., A. Salam, Nuovo Cimento 25, 224 (1962); R. M.
Rockmore, Phys. Rev. 132, 876 (1963); E. G. P. Rowe, Nuovo
pimento 32, 1422 (1964); G. Furlan and G. Mahoux, ibid. 36,
215 (1965); W. Guttinger, ibid. 36, 968 (1965); M. Ida, Progr.
Theoret. Phys. (Kyoto} 34, 92 (1965); 34, 990 (1965); 35, 692
(1966}; J. S. Dowker, Nuovo Cimento 36, 1050 (1965); T.
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In the framework of 5-matrix theory, the Q/D
method' has been extensively used for the study of
bound states. This method furnishes eigenvalue equa-
tions for obtaining the mass and coupling constants of
the composite particle by requiring that the T matrix,
T=1V/D, develop a pole due to det(D)=0 in each
appropriate channel at the energy and angular momen-
tum corresponding to the mass and spin of the corn-
posite particle, and that the residue there be simply
related to the square of the effective coupling constant
of the particle to the channel in question. Under certain
conditions, not fu1611ed by Z, ' this method leads to a
simple relation between the mass of the composite
particle and its coupling constant to the lowest-lying
channel. Such a relation, which is independent of de-
tailed dynamics, was proposed (for s-wave bound
states) by Landau' and proved by Nauenberg. ' The
Landau relation is satisfied by the deuteron, so that
the validity of the E/D formalism is at least partially
demonstrated.

It is possible to obtain Landau's condition in certain
cases and for "very small" binding by comparison of
the Schrodinger wave function and the dispersion rela-
tion satisfied by the electromagnetic form factor of the
composite particle with a subtraction allowed. Further-
more, under similar conditions, Blankenbecler and
Cook have demonstrated the close connection between
the Schrodinger wave function derived from a linear
superposition of Yukawa potentials and the correspond-
ing form factor describing the interaction of the com-
posite particle with its constituents and obeying unsub-
tracted dispersion relations. Their results as mell as
those of Barton' hinge on the dominance of a single

Yoshhnura, ibid 40, 495 (19.65); M. M. Broido and J. G. Taylor,
Ref. 3.

G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960);B.Kayser, Phys.
Rev. 138, 81244 (1965); B. M. Udgaonkar, in High Energy
Physics and Elententary Parietes, (International Atomic Energy
Agency, Vienna, 1966), p. 791.' M. Nauenberg, Phys. Rev. 124, 2011 (1961).

s L. D. Landau, Zh. Eksperim. i Teor. Fiz. 39, 1856 (1960)
(English transl. : Soviet Phys. —JETP 12, 1294 (1961)g.

G. Barton, introduction to Dispersion Techniques in Field
Theory (W. A. Benjamin, Inc., New York, 1965), p. 193.' R. Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745
(1960).
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anomalous contribution to the dispersion integral so
that, as expected, they are not applicable to Z. It does
not necessarily follow, of course, that dispersion rela-
tions for composite form factors can not be used when-

ever no correspondence to a Schrodinger description
can be established.

Nishijima and collaborators" have investigated the
applicability of unsubtracted dispersion relations to
composite form factors by entirely relativistic methods.
They have not actually supplied proofs for ordinary
dispersion relations satis6ed by S-matrix elements.
Their framework consists of parametric dispersion re-
lations for Green's functions and their conclusion is,

briefly, that such dispersion relations ought to be
unsubtracted if they describe composite particles, unless
the subtraction constants are calculable or axed by the
universality of an interaction, and subtracted if they
pertain to primary interactions of elementary particles.
The generalization to ordinary dispersion relations for
form factors is not only tempting but also compatible
with the notion that the parameters characterizing
composite particles ought to be calculable from theory,
in contrast to those which describe elementary
particles. '0 "

An investigation of the validity or equivalence of
the various approaches to the bound-state problem
outlined above is beyond the scope of the present work.
Here the following is assumed:

(1) A ladder approximation to the Bethe-Salpeter
equation provides a valid description of Z.

(2) The form factors which specify the interaction of
Z with its constituents obey unsubtracted dispersion
relations in which either constituent may be off the
mass shell. Further, the electromagnetic form factors
of the ZA. system obey, with the exception of the Dirac
form factor, unsubtracted dispersion relations in which
the photon is off-shell, and the same is true of the ZZ
system. Similar properties may be attributed to any
other strong or electromagnetic vertex containing at
least one composite particle and an off-shell elementary
particle.

(3) Approximately constant behavior can be assigned
to certain combinations of form factors involving solely
elementary hadrons.

An intuitive argument in favor of the ladder approxima-
tion, based on the not too large binding energy of Z,
may be given analogous to that of Ref. 2. Assumptions
2 and 3 are consistent with Ref. 10. The type of dis-
persion relations valid when a composite particle is
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Fzo. 1. Bethe-Salpeter ladder.
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o6-shell is not, however, specified. " Further, the last
assumption is only a very crude formulation of the
behavior of elementary particles, motivated by lack of
detailed information. The precise content of this
assumption will become evident in the course of the
calculations.

Granted the above definition of elementarity and
compositeness, the question arises whether any of the
known hadrons may be regarded as elementary In the
absence of decisive evidence and on account of its
simplifying features, the assumption is made in this
paper that all hadrons are composite, with the excep-
tion of those which are lighter than Z and stable against
strong interactions, namely, the Sakata baryon triplet
and the SU(3) pseudoscalar octet "Th.us the present
model is not in the spirit of "partial bootstrap" models
like the one considered by Kayser, ' nor does it lead to
similar predictions after approximations are introduced
for calculational purposes.

The distinction between elementary and composite
hadrons has important consequences with regard to
the forces responsible for the binding of composite
hadrons, namely, the dominant contribution is expected
to come from the exchanges of elementary rather than
of composite hadrons, so that in the particular case of
Z only nucleon exchange need by considered in first
approximation (cf. Fig. 1). Qualitatively, this may be
seen most easily in the context of dispersion relations
for form factors and, by extension, the Bethe-Salpeter
equation. The argument runs as follows.

Let the requirement be imposed on the calculation
that the graphs used in the dispersion treatment of the
ZAs and ZÃE form factors correspond to the Bethe-
Salpeter graphs in a certain approximation. Then the
nucleon-exchange ladders of, e.g. , Z+ lead to the tri-
angular diagrams of Fig. 2 (bosons dispersed) and Fig. 3

&~ K. Nishijima, Phys. Rev. 119, 485 (1960); 122, 298 (1961);
M. Muraskin and K. Nishijima, ibid 122, 331 (1961);K. . Nishi-
jima, ibid 124, 255 (1.961); E. R. McCliment and K. Nishijima,
ibid. 128, 1970 (1962); K. ¹shijima, Ref. 1."L. S. Liu, Phys. Rev. 125, 761 (1962); B. Barrett and G.
Barton, Nuovo pimento 29, 703 (1963); G. Barton and B. G.
Smith, ibid. 36, 436 (1965); also, Ref. 8., pp. 123 ff.

FIG. 2. Graphs for the evaluation of the absorptive parts of the
Z+A2t-+ and Z+pII ~ form factors with the boson mass dispersed.

"See the results obtained by M. Ida, Progr. Theoret. Phys.
(Kyoto) 34, 92 (1965), concerning the asymptotic behavior of
form factors in two-particle unitarity models."M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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Fzg. 3, Graphs for the eva1uation of the absorptive parts of
the y+p~+ and g+pg' form factors with the elementary baryon
mass dispersed.

(elementary baryons dispersed). The structure of the
lower left corner is not important for the comparison of
the contributions of di6erent binding agents (1V, Z, E~,
etc.) to the values ot the form factors on the mass shell,
i.e., to the coupling constants of Z to its constituents.
'tA'hat is important is that the binding agents, which are
the exchanged particles of the ladders, become inter-
mediate, not exchanged particles in the triangular dis-
persion diagrams, so that in the latter case they are on
their mass shell. Now, even if a Born approximation is
assumed for the scattering amplitudes occurring in the
absorptive parts of the form factors, i.e., even if the
two lower corners of the triangular diagrams possess
no structure, the upper corner still depends on the
dispersion variable. If this corner contains a non-
dispersed composite particle, it will be damped faster
at in6nity than one containing only elementary
particles, so that the corresponding diagram will con-
tribute less to the dispersion integral. This argument
excludes, in particular, Z exchange in the presence of
E exchange. Further, it provides a qualitative ex-
planation for assuming the EE system to possess an
isospin-1 bound state of spin —,+, the Z, but no cor-
responding isospin-0 state, the A, since the latter state
cannot be formed via exchange of elementary hadrons.

The above discussion leads directly to the question

why the Zx channel, which has a low total mass and
consists of only two hadrons, both stable against strong
interactions, has not been considered by the present
model along with h.x and SK. Clearly, if this channel
is taken into account, both Z and h. can be formed by a
Zvr-1VQ nucleon exchange ladder. This already is a
difhculty, since A is assumed elementary. Further
difhculties are associated with the composite nature of
one of the constituent particles. Assumption 3, namely,
is not applicable to composite form factors, so that it
is not easy to introduce a plausible approximation to
the Bethe-Salpeter ladders and the corresponding dis-

persion diagrams if more than one of the vertices in
these diagrams is composite. It therefore seems desir-
able to first try the simplest possibility, i.e., to assume

A, elementary and drop the Zvr channel.
The essential features of the model have now been

described. The plan of the calculations is as follows:
In Sec. 2 unsubtracted dispersion relations for the

Z+A~+ and Z+pZ form factors are written with the
boson masses dispersed and the value of x, the ratio
of the coupling constants f~ and fg of Z+ to its con-

stituents, is determined. It may be noted that isospin
invariance is guaranteed by the input information, so
that only Z+ need be considered explicitly.

In Sec. 3 the Z+An+ and Z+pE' form factors with
the elementary baryon masses dispersed furnish a
second value of x. This provides a test for the self-
consistency of the calculations.

In Sec. 4 an order-of-magnitude estimate of
~ f~~

and
~ f~~ is attempted with the aid of the normaliza-

tion condition satisfied by the Bethe-Salpeter wave
functions of Z+.

Finally, in Sec. 5 the ZAy vertex is examined and the
values of the form factors on the mass shell are deter-
mined. The numerical answers are proportional to fv
and may be considered either as predictions of new
quantities or, in practice, as an alternative way of
fixing the magnitude of the eGective coupling constants
of Z to its constituents. The results obtained are dis-
cussed in Sec. 6. Before the calculations are presented,
some additional remarks on the model will be made.

In evaluating x (Secs. 2 and 3), a Born approximation
is assumed for the scattering amplitudes occurring in
the absorptive parts of the form factors. Clearly, since
this implies that the lower corners of the triangular dia-
grams in Figs. 2 and 3, and in particular the left corners
are structureless, the approximation corresponds to a
severe truncation of the Bethe-Salpeter ladders. It is,
however, hoped that, even though such a truncation
may distort the Bethe-Salpeter wave functions to a
degree where they become useless as sources of de-
tailed information on the bound state, it may still
lead to acceptable dispersion representations for the
form factors describing the interaction of the bound
system with its constituents, provided that the trunca-
tion can be at least partially ofI'set by some suitable
means. The means employed by this paper is the intro-
duction of cutoGs for the dispersion integrals which,
as a result of the poorness of the Born approximation,
become logarithmically divergent. The presence of cut-
oGs is a nuisance frequently encountered in actual
calculations. Fortunately, in this case the cutoffs can
be eliminated in a fairly plausible way (the two-channel
nature of the problem being essential for achieving
this), so that the final answers do not depend on
adjustable parameters.

A second remark concerns the use of the Bethe-
Salpeter wave functions in Gxing the absolute scale of
the effective coupling constants fq and f~ Each oi.
the two wave functions is proportional to two free-
particle propagators (one for each constituent) times
a vertex part specifying the interaction of Z with its
constituents. In order to render the normalization
integrals tractable, the assumption is made that as far
as the vertex part is concerned, the heavy baryon con-
stituent may be treated as real, so that only the de-
pendence on the momentum transferred to the boson
need be taken into account. This enables one to express
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the wave functions in terms of the dispersion rep-
resentations of Sec. 2 and to carry out integrations in
a relatively simple manner. Clearly this, like most of
the assumptions made in this paper, hinges on the
relatively loose binding of Z.

2. THE XA,~ AND XXX FORM FACTORS
WITH THE BOSON MASS DISPERSED

the following result for the 2Am form factor:

Fg,,z(tp) =—1 'p AbsFa, z(t)
dt 7

t—tp+ie

AbsFg. , z(t) = —(16rr) 'v2—
g~ggfrr )B(t)+D(t)j,

where

(2.5)

In this section the X+A.x+ form factor is calculated
for low values of the square of the momentum trans-
ferred to the pion. The results may be trivially adapted
to the Z+pKp vertex. Consideration of the dispersion
equations on the mass shell yields the ratio of the
effective coupling constants of Z+ to its constituents.

The ZAa. vertex (charge indices are suppressed) may
be introduced as follows:

where

r"(t) = —(E&Ez/mpmz)'"(A"
~
j.~

Z')
=Fg., z(t)u" (Pg)cpu'(Pz),

t= —(Pz —P~)'

(2.1)

(2.2)

Here r and s are spin indices, j is the pion current at
the origin, and the normalization volume is taken to
be unity. Fq, z(t) is the Zhn. form factor whose value
on the mass shell defines the I+Ax+ coupling constant.
For convenience the following notation will be used:

fg=F ., z(m.'),
fN =F,z; z(mx'),

g~=F rr;~(mx'),

g~ ——F,.,(m.') .

(2.3)

ReF„„, (t) =v2g~. - (2 4)

Further, the single K exchange term in the ZX —+ pn
scattering amplitude is taken to be just a Born term.
Hence all three vertices of Fig. 2 become structureless.
A discussion of this drastic approximation has already
been given in Sec. 1.

Standard techniques" yieM after some calculation

"J. D. Jackson, in DispersiorI, Relatiorls, edited by G. R.
Screaton (Oliver and Boyd Ltd. , Edinburgh, Scotland 1961),p. 1;
J. D. Jackson, in Elementary Particle Physics artd Field Theory,

Note that fN is v2 times the commonly used ZppK+

coupling constant. g~ is taken to be approximately
13.5. The value of g& is not precisely known and will

be treated as a parameter ranging from 5 to 1.3.5.
According to assumption 2, Fz ,.z(t) obeys an un-

subtracted dispersion relation. Figure 2, derived from
a nucleon exchange Bethe-Salpeter ladder, indicates
that only proton-antineutron intermediate states con-
tribute to the absorptive part of F.The coupling of these
states to the oB-shell pion is described by the pion-
nucleon form factor. In principle, the form factor is
known, since it belongs to an elementary vertex. How-

ever, in practice, this is not the case, so that assumption
3 is here invoked in the form

a(t) =LC,+c /t+c, (1—«/t)fI/xj a(t),
D(t) = P e'~'/—t+ Cp(1 t4/t) 2—%'"/Xj 8(t—t,),

with

Cr ——2L
—(m +m„) (mz+m~)+2m„m„

+mz'+my' —2mxr j
Cp ,'(m„——m—„+m—z m~) (m—'—m„')

X (mz+my),

Cp —— g(m— my+—mz mg)—(mz mg)—,

4= P 2(m„'—+m, ')t+ (m„' m„—')'
X= t2 2(m—g'+ mz') t+ (mz' mJ, '—)'
n = t' (m p'+m—~'+mz +my' 2mx') t-

—(m '—m ')(mz' —mg')

H(t) =X-'~' ln
~
LQ —(ex)'12j/Pn+(CX)"Pj ~, t & t

= —2(—X) '" tan '$(—+X)'"/Qj tp&~t&~t4

= —2~(—X)-'~',

(2 6)

(2.7)

p,.= (mx'+m, m)z/—( 2m~„),

tr, = (mx'+m ' mg')/(—2mzm„) .
(2.9)

t6 is a cuto6 introduced as a compensation for the
logarithmic divergence of the intergal in Eq. (2.5), a
result of the poorness of the Born approximation
(cf. Sec. 1).

The integration in Eq. (2.5) was ca,rried out numer-

ically on an IBM 7074 computer for various values of

t6 and to on the mass shell. In view of the similarity
between the Zh.m and ZSK vertices, the cuto6 was
assumed to be the same for both, when measured in
appropriate units. Both absolute (m„') and relative

(tp, t4) units were considered.
Equation (2.5) and its analog for the ZEK vertex

edited by K. W. Ford (%. A. Benjamin, Inc. , New York, 1963),
p. 263, Appendix D; R. E. Cutkosky, J. Math. Phys. 1, 429
(1960); R. Blankenbecler and Y. Nambu, Nuovo Cimento 18,
595 (1961);L. D. Landau, Nucl. Phys. IB, 181 {1959).

Here t4, t2, and t5 are the physical, normal, and ab-
normal thresholds, respectively,

t4 (my+ mz——)',
tp= (m,+m„)'-,

tp
——m~'+m„'

+2m m-L t .t +(1—
t '—)"'(1—t ')"'j (2 g)

where
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lo

required to make x self-consistent varies with ~g+~, x
is rather insensitive to the simultaneous variation of
ts and ~ga~.

In Fig. 4 the cutoG is measured in units of t4. Similar
plots, not shown here, were also made for units of t2

and m, '. x is shown in Fig. 5 as a function of ~ga~ for
these three choices of t6 units. It is seen that although
there is certain degree of arbitrariness in the procedure
of the self-consistent elimination of cutoBs, the end
result is not very sensitive to it: x lies in the neighbor-
hood of unity for all three choices of units of which t6

is measured.

I I

IO l5
t6 (units of t& }

5
7

IO

I

lb.5

20

FIG. 4. The ratio of the Z+pK' to the Z+A7t-+ coupling constant
x versus the cutoff t6 of the dispersion integrals corresponding to
Fig. 2. $6 is measured in units of physical threshold. For each
value of the magnitude of the hPJt+ coupling constant, ~gq~,
the intersection of thoro curves Gxes both x and t6.

3. THE XA.e AND XNK FORM FACTORS WITH
THE ELEMENTARY BARYON

MASS DISPERSED

In this section the Z+pg vertex is considered for
low values of the square of the momentum transferred
to the proton. The Z+h.x+ vertex is treated analogously.
An additional value of x is obtained by methods similar
to the ones employed in Sec. 2.

The vertex is introduced as follows:

yield a set of equations of the form

crt fa+crs f~= 0,
crsfa+rr4fn =0,

(2.10)

G'(t) = —(2EgEx/ms)'~'(E
~
J,

~

Z')
= LGt (t)+'& ' (ps —px)Gs (t)jim»'(ps)

t= —(pz —px)'.
(3.1)

x= fsI'/ fA ~ (2.11)

These values are plotted versus ts in Fig. 4, with
~ ga~

as a parameter. The relative sign of g~ and g~ is taken
to be negative (x would be negative if the sign of g~gN
were reversed). For each value of ~ga ~, a self-consistent
solution for x is found from the intersection of the two
curves, one of which corresponds to the ZAx vertex,
and one to the Zjt'/E vertex. In this manner the cutoff
is eliminated. It is seen that even though the cutoff

2.0

I.5—

I.O—
I:t,l
fm~p]

[t~)

0.5—

I

IO

I

l5

'I

Fzo. 5. x as obtained in Sec. 2 versus )gs). The three curves
correspond to three diferent choices of cutoff units (normal
threshold, m„~, physical threshold). The relative sign of gq and
the pion-nucleon coupling constant is assumed negative, gqgN(0.

where a; are cutoB-dependent constants. Each equation
yields a certain value for the ratio

The calculation of the absorptive parts of Gt(t) and

Gs(t) proceeds essentially as in Sec. 2. In this case Fig. 3
is used and assumption 3 is employed in the form (cf.
Ref. 15)

ReF, (t)+iy (ps —pg) Res(t) =v2g~, (3.2)

where F~ and Ii2 are the form factors describing the
pion-nucleon vertex with one nucleon off-shell (the
analogs of Gt and Gs). No anomalous threshold appears.
The expressions for the absorptive parts of G~ and G2
are not written because they are rather lengthy.

It turns out that the dispersion integral for Gr(t)
diverges logarithmically. Following the procedure of
Sec. 2, an upper limit of integration, $6, is introduced,
the same for Gr(t) and Gs(t), and varied. The ratio
x= f&/fz is obtained for various values of gz by con-
sidering the dispersion equation on the mass shell. The
calculation is repeated for the 2Am. vertex. The result is
plotted in Fig. 6 versus the common cutoB te, measured
in units of t4. The sign of x is again opposite to that of

g&g&, assumed negative. x is self-consistently deter-
mined by the intersection of the ZArr and Z1VE curves
and the cutoG thereby eliminated. x is plotted versus

~ ga ~

in Fig. 7, for three different choices of ts units. Its
variation with the choice of units is not negligible, but
it tends to compensate for the corresponding variation
of x in Sec. 2. The average of the value of x as given in
Secs. 2 and 3 is shown in Fig. 8. It may thus be con-

"M. Ida, Phys. Rev. 136, 81769 (1964).
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or i= 1).This approximation

QV

l,5—

I.O =

0.5—

Ctg3

[rnid]

Et,3

x' I' s.I',s; xt,xs) = d4&td4)gS '( — p' xs—s.'( -&)~.'(*.-~.)

XI(gt—P.)X'(&,', ~.,b), i' )

I

IO

lg, f

FIG. 8. The average 1va ue o x as obt '
tamed from Figs. 5 and 7.

1$ RR. E. Cutkosky and M. Leon Ph"M. GeH-Mann and F. Low
~ . , 1951)ow, Phys. Rev. S4, 350 (1951

18 R. Blankenbecler, M. L. Qol
Nucl. Phys. 12, 629 (1959).
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x'(P, s; q) = [E'(P,q)j ' d'k

XI(P,q, k) x~'»(P, s; k), (4.10)

where X&'» is the "first" approximation to X&,

x&'»'( Ps; k)=ttE~(P k)g
—'

Xf i (Es/ms—) '1'f&iy, ju-'(P),

P= f4, for j=1,
=f~ for /=2,

(4.»)

leads to integrals which are too involved to be of
practical use. For this reason the assumption is made
that, as far as the vertex part of the Bethe-Salpeter
wave functions is concerned, the heavy baryon con-
stituent may be treated as real. Thus only the lighter
boson is allowed to be virtual and I"(P,q) in Eq. (4.7)
is approximated by

I"(Pq)=F'(t) iy (4.12)

t= —(t42P —q)'.

P' are the ZAvr and ZAE form factors of Sec. 2. That
their complex conjugate is needed may be seen by
reducing Eq. (4.10) to (4.7) and (4.12) in the limit
of on-shell A, Ã. Since LE'j ' as well as the adjoint of
&' have —ie prescription for going around the poles,
the existence of the normalization integrals is
guaranteed. The adjoint of X.' is given by"

x'(P, s; x,,x,) =rt'Lexp( —iP.X)](2m.) '

d4q '(Px, q)sexp (—iq x), (4.13)

'9 K. Nishijima, Progr. Theoret. Phys. {Kyoto) 13, 305 (19/5);
¹ Nakanishi, Phys. Rev. 138, B1182 (1965}.

the zth channel by

x'(P,s; q) = $E'(P,q)]-'
XL

—i(m, /E, )r'(P, q) ju (P), (4.7)
where

T'(p "p P') =u"(p )I'*'(P q)u'(P)
PE'(P q)) '=Sr'(t41P+q)Ap'(t42P q),—(4.8)

pl=141P+qy pm=t42P

The S4' and As' of Eq. (4.8) are Fourier transforms of
free propagators. For future use the following quantity
is also introduced:

I(P,q, k) = g4—g~(2m) 4i7—4

XSs "L(t41—t42)P+q+kjiV4 (4 9)

The normalization condition on the Bethe-Salpeter
wave functions requires a knowledge of x'(P,s; q) for
all values of q. Hence both the boson and fermion
constituents must be allowed to be off-shell. However,
the approximation which would correspond to the
triangular diagrams of the preceding sections, namely,

where rt' is a phase factor and x'(P,s; q) is simply the
Dirac adjoint of X'(P,s; q) and possesses the same —ie
prescription as the latter.

The derivation of the normalization condition of
Ref. 16 may be adapted to the present problem through
the introduction of a two-dimensional space labeled by
the two channels Ax and EK. Then X, 6, I, and K
are understood to be a two-component vector, a 2)&2
matrix, a 2X 2 matrix with vanishing diagonal elements,
and a 2)(2 diagonal matrix, respectively. Kith this
notation the arguments proceed as in Ref. 16.There are,
however, a few modidcations, which tak.e the fermion
nature of 2 and the normalization of state vectors into
account. Kith these modifications, the normalization
condition reads in momentum space"

(2~) ' d4q X(P,r; q)fa„E(P,q) jX(P,s; q)

—(2 ) ' d'qd'q' x(P,r; q)LB„I(P,q, q')$

(4.15)

the second term in Eq. (4.14) vanishes. Summation
over r for r =s leads after some algebra to the following
expression:

Q q'(2x) —'x—' dtt dt2 d Q

where
XA7*(P,Q, tt, 4)T'(P,Q, t„t,)= 2iP„, (4.16)

&'(P'~Q&t~~t2) = (t1+Q'—ie) '(4+Q' —ie)-'
X (Q'+m ' ie) 't (P—Q)'+ —maiej-2,

T'(P,Q, t1,4)=F'(tt, t,)DI,P„+P,Q P„—Q P„
+t4Q +~ P QQ.+4(P Q)'Q.j

with

(4.17)

P'(tr, 4) =AbsF'(tt) AbsF'(t, ),
Pt= —m '(ms —m4)',

Pm
—m '—(mx ———mg)',

p4 = 2mz(ms m4) (ms'—+m ' m42), —
P4 2(ms mg)' 2m—'—

+4(ms'+m '—m4') .

(4»)

~0 Cf. K. Baumann, P. G. O. Freund, and W. Thirring, Nuovo
Cimento 18, 908 (1960);J. Harte, ibid 45, 179 (1966). .

XX(P,s; q') = (2m') '(Es/ms) '2iP„b„,

8„=8/i7P', . —(4.14)

The orthogonality of degenerate amplitudes" cor-
responding to different spin orientations, as well as the
validity of the r&s case in Eq. (4.14) is guaranteed
if it is assumed that the u'(P) of Eq. (4.7) is given
formally by the same expressions of spin-up, spin-
down spinors as for I"=—m~'. With the choice
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The expressions for E' and T' are obtained from E'
and T' through the replacements m~ ~ m~, ns -+ ns~,
and F'(f„f,) ~F'(f„f,).

The cutoff te in Eq. (4.16) is taken from Sec. 2.
Thus no arbitrary parameters are introduced. Since
the absorptive parts of the form factors Ii' are pro-
portional to the coupling constants f', Eq. (4.16)
reduces, after integration of the left side," to the form

yt fs'+ysfgr'= 1, (4.19)

where y; depend on t6 and q' have been set equal to —1.
ts is determined by gq.

~ fs ~

and
~ f~ l

are plotted in
Figs. 9 and 10, respectively, as functions of

~ gal. For
large ~gal the choice of cutoff units is not entirely
immaterial, but the discrepancies do not signi6cantly
damage the crude approximation scheme employed

12

[t,3

12

8
5

I

IO

laAI

l5

FIG. 10. The magnitude of the Z+PZ' coupling constant, l fx),
versus ~gs ~. The curves correspond to those of Fig. 5.

troduced as

I'„r*(t)= —(Z~Er/rlttmr)'"(Ar l y„l Z') (5.1)
t= —(Pr —Ps)'.

j„is the electromagnetic current at the origin. Let

[t,3

I

IO

le~ l

Fza. 9. The magnitude of the Z+hn. + coupling constant, [ fst,
versus the magnitude of the h.pE+ coupling constant, 1 gal. The
three curves correspond to those of Fig. 5.

here. lt may thus be concluded that

S.t& ~f, ~
&1O.7,

9.O&(f )&11.2,
for

5.O& (g, ~
& 15.5.

S. THE XA.y VERTEX

(4.20)

"A combination of the Feynman parametrization technique
Lace J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955), Appendix A5$ and numerical integration
is employed.

The assumptions mentioned in Sec. 1 are applied in
this section to a dispersion-theoretic determination of
the form factors which describe the interaction of a
neutral Z with a A and a photon as a function of the
squared mass of the latter. Numerical results are
obtained for the mass-shell case. The calculation pro-
ceeds essentially as in Secs. 2 and 3, except that no
divergent integrals appear. The ZAy vertex is in-

Form factors are introduced as follows:

I'o"'(t) = tt'(Ps)
X t Gt(f)sy„+Gs(t)sa„rltr+Gs(f)lt„)N'(Pz) . (5.3)

Only Gs(t) and Gs(f) need be considered since Gt(t) is
related to Gs(t) via current conservation. Gs(0) is the
ZA transition moment.

The absorptive part of I'„"'(t) is evaluated in analogy
to the absorptive parts of the ZAm and ZSK form
factors of Secs. 2 and 3.That is, Z is assumed to interact
with A and p by virtue of the interaction of its con-
stituents. Further, only two-particle intermediate
states are kept which, according to Sec. 1, contain only
elementary hadrons. C-conjugation invariance, assumed
valid, excludes m'y intermediate states, and one is
left with Z+E+, Z'E', pp, and Nn pairs. If electro-
magnetic splittings of strong-interaction parameters
are neglected, only the isovector con6gurations con-
tribute. Thus there are two graphs to be taken into
account (Fig. 11). As before, the two lower vertices
are assumed structureless (Born approximation) so
that their form factors are set equal to their value on
the mass shell. The upper vertices are represented by

Kg ~K
/

Z~ =- ~tt

Fra. 11.Graphs for the evaluation of the absorptive parts
of the ZA electromagnetic form factors.
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the isovector parts of the kaon and nucleon form
factors. These are defined through the equations

(EKoutl j„lO)= (4E E~) '"F—z, ,(f)(pg —p )„(5.4)

The curves of Fig. 10 may be used in Eq. (5.9) to
yield Gs(0), and Gs(0) for given err. For definiteness it
is assumed that gsfry) 0 and that the p dominates the
kaon isovector form factor,

exp 1. (5.10)

Fzz; v (&) = eL1—cri+rrrmP/(mi' —t)j, (5.6)

(g~lV out~ j„~O)= (EsrErv/mNmg) '"u—
(PN)

X )Fi(f)1'ys Fs(—f)i(rs„K„)s~(PN) . (5.5)

For the kaon form factor the following amsats is
employed:

The results are plotted in Figs. 12 and 13 as functions
of

l gal, where the three curves correspond to the three
choices of cuto6 units in Secs. 2—4. It is seen that the
choice of t~ units is immaterial. From the curves and
the formula which relates Gs(0) to the Zs lifetime s4

rzo, it may be concluded that

where e is the charge of the proton, m~ is the effective
mass of the p meson, taken to be (cf. Ref. 22)

ns&= 600 MeV, (5.7)

and n~ is a parameter. The nucleon form factors are
taken from Ref. 23, where data covering the region
—1 to —30 F ' are fitted by the following expressions:

Fi(t) = eLns+crsms'/(ms' —1)j,
F,(t) = (e/2m') fn4+rrsmss/(mss t)j, —

ns3= F5=565 MeV,

~,=0.19, ~,=0.81,
o.4 ———0.48, n5= 4.18.

The anal answer for the on-shell form factors may be
written in terms of n& as follows:

Gs(0) =ga(f~/K2) [0 68+0 2.3o.r]10. 'e/2m',
Gs(0) =gs(tv/C2) L2.65—1 65n, 11.0 'e/2m~

' (5.9)

I ~ 2

tlo nm]

1.0

0.8

G5(0)

0.6

0.4

0.29&Gs(0) &0.98,
0.32X10 '&Gs(0) &1.0'IX10 '

0.21@10—18(ry, '&2.36y10—&s

2
[md ]

(5.11)

I.2
I

tnmj
0,2 I

IO l5

I.O—

0.8
t:t, 3

Fin. 13. The form factor G3(0) of Sec. 5, in 10 ' nuclear
magnetons, versus )goal. The three curves correspond to those of
Fig. 10.

G, (0)
for the range

5.0& lgai &13.5.
0.6

0.4

0.2
l5

The first two quantities in Eq. (5.11) are measured in
nuclear magnetons, the third in seconds.

The formulas of this section could be easily adapted
to a calculation of the magnetic moment of Z+. Un-
fortunately, the imput electromagnetic form factors
would be very uncertain in this case, so that no numer-
ical calculations have been undertaken.

6. CONCLUSIOÃ
Fio. 12. The ZA transition moment Gs(0), in nuclear magnetons,

versus ~gq~. The three curves correspond to those of Fig. 10.

~ C. W. Akerlof, W. W. Ash, K. Serkelman, and C. A. Lichten-
stein, Phys. Rev. Letters 16, 147 (1966)."E.S.Hughes, T. A. Gri6y, M. R. Yearian, and R. Hofstadter,
Phys. Rev. 139, 8458 (1965).

The results of the calculations undertaken in this
paper under the assumptions discussed in Sec. 1 may
be summarized as follows.

' J. Dreitlein and H. Primairo9; Phys. Rev. 125, 1671 (1962).
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Let f~jV2, fa, g&, gs denote gze„x, gz's ', g
gs„z, respectively, and x= fNjfs, . Further let Gs(t)
and Gs(t) be the form factors characterizing the Z'Ay
vertex, defined by Eqs. (5.1)—(5.3). Then for the range

S.o& lg~l &» s, (6.1)

the model predicts

s—+1 fol g~g JJ,~O,
8 7&

I fa I
&1O.7,

9.0&
l f~ l

& 11 2.
(6.2)

0.29& l Gs(0) l &0.98,
0.32X10 '&

l Gs(0) l & 1.07X10-'.

TAmz I. Theoretical estimates of the magnitudes of
the strong coupling constants gg, fs, and fz.

Author~

Aznauryan and Soloviev
Cook
Cutkosky
Dalitz
Dufour
deSwart and Iddings
Eberie
Gursey et al.
Kayser
Kuo
Lusignoli et al.
Martin and Wali
S.R. Martin
Matsuda and Oneda
Minamikawa
Raman
Rimpault
Umemura and Watanabe
Warnock and Frye
Zovko

8.1
10.5-14.6

7.9- 8.7

7.2- 9.4
14.0

7.1- 7.5
7.8

11.8-14.9

10

7.8-14.5
74

13.5
10 -17
9.2

9.0—13.1
13.5

12 -17
0 -13.6
9.4

22.4

2.0- 9.1

4.2-15.3
3.8

(9.0
8.6-11.8 1.4- 6.8

11.7

12.5

6.8

+13
4.1- 5.7

10.5

7.3

See Ref. 25.

In order to facilitate the comparison of the above
results to those of other authors, Tables I and, II have
been prepared. ""It is seen that the predictions of the

"B.A. Aznaurian and L. D. Soloviev (unpublished); P. A.
Cook (unpublished); R. E. Cutkosky, Ann. Phys. (N. Y.) 23,
415 (1963);R. H. Dalitz, Phys. Letters 5, 53 (1963);J. Dufour,
Nuovo Cimento 34, 645 (1964);J.J. de Swart and C. K. Iddings,
Phys. Rev. 130, 319 (1963); E. Eberle, Nuovo Cimento M, 628
(1964); F. Giirsey, A. Pais, and L. A. Radicati, Phys. Rev.
Letters 13, 299 (1964);B.Kayser, Ref. 5; T. K. Kuo, Phys. Rev.
129, 2264 (1963) and 130, 1537 (1963);M. Lusignoli, M. Restig-
noli, G. A. Snow, and G. Violini, Phys. Letters 21, 229 (1966);
A. W. Martin and K. C. Wali, Nuovo Cimento Bl, 1324 (1964);
B. R. Martin, Phys. Rev. 138, B1136 (1965); S. Matsuda and
S. Oneda, ibed. 158, 1594 (1967); T. Minamikawa (unpub-
lished); K. Raman, ibid 149, 1122 (.1966); 152, E1517 (1966);
M. Rimpault, NuovoICimento 31, 56 (1964); L Umemura and
K. Watanabe, Progr. Theoret. Phys. (Kyoto) 29, 893 (1963);
R. L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965); N.
Zovko, Phys. Letters 23, 143 (1966).

I6 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961);J. Dreitlein and B.W. Lee, Phys. Rev. 124, 1274 (1961);

Further, if p dominance of the kaon isovector electro-
magnetic form factor is assumed, then, in units of
ej2rN~,

(6.3)

TABLE II. Theoretical estimates of the ZA. transition
moment Gs(0) in nuclear magnetons.

Author'

Coleman and Glashowb
Dreitlein and Lee
Mathur and Pandit
Pisarenko
Primako8

Ge(0) I nmg

1.65
1.3 (for gzz, fs=gg)
1.5 -2.0
1.52-1.82
1.85 (for gran, =grenz, )

a See Ref. 26.
b The sign is taken from Ref. 28.

model concerning the magnitudes of fs, f~, and Gs(0)
fall within the range of presently acceptable numbers.
The sign of x is the same as that given by SU(3) with
an F/D ratio smaller than 1, a currently accepted
value. sr The sign of Gs(0), the ZA transition moment,
is predicted to be positive for

graf~)

0, in disagreement
with SU(3).ss It should, however, be remarked that
this sign is not experimentally measurable.

In conclusion, the predictions of the present model
are compatible with existing experiIDental and much
theoretical information. Thus, even though it is not
possible in the absence of decisive tests to assert the
validity of the model, it is permissible to say that the
results obtained allow the possibility that its main
features are approximately correct.

Note added iN proof. Table I should be supplemented
by the following recent estimates of the AXE and ZiVR
coupling constants based on forward dispersion relations
for kaon-nucleon scattering: G. H. Davies, N. M.
Queen, M. Lusignoli, M. Restignoli, and G. Violini
(unpublished): l gs l

=8.7p l f~ l
&11.9 i J. K. Kim

LPhys. Rev. Letters 19, 10/9 (1967)g: lgsl =14.2,
l f~l =2.7; A. D. Martin and F. Poole LPhys. Letters
25, 3343 (1967)i: lgql =7.9; H. P. C. Rood LNuovo
Cimento 50, A493 (1967)]: lgql =9.6. Kim's results
indicate that the breaking of SU(3) baryon-pseudo-
scalar meson coup1.ings is small. If this is indeed the
case, the conclusions of the present paper shouLd be
mod16ed.
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