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We use the term quasiprojection operator because of
the particular order of the indices in (A2). Thus, we do
not require, for instance,
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to have a simple form.

It is readily checked that our propagator (5) indeed
obeys 1—3. Its uniqueness is then established by
constructing
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with
P'?’=0 ’
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from Eq. (5) on the one hand and from Eq. (A1) on
the other and by equating these expressions.

A completely similar argument can be used to derive
the oscillatorlike propagator Eq. (12). The main
differences in this case are the nonvalidity of the
tracelessness condition of point 2, and the further
reducibility of Eq. (Al).
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Both the Adler-Weisberger sum rule and the spin-flip sum rule for pion-nucleon scattering have been
derived from superconvergent dispersion relations for weak amplitudes. Our basic assumption is that the
weak axial-vector-nucleon scattering amplitude 7T',4 approaches the weak vector-nucleon scattering
amplitude T," at high energies. This allows us to write down superconvergent dispersion relations for
certain invariant amplitudes in the decomposition of T',=T,,4—T,7. We then use the hypotheses of
partially conserved axial-vector current and of conserved vector current to obtain pion-nucleon scattering
sum rules while avoiding the ambiguities of the ¢ — 0 limit which is usually used in the current-algebra
approach. We also discuss sum rules for G4 (¢?) away from g2=0.

1. INTRODUCTION

HE chiral current algebra of Gell-Mann and the
hypothesis of partial conservation of axial-vector
current (PCAC) has been intensively used to obtain
sum rules of interest in strong-interaction physics. The
most celebrated of these is the Adler-Weisberger (AW)
sum rule,! connecting the axial neutron g-decay con-
stant G4 to an integral over m-NV total cross sections.
This sum rule is regarded as the direct confirmation of
the validity of chiral current algebra and the PCAC
hypothesis. It is interesting to see whether it is possible
to obtain the AW sum rule without explicitly using the
current commutation relations. The purpose of this
paper is to show that this is indeed possible.

Our derivation of pion-nucleon sum rules is based on
the following basic assumption: At high energy the weak
axial-vector-nucleon scattering amplitude 7,4 ap-
proaches the weak vector-nucleon scattering amplitude
T.7, ie, Twk)= Twi(@)—T,"() >0 as y—> .2
This allows us to write superconvergent dispersion rela-
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tions for certain invariant amplitudes appearing in the
decomposition of 7',. This gives sum rules connecting
the weak axial-vector form factor G4(¢?) with vector
form factors Fi(¢g?),F2(¢?) and an integral over certain
weak vector and axial-vector-nucleon scattering ampli-
tudes. One of these sum rules at ¢2=0 together with the
PCAC hypothesis and conservation of vector current
(CVC) gives the AW sum rule. In addition, we obtain
the pion-nucleon spin-flip sum rule which has been very
recently derived by Gerstein® and Maiani and Pre-
parata.* We also discuss the relation between the axial-
vector form factor Ga(¢?) and vector form factors
F1(¢?) and F2(g?) at finite ¢2.

It must be emphasized that we do not explicitly use
the current commutation relations, i.e., we do not postu-
late a current algebra. However, our basic assumption
would follow if SU(2)QSU(2) were a good asymptotic
symmetry.?2 We feel that this is a weaker assumption
than explicitly postulating the current commutation
relations.

In Sec. IT we give the derivation of the sum rules.
In Sec. ITI we discuss the sum rules for G4(¢?) away
from ¢?=0, and the conclusions are in Sec. IV.

31. S. Gerstein, Phys. Rev. 161, 1631 (1967).
4¢L. Maiani and G. Preparata, Report No. ISS 67/6, Istituto
Superiore di Sanita, Rome (unpublished).
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2. DERIVATION OF SUM RULES

We define the weak axial-vector and vector-nucleon
scattering amplitudes 7',,4% and T',7+% to be

Ty =1 | d* e=%=0(x0)

X {(p2| [4,4¥(x),4,70) ][ p1}, - (2.1)
d4x e, -z@(xo)

X {pa| Vi),V (0)] 1) (2.2)

In Egs. (2.1) and (2.2), 7 and j denote isospin. We also
define

T,,Vii=q
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q2=P1+q1—P2: Pz%(?ﬁ’h);
v=—q1-P/m=—qy P/m, t=—(q1—q2)*.

In order to simplify the calculations, we shall con-
fine ourselves to the forward direction only, so that
G1=q2=¢q, p1=p2=9p, v=—q-p/m, and {=0. Now our
basic assumption implies that

lim T,,%(v,q?)
=lim [T,,4%(,q®)— T,V (g% ]— 0. (2.3)
y—00

Following Gerstein’s? careful analysis, we expand the
amplitude T, in a complete set of independent co-
variants as follows:

Tw=pupLArt-Asiv- g1+ pug(Aet-Aviv- )+ qupn(Ast+Asiv - 9)+ qugs(A st+-Asiv - )
+6u(As+Asty- @) +iouDi+3i(vey: ¢v— v ¢vu) Datipuy.Bitipyy,Betigyy,Bs+igyy.Bs

Let ¢,, denote the imaginary part of T, so that #,, can
be expanded as

tw=pupLartariy-gJ+-- - . (2.5)
In the isospin space, T',,% can be decomposed as
T‘Wﬁ= 5ijT;w (+)+%[Ti! Tj]T“v &), (2.6)

The properties of these amplitudes under crossing and
time reversal are given by Gerstein.? For the amplitudes
of interest to us, we write down the crossing properties:

A190,¢)=—419(—», ¢9,

A, O(,g7) =419 (=, g9,

B/ O(v,g*)=—B:7(=», ¢,

D19 (,9%)=D1 (=, ¢3).
As we shall work throughout with 7',,¢, we shall drop
the superscript (—) in what follows.

If the spins of the nucleons are summed, then we get
from Eq. (2.4)

Tw=pup[A1—vA1+(1/m)(Bi+Bo) 1+ - -,
Z,,,,= p,,p,,[al—vdl—f—(l/m) (bl+bz)]+ Tt
From Eq. (2.3), it follows that

i=1,2 @7

(2.8

vR(»,g?) —0 as v— o,
where

R=[A1—vA+1/m)(Bi+Bs)].
Hence R satisfies a superconvergent dispersion relation.
Separating the Born term and noting the crossing rela-
tions given in Eq. (2.7), we get the sum rule
G.(g Gamtn) [ [r4 o)1) 1o
=F1*(¢*)+(¢°/4m*)F2*(¢?),

where 74—7»V=r is the absorptive part of R.

(2.9

Fi(puongrt proing)) Crti(quonprt+ ¢ongn)Ce.  (2.4)

At ¢2=0, we have from Eq. (2.9),

G4%0)4 (4m?/x) / [r4()—rY(v)Jdv=F:2(0). (2.10)

We now show that »¥(»)=0. Applying the CVC hy-
pothesis above the physical threshold to ,,7, we get

. . annvv= 0,
which at ¢2=0 gives

rV(»)=0 at »5%0.
Similarly, applying the PCAC condition
9,4 ni= - (fﬂ'/@mrgﬂ'i

to Z,,4 above the physical threshold, we get

(2.11)

(2.12)

Mgt
qI‘ZMVAq’ =3f«————— Im(4—»B),

(¢*+ma?)?

where the pion-nucleon scattering amplitude is defined
as

Tii=i / d*x e'=0(xo)(p| L7511 £}
= A%(p,g")+iv-gB(v,¢) .

(2.13)

At ¢*=0, we get
vr4(v)=%f,2 Im(4—vB)
=5f-2ImT.

Hence we get from Egs. (2.10), (2.11), and (2.14) the
sum rule

(2.14)

T

dy= F12(0) .

2

2 I
G (O) 1.2 / 2

14

(2.15)

If the spins of the nucleons are not summed, we note
from the condition (2.3) and Egs. (2.4) and (2.7), that
Ai, Bi, and B separately satisfy superconvergent dis-
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persion relations which at ¢2=0 are given by
1G4*(0)+ (2m/m) / bi(v)dv=1F1(0)

X[Fi(0)+F5(0)], i=1,2 (2.16)

(2m/w)/al(y)du=—-(1/2m)F1(0)F2(0). (2.17)

Here, b;=56:4—5," and ¢;=a;4—a,". Again applying
CVC to t,7, we get b;"(v)=0 and a;"(»)=0 at ¢2=0,
for »£0, so that we get from Egs. (2.16) and (2.17),

1G4*(0)+(2m/7) / bi*(v)dv=1F1(0)
X[F1(0)+F5(0)], (2.18)
(4m?/x) f a4(v)dv=—F(0)F2(0). (2.19)
Noting that 77(v)=0 at »5£0, we rewrite Eq. (2.10):
GO+ me/n) [ r)=F2@.  @210)
Subtracting Eq. (2.19) from Eq. (2.10"), we get
G 4*(0)+ (4m/7) f [—mv@rA(v)+b14(v)+ b2 (v) Jdv
=F1(0)[F1(0)+F>(0)]. (2.20)
Now applying PCAC to #,,4, we get

—(1/mv) ImB(v)=(2/ f+*)
X [—mvard+b12+bot—(2/v)dr4].

Hence we get from Eq. (2.20)
Gﬁ(())—Zf,’(l/w)/(l/v) ImB®S)(v)dy
=F1(0)[F1(0)+F2(0)]— (4m/x)

X/(Z/V)dlA(V)dV. (2.21)
Our normalization implies
F(0)=1

and
F1(0)+F2(0)=pp—pa=4.7,
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so that Eq. (2.15) is immediately recognized as the
Adler-Weisberger sum rule, whereas Eq. (2.21) is the
spin-flip sum rule derived by Gerstein.?

3. SUM RULE FOR G4 (¢?)

In this section we discuss our sum rule (2.9) at finite
momentum transfer ¢2. If we neglect the contribution
from the integral in Eq. (2.9), we get

2

q
G4X(gY)=F:¥(¢)+—F:*(¢*»
49m?

=(1+492 >—1[GE2(Q2)+£;—2GMz(q2)] , (3.1)

m2

where G and Gy are the Sachs form factors. This ap-
proximation of neglecting the contribution of the inte-
gral is certainly not justified at small ¢ but at high ¢*
this approximation may not be bad. Therefore we exam-
ine the consequences of this approximation at high ¢2.
From Eq. (3.1), it is clear that for large ¢% (¢=>4m?),

GaX(@)~Gu*(g? . (3.2)

Empirically,’ the following relation appears to hold:

Gu(g?) = (up—pa)[14(¢*/mv*) I2, (3.3)
with mp?2=0.71 BeV?2 for ¢% up to 10 BeV2. If Eq. (3.3)
holds for ¢2>4m?, we get

2 \™?
GA(qz)ﬁ(up—un)Q-l-—;) .

my

(3.4)

If further we assume the ‘“double-pole” fit also for

Ga(g®)/Ga,
Ga(g?) ¢\
= (1 +—) , (3.5)
GA mAz
then we get the relation®
my 4
64=(22) Grrmi. (36)
7

This is a surprisingly good expression if we take my and
m4 to be the physical masses of the vector and axial-
vector mesons as pointed out by Schechter and Venturi.®
If, on the other hand, we saturate the absorptive part

5 W. Albrecht, H. J. Behrend, H. Dorner, W. Flauger, and H.
Hultschig, Phys. Rev. Letters 18, 1014 (1967); M. Goitein ¢t al.,
ibid. 18, 1016 (1967).

6 J. Schechter and G. Venturi, Phys. Rev. Letters 19, 276 (1967).
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in the integral of Eq. (2.9), by the N* resonance we get
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92 4 q2 -1
F12(?) +—F%(q?) ——q? — ) D)2
@)= (1 ) D)
2 D1*(g*)Dy*(g%)
=G| Lmm )+ DA T 2 ot (k) ow*r i )]
9,42 (m+m*)

+2DiA(g)DA(q?) n+m ) — i ) (m-m*)e- T 2DA(g) DA (") )
X LAm*g4 (m*2—me— g T LD TOn+m )Lt m*) 4 T Am g4 (¥ mit—=g7)7)

DA Tt mt) oty it —mi— gl )

Here we have used only the M1 coupling for vector cur-
rent to N*N,

(N*(p) | V| N(p))=D1¥(g)

q2 -1
X<1+ _> envx)\quﬂzA(P/)“(P) )

(m+m*)*
and for the N*NVA vertex we have used the following”:

(N*(p) | Aa| N(p))=1s(p") [ D14(¢*)8ap+D2*(¢?)
X (m+m*)"yags+Ds*(q?) (m+m*)~2Pags
+ DA (%) (m+m*)"2qugs Ju(p)

with P=p+p', g=p—p'.
At ¢2=0 we get

2 (m+m*)?
F2(0)=G4*0)—~—
9 m*2
m¥*—m 2
X {DIA<0>+ —"[DAO+DAO)] . 38)
m*+m

7R. Ochme, Phys. Rev. 143, 1138 (1966); C. H. Albright and
L. S. Liu, bid. 140 B748 (1965); R. Oehme, Phys. Letters 19,
518 (1965); S. M. Berman and M. Veltman, Nuovo Cimento 38,
993 (1965).

As F1%(0) =1, this is precisely the same sum rule as ob-
tained by Oehme’ from current algebras. This equation
is known to give too high a value of G4(0).”

Due to lack of experimental knowledge of the axial
form factors appearing in Eq. (3.7), we do not know
whether this is a good relation away from ¢?=0. At
M =M%, Eq. (3.8) becomes the familiar SU(6) relation

1=g4°—(8/9)[D14(0) I

4. CONCLUSIONS

We feel that our technique of deriving the AW sum
rule has certain advantages over the usual current alge-
bra approach. Our Eq. (2.9) was obtained without using
the PCAC condition. We get the AW relation from it
by subsequently using PCAC. In this way we have
avoided the ambiguous limit ¢ — 0 which is required in
the usual derivation of the AW relation from the algebra
of currents. Also, (2.9) gives us information about
Ga(¢?) away from ¢?=0.

We have also been able to obtain the 7V spin-flip sum
rule in a much simpler manner without having to postu-
late moment sum rules, etc.®*
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