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Superconvergence relations for the reactions PV -+ PV, PV -+ VV, and VV —+ VV between nonets of
pseudoscalar and vector mesons can be saturated at zero momentum transfer with sets of particles cor-
responding to the representations (66 l) of the restsymmetry group U(6) XU(6) XO(3). Every single one
of these representations saturates the relations, provided the vertices are invariant under the collinear U(6)
XO(2) group. The infinite sequence of representations (6,6;l), l=0,1,. . . is then used in order to saturate
the nonforward superconvergence relations for the reactions PV -+ PV. For mass spectra mz with accumula-
tion points m„&4mo, it is found that the resulting equations have no nontrivial solution for the coupling
constants. This result remains unchanged for an oscillator-like spectrum. The possibility is discussed that
mass splitting within the multiplets (6,60;l) and/or symmetry breaking at the vertices can in principle make
a saturation possible. It is argued that an approximate saturation of the amplitudes and a few of their
derivatives at t =0 with a finite number of resonances may well be reasonable. For higher derivatives the
saturation is expected to depend sensitively upon the absorptive parts at higher energies, which are more
reasonably described by Regge terms than by direct-channel resonances. The formal saturation of super-
convergence relations with mass-degenerate multiplets is discussed brieQy.

1. INTRODUCTIO5'

SUPKRCONVKRGKNCE relations for amplitudes
with collinear kinematics generally have been

found' to allow a consistent saturation with sets of
particles grouped into representations of the rest-
syrnmetry groups U(6)&&U(6) or U(6))&U(6))&O(3).
These groups are closely associated with the quark
model of mesons and baryons and in particular the
latter group has the sequence of representations (6,6; f),
which correspond to the orbital excitations of the quark-
antiquark system. The sets of equations resulting from
such saturation schemes have solutions for the vertices
which correspond to collinear U(6), ' U(6)&&O(2), ' or
to larger symmetries into which these groups can be
embedded.

Of special interest are the superconvergence relations
for the reactions PV —& PV, PV —+ VV and VV —+ VV
between nonets of pseudoscalar and vector mesons.
These relations can be satisfied in the collinear case by
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inserting intermediate states corresponding to any repre-
sentation (6,6; l) of U(6))& U(6)&&O(3) with mass rttt,

provided the vertices are invariant under the collinear
U(6))&O(2) group. This saturation will worlr. no matter
what the value of / or m~. Hence we have here an inlnite
sequence of sets of particles with different masses m~

which separately saturate the forward relations.
It is the purpose of this paper to consider the satura-

tion of the corresponding nonforward superconvergence
relations using this infinite sequence (6,6; t), l=O, 1, 2,

~ ~ of orbital excitations of the quark-antiquark system.
Any such saturation with an in6nite sequence of single
particle states is an extreme idealization. Ke know that
there exists continua with quantum numbers other than
those of the particles we take into account. It is
assumed, a priori, that these continua are disconnected
from the particles we consider, although in the case of
infinite sequences of particles this may well be a rather
drastic assumption.

A further aspect of this problem is that, as always in
saturation schemes, one treats higher (and this in our
case means very much higher) states in the zero-width
approximation.

Another problem is connected with the fact that
complete saturation of superconvergence relations for a
6nite neighborhood in the momentum transfer t is
generally only possible if the spin of the particles is not
limited. Regge trajectories which go to in6nity create
diKculties with the polynomial bound of the amplitudes
in s and t simultaneously. However, for mass spectra or
trajectories of limited increase, we may at least have
sufhcient boundedness in one variable for restricted
values of the other variable in order to dehne a Nmique

analytic interpolation of th'e partial wave amplitudes. 4

4See, for example, R. Oehme, Strong Interactions md Bigk
Erzergy Physics, edited by R. G. Moorhouse (Oliver and Boyd,
Edinburgh, 1964), pp. 129-222, especially p. 139.
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All these problems should be kept in mind when
discussing our results, which are as follows: with an
ininite sequence of one-particle intermediate states
from (6,6; l)-type multiplets, and U(6))&O(2) invariant
vertices, it is not possible to saturate the superconver-
gence relations for the double helicity-Rip PV —+ PV
amplitudes for a 6nite interval in the momentum trans-
fer variable t. This result holds for any reasonable mass
spectrum. The only mass spectra which are not directly
excluded are those with an accumulation point below
the threshold s=4mo' for the reactions PV —+PV
however such spectra are highly unrealistic in view of
existing experiments. The meaning and the implications
of our result will be discussed in Sec. 2. We note that a
virtue of our approach is that we consider hadron
spectra and vertex syrtunetries with roots both in the
quark model and in experiment.

3. MULTIPLETS AND VERTICES

We describe the pseudoscalar and the vector mesons
by the matrix

~o(P) =5&+(sv Pi~o) j(v P+7-V-), (2)

where P and V (p V =0) are the usual U(3) matrices
for the respective nonets. The quantity Des(P) corre-
sponds to the representation (6,6;1=0) of the rest-
syrnmetry group U(6)&&U(6)&&O(3). As intermediate
states we want to introduce the full sequence of rep-
resentations (6,6; t), t=0, 1, . For a given /, we write

(~t)- - -i(P)

zp P=
I
1+ (vsft-i 'i+vsCtt. .i -t),-(3)

'ffIl

2. THE SUPERCO5'VERGENCE RELATIONS

In order to have a definite example, we concentrate
on the superconvergence relations for the amplitudes
PV ~PV which are selected by taking the infinite
momentum limit for the pseudoscalar meson; they
correspond to a helicity Rip Ah=2. Using the crossing
properties of these amplitudes, we can write our
relations in the form

dv a (;,;l (v,t) =0 ,

for values of the momentum transfer variable t in the
neighborhood of k=0. Here we have used the variable
v=s(s —u), and the indices i, j describe the unitary
spin of the vector rnesons; and by Ls,jj we indicate the
part of the amplitude which is odd under i ~ j.Other
quantum numbers have been suppressed.

For reason of comparison, we will later also consider
an integral similar to Eq. (1) for the corresponding
absorptive parts bi;,;l(v, t) of the amplitudes for the
reactions PP —+ PP. These amplitudes are no/ super-
convergent. Hence we expect to have only sum rules
of the form'

where 8,... , and city I, are symmetric, divergence-
less and traceless in the indices 0.~. n~, and m~ is the
"central" mass of the (6,6; l) multiplet. The U(3)
matrix 8,... , describes a nonet of mesons with spin
J=l, P= (—1)'+' and C= (—1)'. It is a singlet as far
as the quark spin is concerned. Correspondingly, the
tensor Cp, ,... „which is divergenceless also in the
index P, describes the triplet states consisting of three
nonets with spins J=l 1, /, and t—+1, P= (—1)' and
C= (—1)'+'; altogether, these amount to 3 (2t+1)
individual states. We can decompose (see Appendix)
the tensor C with respect to the U(3) matrices of the
three nonets taking account of the normalization
condition that in the "propagator" or "mass term"

Tr(tie t)- - -~(—P) (~t)- - -~(P) (4)
poIarisa, lions

every one of the 4(21+1) components appears with the
same weight. However, as long as the masses within a
given multiplet (6,6; l) remain degenerate, we have no
need to write out this decomposition. Since the group
O(3) appears as a factor in the direct product U(6)
&(U(6))&O(3), the propagator of the spin triplet field

Cp g ~
can be written in the simple factorized form

(see Appendix)

vL

d»[', t](v,t)=Z P.(t)vI. '"+'L~.(t)+1j ' (») os'(P)e-; -;" "(P)-= ot ".- -—"""(-P.) (5)

where

where a, (t) are the dominant Regge trajectories, and
where vg is large compared to the external masses.

~ This relation is essentially the condition that the continued
negative signature partial wave amplitude in the crossed t channel
does not have a pole at l= —1. Generally there are singularities
in the t plane at t =a;(t) with Ren;(t) &—1, and these give rise to
those terms on the right-hand side of Eq. (1a) which do not
vanish for s L, —+ ao. See Ref. 4, p. 146 8; also A. Logunov, A. L.
Soloviev and A. N. Tavkhelidze, Phys. Letters 24B, 181 (1967);
L. A. P. Bali,zs and J. M. Cornwall, Phys. Rev. 160, 1313 (1967);
D. Horn and C. Schmid, Caltech (to be published).

es (P) =&-s+(P-Pw'~t')

and where the second factor is the usual propagator for
a particle of spin / and mass m~.

We are interested in the saturation of the supercon-
vergence relations (1) under the assumption that the
vertices JIOMOM~ are invariant under the collinear

U(6) &(O(2) group which is the maximal natural
dynamical symmetry of vertex functions in view of our
choice of the rest symmetry as U(6)X (6)XO(3). The
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00 2mp)s( 4mp l
t "

t"+' Z gool' 1+
l n mt& 4 mts Jigool(2m, )-' Tr((M,).. .,(P,)

X(Mp(pt)Mp(ps)+ (—1)'Mp(ps)Mp(pt) j}
X (pt —ps)- (pr —ps)-t (7) 1 /! (t+n)! 1

X —=0. (11)
2"ml'" (2/ —1)!!(t—n)! n!where Pl+Ps+Ps ——0, Pts=Pss= —m, ', and Pss= —mts.

coupling constants are defined by writing the most We obtain the unlimited set of equations
general invariant vertex in the form

4. SATURATION WITH ORBITAL
EXCITATION S

Let us now saturate the superconvergence relations
(1) with the states of the sequence of representations
(6,6; 0), (6,6; 1), (6,6; 2), , assuming the vertices
(7). This may be written in the Regge notation (6,6;
t=n(t)). Such a spectrum would be predicted by the
noncompact group U(6) X U(6)XO(3,1). It is useful
to introduce the notations S(even) and S(odd) in the
form

( 2mp) '
S(even, odd)—= P gppt'~ 1+ [ 2 "

i=even, odd E mt ~

4mp' ' l! 2t
x( 1—

/
~,

/
1+ /. (g)

mts & (2t—1)!! ( mt' —4m ps)

Upon saturation the superconvergence relation (1) then
takes the form

LmosS(even)+ ( mes+—rot)S(odd) j
X~(f--f-; f.,-f-,.)+r--"S( dd)+(-:+ ,t)-

XS(even)jg(d„.„d„;p—d„.„d„;p)=0, (9)

If there exists an lp such that for /+ lp, m~'&4mp', then
all terms in Eq. (11)with ts & tp will be positive definite.

Therefore, Eq. (11)has no nontrivial (gpptg0) solution
with real coupling constants for mass spectra with
accumulation points nz„satisfying yg„m&4mp .

There may or may not be a solution for mass spectra
with accumulation points m„'&4mp', but spectra of
this type are not very reasonable within the dispersion
theoretical framework. underlying our superconvergence
relations, nor do they seem to correspond to reality.

S. SATURATION VGTH AN OSCILLATOR-
TYPE SPECTRUM

So far, we have considered as intermediate states only
rotational excitations of the basic U(6) X U(6) structure
of the quark-antiquark system. We may include
"radial" excitations as well, but as long as the collinear
U(6)XO(2) invariance of the vertices is not broken,
our conclusions concerning the mass spectra will not
be changed. A very simple example with "radial"
excitations is the oscillator-like model which is obtained
by retaining all traces in the tensors (3). This would be
the sequence l=O' l=O, 2 l=1 3. l=O, 2 4 ~ ~ ~ as
required by the noncompact group U(6) X U(6)
XU(3,1). The propagator 8, ... ,

a'"a' in Kq. (5) is
then replaced by (see Appendix)

where f„,d„, etc., are the familiar U(3) constants;
with i, j and u, b being the U(3) indices of the vector
and pseudoscalar mesons, respectively.

Observing that

1 lP, ,at ~ at(p) II e.;.'(p),
(t!)SP(a)P(a') i 1,

and the sums S in Eq. (9) become

(12)

8 8

(fainfnj p fat'nfnip) Q (daindnjp dar'ndni p) =0 q

it is a simple matter to verify that the Kqs. (9) are all
satisfied provided we have

( 2m,)S('t(even, odd) = P goot'~ 1+
~

2 "
i=even, odd ( ml J

4mos ' 2t
X]1— I 1+

I (13)
mts f mts —4mos&

t(S(even)+S(odd)) =0. (10)
In place of the Eq. (11) we now have the set

X
2"mls" (t—I)!

First of all, we see from Eqs. (8)—(10) that the forward
(t=0) superconvergence relations are satisfied sep- ~ !( o !( o t

™
arately for every individual multiplet (6,6; l); no
restrictions are obtained in this case for the coupling
constants gpp~ and the masses m~. ' As far as t&0 is 2"
concerned, we consider Eq. (10) in the neighborhood.
of t= 0 by taking all derivatives evaluated at this point.

=0, (14)

sing somewhat gigerent met/ops, a proof for thisres~t I!!as which has exactly the same charactenstic features as
alsobeengivenbyR. Amann, Universityof Chicago (unpublished). Eq. (11) of Sec. 4. Thus, even though the set of. inter-
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mediate states is much richer in this case, superconver-
gence is still impossible for all resonable meson mass
spectra.

2m )'mP mP+2t 4m,)'Z goo''~ 1+,
~

1— 1——
mi) o' 16g

l! 2i
X2 " P 1+ I. (15)

(2l—1)!! mP —4m os~

Note that, for large values of mP, the expression (15)
has two more powers of mP than Eqs. (8)—(10).

In the case of degenerate masses vs~=—m, the sum

(15) reduces to

t3 tq 2t )
~

———~g g P(—3)'2 " P( 1—
~ p (16)

k4 2m') ~ (2/ —1)!! 3m sI

and the corresponding expression (10) for the PV ~ PV
amplitudes with DIg =0 becomes

( Q g 2( 3)l2—2l
2t )

(17)
(2l—1)!! 3mPJ

which is the same as Eq. (13) except for an over-all

factor. We see that, for degenerate masses, the condition

(10) no longer has any direct relation to the super-
convergent character of the amplitude. Partial and

approximate saturation of superconvergence relations
with mass degenerate multiplets presumably is only
sensible for Gnite sets of particles and in connection
with continuum contributions.

In certain situations, formal superconvergence of
helicity-Rip amplitudes can be achieved7 by using a
complete set of intermediate states corresponding to an
inlnite dimensional, unitary representation of O(3,1)
/not U(6) X U(6) XO(3,1)$. The superconvergence
condition, which in this mass-degenerate case corre-

sponds to the identical vanishing of the helicity-Qip
amplitudes themselves, is then reduced to the complete-
ness relation of the corresponding unitary representa-

'S. I'ubini, Report at the IVth Coral Cables Conference on
Symmetry Principles at High Energies, January, 1967 (un-
published). See also V. de Alfaro, Torino Report (unpublished).

u. DEGENERATE MASSES

It is of interest to compa, re our superconvergence
condition (10) for the d,h= 2 PV —+ PV amplitudes with
the corresponding but formal expression we would
obtain for the reactions PP~ PP. These amplitudes
are not superconvergent, but they may satisfy sum
rules of the type (1a).

Formal saturation of the integral over the absorptive
part b~;„~ with the sets of states corresponding to the
representations (6,6; t) gives an expression very similar
to Eqs. (8)—(10), namely

ds a(s, t) =0 (18)

The sum

a(s, t) = P a&"&(t)b(s—m„')

is reduced to a single term

a(s, t) =Lg a&"&(t)gb(s-ms),

tion. Since the masses are all degenerate, the asymptotic
properties of the amplitudes are not relevent and the
saturation has little to do with the actual problem of
superconvergence. Nevertheless, it may be instructive
to discuss in some detail the difference between our
saturation scheme in the limit of degenerate masses
and other schemes which give rise to completeness
relations. From Eq. (11),we see that our "superconver-
gence condition" (10) has only the trivial solution (all
couplings zero) for mq=—m and i&0; it is then an
orthogonal expansion. On the other hand, if one
considers the mesons as the particles associated with
the usual ladder representation of O(3,1), it has been
shown by Fubini' that the helicity-Rip amplitudes for
the scattering of these mesons by a superscaler can be
made to vanish by a proper choice of the vertices. Hence,
in this model, we have a solution of the superconver-

gence condition which is nontrivial in the sense that the
couplings do not vanish identically. The mesons used
in this scheme~ can essentially be viewed as the ground
state and the orbital excitations of a system consisting
of two spin-zero particles. Then the spin of the vector
meson, for example, is completely of orbital origin,
a,nd all orbital excitations are controlled by the group
O(3,1). On the other hand, in our case, part of the
mesonic angular momentum is due to the spin of the
constituent quarks, and the remainder comes from
orbital excitations. We also "explode" the orbital
angular momentum, but we combine it with the total
"quark-spin" of the quark. -antiquark system, which is
not exploded. In particular, the vector mesons in our
scheme are spin-triplet s-wave states. The analogous
states in Fubini's model would be 0+ states, and there

is, of course, no superconvergence condition for 0+—0+

scattering. In our scheme too, superconvergence rela-
tions for say 0 2+ scattering (cVoM't scattering) could
be saturated without difficulties related to positive
de6niteness. It is only the vector mesons which by their
nature as qq 5 states cause a problem, but a non-

negligible problem at that.
Finally, we note that, in the case of saturation

schemes with degenerate masses and noncompact

groups, some care must be taken to specify what one

means by the "superconvergence condition. " We
consider the equal mass limit in the actual sutlratioe of
a superconvertence condition like
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and the condition (18) implies that the absorptive
part itself vanishes.

In some models using noncompact groups, one obtains
expressions for helicity-Qip amplitudes which are
formally superconvergent. ' However, in these cases
superconvergence is achieved at the cost of unphysical
singularities which are not allowed in conventional
dispersion theory.

7. CONCLUSIONS AND DISCUSSIONS

The undesired positive de6niteness of the terms in
the superconvergence condition (10) for mP&4mo' is
clearly a direct consequence of the same feature of
collinear U(6) XO(2)-invariant vertices which also gives
rise to the satisfactory term by term cancellation for
t=0. By introducing mass splittings within the multi-
plets (6,6; /), we can obtain factors in the suin (11)
which change sign for at least some terms for every
value of n. In this way, one could possibly construct
a nontrivial solution for a given set of superconvergence
conditions. ' But the main problem is to find a general
scheme for the symmetry breaking which allows a
nontrivial solution for the complete set of all relevant
superconvergence relations. Although one may think
that it is possible in this way to obtain strong restric-
tions on the mass spectrum and the syzzimetry breaking,
it is perhaps somewhat implausible that the (presum-
ably rather small) mass splittings within the U(6)
X U(6) multiplets or the U(6) XO(2)-symmetry break-
ing at the vertices should salvage the whole edidce of
superconvergence, but we cannot exclude this possibility.

There are other and perhaps more reasonable possibil-
ities, especially in view of the dispersion-theoretical
difficulties connected with rising trajectories.

Let us mention here only one other possible view
concerning the saturation of superconvergence relations:
Even though there are some indications from present
experiments for linearly rising Regge trajectories, such
a pattern may well not continue indefinitely. But if
trajectories turn downward at finite energies, we have
only resonances with limited spin values, and we
know that we cannot saturate the full set of nonforward
superconvergence relations with these states alone.
Rather, we must assume that at higher energies the
continuum, which includes quantum numbers other
than those of the resonances, takes over. Of course, this
continum could also be considered as a superposition
of very wide resonances, but it appears that, at higher
energies, it is more sensible to characterize the ampli-
tudes by the singularities in the crossed channel which
appear in the form of Regge poles, moving branch
points, and possibly other singularities in the complex
angular momentum plane of this channel.

G. Cocho, C. I'ronsdal, I. Y. Grodsky, and R. White, Phys.
Rev. 162, 1662 (1967).

See, in this connection, S. Klein, Phys. Rev. Letters:18,
10'N (1967).

Once we are willing to include this continuum at
least at high energies, the question arises how these
continuum contributions collaborate with the nonet
resonances at lower energies in order to saturate the
superconvergence relations. We expect that in super-
convergent amplitudes the continuum contribution at
high energies is rather small in comparison with the
absolute value of the resonance contribution at lower
energies. Hence we may expect also that an approximate
cancellation of the lower energy resonances in super-
convergence integrals like Kq. (1), is a reasonable
condition for the general validity of the equation, at
least for t=0 and a few derivatives at )=0.Of course,
superconvergence conditions with higher powers of I,

eventually require the help of the continuum at higher
energies. "We must remember that these higher-order
terms also determine in principle the amplitude as an
analytic function of t, and hence they also characterize
the singularities in that channel.

APPENDIX

Here we shall establish the factorized forms (5) and
(12) of the spin triplet propagators.

We first decompose the spin triplet part Cp, ,... , of
the (6,6; /) supermultiplet into its spin (/+1), /, and
(/ 1) component—s Xp, ,... „Y,... „and Z, ... „(all
totally symmetric and traceless). In detail, we have

I P(ni n() =permutation of indices ni n(1

p, i" ~&(p)

=Xp .. .(p)+ P pp, „„p„
D(//1)g &(~1 ~ No

1(2/ —1) '" ( ppp, qx Y- -' (P)+-I I Z I 4-+—I

/E2/+1 &(~i "~() mP J

xzp-*- - (P) (A1)

We observe that the propagator 8p, $
g'»" /'~ of C

has to be

(1) divergenceless in a// its indices,
(2) synunetric and traceless in any pair of indices

u&. . z& and in any pair of indices pj p&,

(3) a "quasiprojection operator, " namely

tI, ~ ». ALA &~pl ' pl —0 p] o ~ sp$a]o ~ ~ a ~
vp p] ~ ~ ~ /s/ OP, ag ~ ay (A2)

"Our preference for the neighborhood of t=0 is due, to some
extent, to the successful saturation of the superconvergence rela-
tions at this point with the help of collinear groups. Certainly,
this success is a consquence of the additional collinear symmetry
of the amplitudes at t=0. It may well be that the approximate
saturation with finite sets of resonances works somewhat better
at Peed negative values of t, because there the suppression of the
high-energy continuum is improved.
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We use the term quasiprojection operator because of with
the particular order of the indices in (A2). Thus, we do
not require, for instance, and

8, &rail' ' ' JhlA frr Pl Pl
P gr}o ~ og

~
v ps p1 ~ ~ ops 17sfg s+y o ~ e p ~

to have a simple form.
It is readily checked that our propagator (5) indeed

obeys 1—3. Its uniqueness is then established by
constructing

$P $„„g ~ 1 ~ ~ .Jht

from Eq. (5) on the one hand and from Eq. (A1) on
the other and by equating these expressions.

A completely similar argument can be used to derive
the oscillatorlike propagator Eq. (12). The main
differences in this case are the nonvalidity of the
tracelessness condition of point 2, and the further
reducibility of Eq. (A1).
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Superconvergent Dispersion Relations and Pion-Nucleon Sum Rules*
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Both the Adler-Weisberger sum rule and the spin-fHp sum rule for pion-nucleon scattering have been
derived from superconvergent dispersion relations for weak amplitudes. Our basic assumption is that the
weak axial-vector —nucleon scattering amplitude Tft," approaches the weak vector-nucleon scattering
amplitude T„„athigh energies. This allows us to write down superconvergent dispersion relations for
certain invariant amplitudes in the decomposition of T„„=T»"—T„,+. We then use the hypotheses of
partially conserved axial-vector current and of conserved vector current to obtain pion-nucleon scattering
sum rules while avoiding the ambiguities of the q ~ 0 limit which is usually used in the current-algebra
approach. We also discuss sum rules for Gz (q') away from q' =0.

1. INTRODUCTION

'HE chiral current algebra of Gell-Mann and the
hypothesis of partial conservation of axial-vector

current (PCAC) has been intensively used to obtain

sum rules of interest in strong-interaction physics. The
most celebrated of these is the Adler-Weisberger (AW)
sum rule, ' connecting the axial neutron P-decay con-

stant G~ to an integral over x-X total cross sections.
This sum rule is regarded as the direct con6rmation of
the validity of chiral current algebra and the PCAC
hypothesis. It is interesting to see whether it is possible
to obtain the A% sum rule without explicitly using the
current commutation relations. The purpose of this

paper is to show that this is indeed possible.
Our derivation of pion-nucleon sum rules is based on

the following basic assumption: At high energy the weak
axial-vector —nucleon scattering amplitude T„„~ ap-
proaches the weak vector-nucleon scattering amplitude
T v i.e., T„.( )= To„,"(o) T„„"(v)~ 0 as o ~ ~—.s
This allows us to write superconvergent dispersion rela-
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tions for certain invariant amplitudes appearing in the
decomposition of T„„.This gives sum rules connecting
the weak axial-vector form factor G~(qs) with vector
form factors Ft(q'), Fs(q') and an integral over certain
weak vector and axial-vector —nucleon scattering ampli-
tudes. One of these sum rules at q'=0 together with the
PCAC hypothesis and conservation of vector current
(CVC) gives the AW sum rule. In addition, we obtain
the pion-nucleon spin-flip sum rule which has been very
recently derived by Gerstein' and Maiani and Pre-
parata. ' We also discuss the relation between the axial-
vector form factor G~(qs) and vector form factors
Ft(qs) and Fs(qs) at fmite q'.

It must be emphasized that we do not explicitly use
the current commutation relations, i.e., we do not postu-
late a current algebra. However, our basic assumption
would follow if SU(2)N)SU(2) were a good asymptotic
symmetry. ' We feel that this is a weaker assumption
than explicitly postulating the current commutation
relations.

In Sec. II we give the derivation of the sum rules.
In Sec. III we discuss the sum rules for G&(q') away
from q~= 0, and the conclusions are in Sec. IV.
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