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UnitaritJJ Corrections to Current-Algebra Calculations of the s-Wave
Pion-Pion Scattering Lengths*
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A method of imposing unitarity on the amplitude obtained from current algebra is examined as a possible
extrapolation procedure for the calculation of the s-wave pion-pion scattering lengths. This method consists
of two steps: The current-algebra result is incorporated to Gx the amplitude at the symmetry point in the
unphysical region, and the dispersion relation based on rigorous grounds is used to extrapolate up to the
physical threshold. This procedure allows us to derive a set of exact sum rules for the s-wave scattering
lengths which enables us to estimate the unitarity corrections to the current-algebra calculations.

I. INTRODUCTION

ECENTLY a number of authors' ' have exploited
the current-algebra techniques to obtain the

s-wave m.m- scattering lengths. In all of these calculations,
the extrapolation of the amplitude from the con-
sistency region off the mass shell to the physical
threshold is an essential and additional ingredient; one
must assume that the amplitude does not vary signih-

cantly even if the external mass of one or two pions
goes to zero as in vrE scattering. However, the extrapo-
lation in the mw case seems more ambiguous than in the
xX case, in view of the fact that several results are not
consistent with each other. But they all agree in giving
scattering lengths that are much smaller than those of
the previous 5-matrix calculations' " and the semi-

phenomenological analysis. "
In practice, the extrapolation is done by assuming in

one way or another a parametrization of the amplitude
which maintains crossing symmetry and by determining
the arbitrary parameters from information given by
current algebra. Weinberg' and subsequently Khuri4

extrapolated the amplitude through a power-series
expansion in the variables" s, t, I and the external pion

* Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-160).

t On leave of absence from the Department of Physics, Tohoku
University, Sendai, Japan.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).' Y. Tomozawa, Nuovo Cimento 46, 707 (1966).'

¹ H. Fuchs, Phys. Rev. 149, 1145 (1966); 155, 1785 (1967).
t N. N. Khuri, Phys. Rev. 153, 1477 (1967).' F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).
6A. P. Balachandran, M. Gundzik, and F. ¹icodemi, Nuovo

Cimento 44, 1257 (1966).
7D. F. Greenberg, The University of Chicago Report No.

EFINS 66-69 (unpublished).
s F. T. Meiere, Phys. Rev. 159, 1462 (1967).
~ J. Sucher and C-H. Woo, Phys. Rev. Letters 1S, 723 (1967).
'o G. F. Chew and S. Mandelstam, Phys. Rev. 119, 567 (1960);

Nuovo Cimento 19, 752 (1961).
"Kyungsik Kang, Phys. Rev. 134, B1324 (1964); 139, B126

(1965) and other works cited there."For example, See J.Hamilton, in Strong Interactions and High-
Energy Physics, edited by R. G. Moorhouse (Oliver and Boyd,
Ltd. , Edinburgh, 1964); C. Kacser, P. Singer, and T. N. Truong,
Phys. Rev. 137, B1605 (1965);R. W. Birge et at., ihid 139, B1600
(1965).

~3 We take the pion mass to be unity; s, t, and I are the usual
Mandelstam variables related to the barycentric momentum
squared, v, and the scattering angle 8 by s=4(~+1), t= —2~
X (1—cos8), and u= —2s (1+coso).

mass tt,'(i=1,2,3,4), in which the 6rst few terms are
retained. Their amplitudes thus seem necessarily
appropriate only for the small scattering lengths, as
the authors admit, and clearly are not correct beyond
the elastic-unitarity branch point. The investigation by
Khuri, 4 who kept the second-order terms in the expan-
sion and reproduced essentially Weinb erg's values
(within 10/~), may be regarded as remarkable evidence
against any significant eBect due to the unitarity cut;
but Sucher and Woo' more recently have entertained
the possibility of deviations from Weinberg's results
and have argued the possible existence of another, larger
solution for the scattering lengths by treating a specific
and simple example of unitarizing the amplitude at the
threshold. Strictly speaking, therefore, current algebra
may not exactly prove the scattering lengths to be small
enough. On the other hand, we do know of some
successful current-algebra predictions on, for example,
the E3 and E~4 form factors, "which are predicted on
the smallness of the 7f-vr scattering lengths.

Thus, it is interesting to investigate another possi-
bility of extrapolation" which at the same time ac-
commodates elastic unitarity in the amplitude. The
purpose of this article is to explore this possibility. We
assume the Weinberg-Khuri amplitude, not in order to
determine the scattering lengths directly, but to fix the
amplitude at the symmetry point (s=t=N=-s') on the
mass shell, ' and we use the dispersion relations based
on the rigorous results of Froissart" and of Jin and
Martin" to estimate the corrections due to the on-mass-
shell extrapolation from the symmetry point to the
physical threshold. This procedure may be reasonable
in that the Weinberg-Khuri amplitude is real and the
power series can be safely used in some region which
includes the symmetry point and the consistency region
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CERN Report (to be published).' The current algebra was used to determine the effective 47i-

interactions by S. Weinberg, Phys. Rev. Letters 18, 188 (1967)."M. Froissart, Phys. Rev. 123, 1053 (1961).
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0&s,],I& i of current algebra as long as the off -mass-
she11 amplitude has no singularity of s, t, I, and p,

there. "The symmetry point is the farthest point from
all the unitarity branch points, and the power-series
expansion of the amplitude is guaranteed to converge in
some neighborhood of the symmetry point which is not
too far from s= t =I= 1. In other words, what we
assume is that the extrapolation along the path defined
by s=t=u= ssp; trp, 0&tr&'&1& and trp=1 (i=:2,3,4)
is smooth. Although this may not be as reliable an
extrapolation as in the on-mass-she11 case, the arguments
of Khuri' and Meiere' seem to suggest that the eAect is
not very serious.

In Sec. II, we shall derive sum rules for the s-wave
scattering lengths which have a rather firm foundation
and contain the familiar parameters ) and ) ~ introduced
by Chew and Mandelstam. " Section III contains the
numerical results of the scattering lengths corresponding
to the various parametrizations for the s-wave absorp-
tive parts. Some concluding remarks are also given in
Sec. III.

II. SUM RULES FOR THE SCATTERIE 6
LENGTHS

Ke use the following invariant amplitudes:

Ft(s, t,u)=A '(s t u)+2Ar='(s t u)

Fs(s, t,u)=Ar '(s, t,u)+A'-'(s, t,u),
F,(s,t, u) =4Fs(s, t,u)/(s —u)

=4{2 A r '(s, t,u)+3A '(s t u)
5A' '(s, t—,u))/(s u), (1—

where A r(s, t,u) is the invariant amplitude with isotopic
spin I. Ft(s, t,u) is completely symmetric in the three
variables, while Fs(s, t,u) and F4(s, t,u) are symmetric in
the variables s and u. One can easily see that

8 cosa

and the Weinberg amplitude gives

V=—$ oCO88=0

where
L7 I 7

1 (g l '
r.=

I

—"
I
=—0.116.

2~4 j
It can be shown'0 that the s—I-synunetric amplitudes

F; (i= 1,2) are concave for 6xed t in the triangle bounded
by s=4, t =4, and I=4. Furthermore, the completely
crossing-symmetric amplitude Ft(s, t,u) has an absolute
minimum value at the symmetry point. We note that
the concavity is entirely absent in steinberg s ampli-
tude. This clearly indicates a deviation from the exact
amplitude.

We can express F,(4,0,0)—F,(8/3, 0,4/3) (i= 1,2,4) by
the forward dispersion integrals, and F,(8/3, 0,4/3)—F;(4/3, 4/3, 4/3) by the 6xed-momentum-transfer dis-
persion integrals at t= 4/3 after using the t +-+ u crossing
symmetric properties (2) of F,(i= 1,2,3). Because of the
sc-+u crossing symmetry of F; (i=1,2,4), these dis-
persion integrals have a twice-subtracted energy de-
nominator, and convergence is guaranteed rigorously
according to Froissart" and Jin and Martin. "Thus we
obtain exact sum rules for the s-wave scattering lengths,

where al is the s-wave scattering length with isospin I;
while at the symmetry point these amplitudes are
related to the familiar Chew-Mandelstam parameters"

and X» by Py= —N. , It 2 ———2X, and F4=&y. These
parameters are defined by

'Ar=-P(s=t= u=-") = 'Ar=-s(s=t=u=-s'),

Xt = -o'F4(s = t=u = -', )

8 A '='(v, cose)-

F, 3(o IAI o o)

F,= 2&.+or
I
A

I
or+oro),

F =«& + -IAI + -)—
&

+ +IAI ' ')&.

as+ 2a, = —9K+It+Jt,
as ———2X—-'s&r+Is+-s Jt——,

'Js——,
'J4,

2ap —Sap= 6Xy+I4+3Jt (2'7/2) Js+J4 (6)

(2v+ 1) ImF;(v, cosg= 1)
4P

o v(v+ s) (v+ s) (v+1)

2

9m
p~~ p~

~2 ~ 3~~—~~2—6~3

Fs ~ Fr—-,'Fs+sFs. 2J ~t
9x

ImF;(v, case = 1+2/3v)
dv

(v+ s) (v+ s) (v+ 1)

(2)

%e observe that at the threshold,

nder the crossing I~ &, s ~ s, the amplitude where the integrals I; and J; are given by
F;(i=1,2,3) transforms as

(7a)

(7b)

Fl . ap+2asy

Fg= C2 7

F4—280 582 7

"Indeed, the existence of such a domain, needed to justify the
power series expansion around &=0 when p,P=pP =p, is shown by
Y. S. Jin, Nuovo Cimento 50, 256 (1967).

Since the existence of the integrals (7) can be shown
under quite general assumptions, "our sum rules (6) not
only are exact, but also have a rather 6rm foundation.

The third sum rule in (6), for 2ap 5as should be
equal to this combination as obtained from the first and

s' Y. S. Jin and A. Martin, Phys. Rev. 135, 81369 (&964),
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second sum rules. As long as only s and P waves are kept
in the absorptive parts in the integrals (7), the two
integrals are identical. But when d and higher partial
waves are included, they are not. Thus, this inclusion
would result in new superconvergence-type sum rules.
To see this, let us rewrite (6) as

ap ———5)I,+p),g+I(ap)+ (14/9)J(ap)
+(10/9)J(a2) —2P+8p, (8a)

a,=—2h —s),+(2/9) J(ap)+I(as)
+ (13/9)J(as)+P+ bp, (Sb)

2ap —Sap ——6ht+2/I(ao)+ J(ao))
SfI(a—s)+J(as)j 9P+ &—, (Sc)

where
4 " &mA ~=o'(v)

I(ar) = dv-
97r o v(v+-,')'(v+1)

1
J(ar) =-

37r

ImA, =p'(v)
dv

(v+ s)'(v+1)

1 w ImA, ,r-t(v)
P=— dp

v(v+-', )(v+1)
(9c)

4 ~ 2Dg ro 9Ag I z 56
dv =0, (10)

9x ( + l)( +l)( +1)
where

BAr=o s= Q (2l+1)
l=2,even

2)
X P,

~

1+—
~

—1 Ag'="(v), (11a)
3v)

(2l+1)
l 3,odd

2) 2
X, Pi 1+—

i
—1——Agr='(v) . (11b)

3v& 3v

and Sp 82, and 8 represent the contribution from the
higher partial waves other than /=0 and i. Since
5—(25p —55s) should be zero, we obtain a sum rule

subtraction is made at s= I=2 and t= 0, ours is at the
symmetry point. They noted that the integral in this
once-subtracted Adler-Weisberger-type sum rule" is
much less sensitive to the high-energy behavior and to
the parametrizations of the s waves than is the integral
in the unsubtracted one. VVe shall also observe this in
the next section.

III. NUMERICAL RESULTS AND CONCLUSIONS

Owing to the large energy denominators in the
dispersion integrals of (7) and (9), the higher partial
waves are much suppressed, and the contribution from
the higher resonances becomes negligible. For instance,
if we estimate Bp, bo, and 6 from the established fp
meson (mfo ——1254 MeV, Fya= 117 MeV)" by the
narrow-width approximation, we And that Bp=6X10
5s ——9X10 ', and 5=9X10, so that 5—(28p 58s)—
=10 '. On the other hand, the contribution of the p
meson (m, = 778 MeV, I', =160 MeV)" to the integral
(9c) in the narrow-width approximation is P= 4X10
Thus we can safely neglect the contributions from /&2
in (8). We mention again that in this case (8a) and (8b)
are identical to (Sc).

For given X and X&, one could calculate az by solving
(Sa) and (Sb) simultaneously. This approach would then
give values quite analogous to those from the two-
parameter calculations of low-energy xm scattering by
the S-matrix method. ""To see this from (8), we have
to somehow estimate (9a) and (9b). We consider three
diGerent parametrizations for the s-wave absorptive
parts: the Chew-Mandelstam approximation, the
scattering-length approximation, and the nonrelativistic
effective-range formula.

A Chew-Mandelstem Ayyroximation

In this case, the s-wave absorptive part is parame-
trized by

ImA, pr(v) („/„+1)res

X{L(1/ar)+h(v) j'+(v!v+1)) ' (12)
where

h(v) =2/or(v/v+1) lnLvt +("+1) ~ j
We feel that the sum rule (10) would be useful in
estimating the d-wave contributions in the low-energy
region. But since we are primarily concerned with the
s-wave scattering lengths, we will not discuss the
consequences of the sum rule (10) here.

However, we point out that a sum rule very similar
to (Sc) for 2ap —Sa& has been considered by Meiere and
Sugawara. ' Indeed, if we insert the Goldberger-Treiman
relation" for F from (5), the sum rule (Sc) gives
2(Gs/G~)' in terms of 2ap —Sap and an integral over the
total m+m+ cross sections, as in Ref. 5, except for the
diBerent subtraction point in the integral. While their

Then for ar) 0, the integrals of (9a) and (9b) can be
written in analytic form

I(ar) =ar+
1/ar+h( ',) 1/ar+h( 1)———

9 h( —-', )—(4/3or)
(13a)

2 (1/ar+h( —&)$'
' S. L. Adier, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 3736 (1965); W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965); Phys. Rev. 143, 1302 (1966)."A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).
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9 h( —-', )—(4/3pr)

4 f1/az+h( a—)j'
(13b)

(15a)

(15b)

B.Scattering-Length Approximation

By this, we mean the parametrization

(14)

and (9a) and (9b) give

8 6ar' ( az'
I(ar) = 1— — +9I I

az tan 'ur
2azs —1 (2azs —1/—

rzrs |15 18~re )+ I

— lh( —l)
2azs —1 E 2 2gz' 1/—

6 ar'

m 2az' —1

o,is (21 9ars

2urs —1(4 2uzs —1/

3 az+-
x 2az' —1

6 5ar' ( are
J(~r) = ——1— +6I I az t an'u r

2Qr 1(28r ——1)

for the case azrz&0. In any case, we consider the
e&ective-range parameter rz for

I rzl &1.
Fortunately, the results are not sensitively dependent

on a particular parametrization. For instance, the
combination I(Gp)+ (14/9)J(izp):—g(ap) which appears
on the right-hand side of (Sa) behaves almost the same
way for both small and large values of ao. For small ao,
we see that g(ap) =0.37ap' for the parametrizations (A)
and (8), and g(ap)=0. 42aps for (C); while as as~ ~,
g(a) = ap —2.4 for (A), g(ap) =gp —1.6 for (8), and
g(+p) =op—1.8 or ap —1.4, depending on whether rp ——0
or rp= —1 for (C).

To compare the results from (8) with the two-
parameter solutions' ~ ' by the S-matrix method, we
have plotted in Fig. 1 the function f(ag)=—ap —g(ap)
versus gp. We also include there f(ap)=op —0.42zzps,

which corresponds to the parametrization (C) but with
a threshold approximation made in addition, so that
ImAi p (v) = arsgv. On the other hand, f(ap) is related
to X and Xt by —5X+ (4/3)Xt+(10/9) J(as) —2P from
(Sa), so that it can be fixed by fixing X, Xt, and as. For
example, for X= —0.1, At=0.15, and as ——0.1 Dor which

J(as) can be safely estimated. by the scattering-length
approximationj we get f(ap)=0 7, which. gives (from
Fig. 1) ap ——0.96-1.28, to be compared with up

——1.1 ob-
tained by Ball andWong. '4 A similar procedure applied
to (Sb) for this range of ap reveals as=0.11.The agree-
ment convinces us that there is some usefulness in our
sum rules (8).

Next, we notice from (5) that Weinberg's calculation
gives X= —0.01 and X~=0.116.His values for the scat-
tering lengths, a0=0.2 and a2= —0.06, can be exactly
reproduced if all the dispersion-integral terms are
neglected in (8), so that

C. NonreIativistic Effective-Range Formula

Here, the s-wave absorptive part is parametrized by

ap ———5X+xsXt,

a2= —2X—~q) g. (18)

+,'rzv
I +v, (16—)-

her
Immi pr(v) = (Qv)

and we get for instance for az&0 and rz(0 that

1
—1 —1

I(+r) = irr+31 —+s'
I rz

1
+v's 4I —+ s I

rr
I
+1

&~r kuz

—2

—l(&l)+I"lj —+ll"I+v'l, «/ )
ar
—1

q
—i

~(~z) = —3 —+~a Irr I+v'xs +3 —+0 lrr I+1 I

az raz

Clearly, his solution for the s-wave scattering lengths
contains some contributions from the p wave, as is
evidenced by the presence of Xt in (18). With these
values of X and ) i, we observe from (8) that the unitarity
correction increases ap merely by about 5%, and de-
creases the magnitude of as by about 10%, for all three
parametrizations considered of the s-wave absorptive
parts. It should be remarked that our sum rules (8) do
not allow a second solution with large uo for all the
parametrizations. However, if we further make a
threshold approximation to the nonrelativistic effective-
range formula (iii) to estimate the dispersion integrals
(9a) and (9b), then we obtain in addition a larger
solution a0=2.1, as in the example of Sucher and
Woo. ' "We feel, however, that this larger solution is

1 —2

+ll:(v'l)+ lrzlll —+llvzl+v'l . (»b)
ar

One can also evaluate these integrals in analytic form

I Interpreting the parameters c, b, c, and x of Sucher and Wao
in terms of X, 4, and op, one gets ao = —5X+q4+s((+3)—)goo',
which agrees with the sum rule (ga) if (10/9)J(oq) —2P+bp is
dropped and I(op)+(14/9) J(op) is estimated by using ImA~ &r P(v)
=ao'4v.
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Fin 1. f(ao). versus ao for the s-wave parametrizations by (i) the Chew-Mandelstam approximation, (ii) the scattering-length approxi-
mation, and (iii) the nonrelativistic effective-range approximation with ro ———1. The curve (iv) corresponds to (iii) for which a thresl. old
approximation is further made.

not physically favorable, for two reasons: The threshold
approximation is good only for a small scattering length;
and if ao is indeed as large as 2, then the amplitude
should have a rapid variation from the consistency
region to the symmetry point, which is clearly not
consistent with the smoothness assumption of the
hypothesis of partially conserved axial-vector current.

If a o meson (M, =400 MeV, P,=95 MeV)'r is
assumed in order to estimate (9a) and (9b), then in
Eq. (8) as can be increased by 50% and as by 15% over
the values obtained by Weinberg for A. = —0.01 and
Xi=0.1j.6. A ~ with a higher mass gives a less significant
change in the scattering lengths. Thus we 6nd in any
case that ao can hardly be larger than half a pion
Compton wavelength once the behavior of the ampli-
tude near the symmetry point is determined by the
results of current algebra.

~' L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (I962);
Phys. Rev. 133,B812 (1964);L. M. Brown, Phys. Rev. Letters 14,
8S6 (&96S).

Finally, we remark that the small scattering lengths
from current algebra may be attributed to the smallness
of A. , which in turn seems to be a natural consequence of
Adler's self-consistency condition" that the amplitude
should vanish at s=t=u=i. If experiments indeed
confirm ao to be as large as unity, then this will be
diTicult to reconcile with the consistency condition of
current algebra, at least for zw scattering, where no
mass scale is available.
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