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we can propose a reason based on 6nal-state inter-
actions for apparent p suppression using semiclassical
reasoning in these data. Since the p has a short lifetime,
and the probability of emission is greatest at smallest
M'» (small meson energy in the frame of emitting
nucleon), there will be a relatively high probability for
decay into two pions before escaping very far from the
emitting nucleon. The probability for differential
rescattering of the final-state pions on the emitter
should therefore be important, especially since the Q
value in the decay is large, resulting in a wide distri-
bution of decay pion momenta with respect to the

emitting nucleon. Such rescattering will cause the given
event to appear in a different invariant-mass bin, thus
redistributing the p events over the spectrum. Such
sects are smaller by a large factor for the other mesons,
since their lifetimes are much longer.
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New techniques are developed for treating the n-point functions of currents, which are interrelated by
means of Ward identities obtained from the equal-time current commutation relations. The n-point func-
tions are sorted out so as to de6ne proper vertices which describe the reactions of particles of de6nite spin.
A meson-dominance assumption is made by approximating the proper vertices by simple polynomials in
momenta, with the coefBcients determined by the Ward identities. The method is discussed in detail for
m=3 and the currents of chiral SV(2) &&SU(2), and then applied to the decay processes A& ~o+s and

P + 11+K.

of meson dominance of the currents has received further
support from a successful calculation' of the m.+-m. mass
difference and has led to an estimate' of the intermediate
boson mass.

With these advances has come a new problem.
Several authors' have noted that if the chiral SU'(2)
XSU(2) currents are saturated by the p, A&, and sr

mesons, then the A 1-p-soft-~ vertex is

I. INTRODUCTION
"
OST of the successful predictions made by current

~ ~ algebra have taken the form of low-energy
theorems for soft pions, ' or equivalent sum rules. How-

ever, the scope of current algebra has recently been
extended to areas having nothing to do with soft pions,
by making use of the additional assumption that the
vector and axial-vector currents are dominated by j= 1
and j=0 mesons. In particular, it has been possible to
show' that m~, /rtt, =02, and to derive similar resultss
for the other vector and axial-vector mesons. The idea

~v),—2~p ~2r gvx )

where F is the usual pion-decay amplitude and J and
X are the At and p polarization indices. But using (1.1)
to calculate the decay rate for A&~ p+sr would give
an A1 width of about 800 MeV. We are prepared to be
tolerant in comparing current-algebra predictions with
experiment, but this certainly has to be counted as a
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failure. One way out was noted in Ref. 3; the pion in
A i decay is, in principle, Not a soft pion, since

~

I' I',
~

~2m, '. However, it is one thing to use this as an excuse
for our failure to calculate the Aq width, and another
thing to show' how to get the right answer. More
generally, there are a number of decay processes, such
as p~ z.+z., Z —+ E+7r, Eg-+ X*+z-, etc. , which we
would like to be able to calculate, but which cannot
justifiably be treated by the ordinary methods of current
algebra because the pions emitted are not soft.

An important clue to the solution of this problem
comes to us from a recent work of Schwinger. ' He
studied a phenomenological Lagrangians for p, A~, and
x mesons, derived by extending the Yang-Mills theory
to chiral SU(2)XSU(2). The previous soft-pion pre-
dictions for' Ai —+ p+ z- and' p —+ z.+z- were recovered
off the mass shell, but it was found that on the mass
shell, the matrix elements for these processes were
reduced, respectively, by factors ~ and ~, the corrections
arising of course from the fact that the emitted pions
are not soft. This brought the A ~ width into reasonable
agreement with experiment, without seriously worsening
the situation for p —+ z.+z..

Schwinger's work has led us to reexamine the possible
application of current algebra to processes involving
hard pions. The problem here is that the usual current-
algebra manipulations" let us write the matrix elements
for pion reactions in terms of calculable equal-time
commutator terms, plus unknown "gradient coupling"
terms which can only be neglected if the pions are soft.
In some cases" reasonable models can be used to cal-
culate the gradient-coupling terms, but this possibility
is not open to us here. However, although we can not
neglect gradient-coupling terms, and have no model
with which to calculate them, we will be able to use
crossing symmetry to fill this lack. All the decay
processes with which we are concerned have matrix
elements related to eucNNm expectation values of time-
ordered products of currents, and these are subject to
simultaneous Ward identities for each of the spin-1
channels. This provides enough information to do the
job.

To be more speci6c, our method proceeds according
to the following steps:

(a) We sort out the contributions of spin-0 and spin-1
poles in the various channels of an e-point function of
currents, by defining proper vertices which describe
reactions among particles of definite spin.

(b) We use the current commutation relation to
' J. Schwinger, Phys. Letters 248, 473 (1967).' It was precisely this approach that'originally led one of us to

the prediction that mg, /m =v2.' K. Kawarabayaski ance M. Suzuki, Phys. Rev. Letters 16, 255
(1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966);F. J. Gilman and H. J. Schnitzer, pbjd 150, 3162 (1966);.
J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966); M. Ademollo,
Nuovo Cimento 46, 156 (1966).

'p See, e.g., S. Weinberg, Phys. Rev. Letters 17, 616 (1966)."In particular, see the discussion of p-wave m--1V scattering
lengths by H. J. Schnitzer, Phys. Rev. 158, 1471 (1967).

derive the Ward identities satis6ed by the e-point
functions.

(c) We rewrite the results of (b) as Ward identities
for the proper vertices defined in (a).

(d) We invoke the meson-dominance assumption by
approximating the proper vertices as simple polynomials
in 4-momenta.

(e) We determine the coefficients in these poly-
nomials by subjecting them to the Ward identities
derived in (c).

This method can evidently be applied to any Lie
algebra of currents, and to arbitrary m-point functions
of these currents. However, in this paper we will content
ourselves with a study of the three-point functions

(T(A, I",A p", V,"})p and (2'( V,",Vp",V,"})p,

where V,& and V,& are the currents of chiral SU(2)
XSU(2). Steps (a)—(c), which are essentially exact,
will be carried out in Sec. II, and then steps (d) and (e),
which rely on the approximation of meson dominance,
will be described in Sec. III. The physical information
contained in these three-point decay amplitudes include
the amplitudes for the decay processes A i~ p+z. and

p —+ z+z., as well as the electromagnetic structure of
the A~, x, and p. Our predictions are outlined in Sec.
IV; they depend upon a single unknown parameter 5;
and for 5=0 we find that our decay amplitudes agree
precisely with those of Schwinger. '

Our study of the vacuum expectation values of time-
ordered products of currents has brought us in touch
with the purest results of current algebra, , results which
rely only on the current commutation relations and on
the meson-dominance approximation, and which do not
depend upon empirical parameters like g~/gv. It will be
interesting to see whether the extension of this approach
to general e-point functions could lead to a satisfactory
and self-contained theory of all low-energy reactions
among mesons of spin 0 and spin 1.

II. WARD IDENTITIES FOR PROPER VERTICES

We shall apply our method to the three-point func-
tion" (T{A "(x) A p" (y), V,"(s)})p. The vector current
has a p pole, while the axial currents have A~ and x
poles, so that this three-point function describes such
different processes as p —+ z.+z., Ai-+ p+z, and Ai —+

At+p. Our first task must be to disentangle their
various contributions. We will do this by a sequence of
formulas which in turn de6ne the p-x-x vertex I')„
the m-A i-p vertex F„q, and the A~-A~-p vertex r„„&'.

d4xd4y e "~e'" "(T(BQ "(x),B„A&'(y) V "(0)})p

a,"(k)1,(q,p), (2.1)
(q'+m ')(p'+m ')

n Here Ad'(z) and Vp" (z) are axial-vector and vector currents,
normalized as in Refs. 2, 5, and 10, with u and b isospin indices
running over the values 1, 2, 3, and p, and v space-time indices
running over the values 1, 2, 3, 0. Our metric is +, +, +, —.
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We will also need formulas for the propagators. For
the vector current, (2.4) and (2.5) yield

Cv=— pv(p )p d/J, (2.14)

iI "=—(0,0,0,1) . (2.15)

For the axial current, vie shall use the idea of partial
conservation of the axial-vector current (PCAC) to ap-
proximate

(2.16)p~ (0) (t12)~F 2b (ti2 m 2)

Together with (2.6) and (2.7), this yields

d'x e '& *(T(A.&(x),A g"(y)))0

ql'q"
= —Q, y th~, ""(q)+ F,'

q'+m. '

rtl'rt" (Cg+—F ') (2 17)

d4xe '&*(Tact/ &(x) A~"(0))),

b.P'„'m—.'q "Eq'+m. '3 ', (2.18)

d'x e '*(Tf—a+. (x),ct„A '(0)))o

ib, @—'m 4Lq'+m. '1 ', (2.19)
where

d'y *' "(T(I' "(y),I'."(0)))
= —ib„P~ ~ (k)—C~ ~ j, (2.13)

where

q~r„„i(q,p) = F—gg, Cg 'F„),(q p)
+2g,g~ 2C~ '~,.x '(k)

—2gegg, 'C~ '&g, „),
—'(p) . (2.26)

III. RESULTS FROM MESON DOMINANCE

Up to this point, we have made no approximations
beyond the weak version of PCAC stated in Kq.
(2.16). We now, for the first time, invoke meson
dominance, which we take to mean here that the
momentum-dependence of the three-point function
(T(A,&,A&",V,"))o arises almost entirely from its p,
Ai, and m poles. But the definitions (2.1)—(2.3) of
the proper F vertices display the pole structure of the
three-point function explicitly, leaving no poles in F.
Pence we may state the assumption of meson dominance
concisely as the requirement that the proper vertices be as
smooth as possible as functions of 4 mome-nta, subject
to the requirements of Lorentz invariance, crossing,
and the Ward identities.

For our purposes it will prove sufhcient to apply this
meson-dominance assumption only to the proper A&-
A~-p vertex I'„„), and the proper x-A~-p vertex F„),. In
this case, our assumption that the proper vertices be
"as smooth as possible" evidently means that F„„), is
approximately /incor in 4-momenta and that I"„), is
approximately qludratic in 4-momenta, at least for
( p'(, [ q'f, and [k'[ less than about 1 BeV'. LNote that
(2.23) precludes a I'„i, simply proportional to g„i, so
that 1'„z must at least contain quadratic terms. $

The first consequence of this ansatz can be obtained
by inspection of Eqs. (2.24) and (2.26); we see im-
mediately that Az, „z '(p) and d,„i '(k) must be at
most quadratic in 4-momenta. We can also use (2.4),
(2.6), (2.14), and (2.20) to show that

p~(/')u 'dt". (2.20) p g~ )(p) —C px

k 6 ""(k)=C k"

Next, ave evaluate the left sides of the Ward identities
(2.8)—(2.12) in terms of the proper I' vertices defined

by (2.1)-(2.3), and evaluate the right sides of these
Ward identities by using (2.13) and (2.1/)—(2.20).
Note that the noncovariant terms on the right sides of
(2.10) and (2.12) cancel, in the latter case because of the
equality of Schwinger terms'.

It is a trivial matter to prove that these two facts
require the propagators to have the free-Geld form.
[For, if

'(p) (~+pp-') g,i+—yp.pi,

gyX(p)~(~+pp2) —lgvi +(~+ (p++)p2)—1pvpi)
Cv=C~+F 2. (2.21)

k p„(q,p) =2g,C '(p' q')—, —
k"I'. (q,P) = 2g,g F C 'k"~, '(P)—

k"I'„„q(q,P) = 2g,g~ 2Cv '(A~, „,—'(q)
—~~... '(p))

(2.22)

(2.23)

(2.24)

p"F.), (q,p) =—F.g~,C~ '&~(q,p)
~2F.g,g~,C~ 'q"&..) '(k), (2 25)

With a little effort, we can write the resulting formulas
as %'ard-like identities for the proper I' vertices:

The condition that p„A""(p) be proportional to p~
requires that P = —y, yielding a free-particle prppagatpr
with mass p./p and coupling constant 1/p. ] We, pf
course, identify the particles described by these propa-
gators as the A~ and the p, so that

~~,""(p)=g~,'Lg""+p "p"/m~'XP'+m~ '3 ' (3 1)

6 ""(k) g '[g""+k"k"/m 'jt k'+m 'j ' (3.2)
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with
CA gA, '/mA, 2, Cy g,'/mp'. (3.3)

I t 13 +2gp mp

It will not be possible to determine the value of F2, so
it will be convenient to introduce in its place an un-
known dimensionless parameter 6:

I'2—=I'i(2+8) .

The proper A &-A&-p vertex is then

r„„,(q,p)—2g,
—'m, '[g„,(p+q)x+ (g,A.—g.xk )

X (2+&)—g,~P.—g, q.ij (3 5)

Inserting (3.1)—(3.3) and (3.5) in (2.26) gives

I), ( pq) (2F m, 'mA, '/g„gA, )[ g.x mA,—'—
X (g„)p& p„p),)+F—'gA, mmA,

'—
(mp ' mA, ')——

X (g;k' k.k~)—+ (&g„'/F.'m»')

X(g.~q k-q.k)j, (36)

and inserting (3.1)—(3.3) and (3.6) in (2.25) gives

I'~(q,p)=2g, '{m.'(p+q)~
+-'[1—

(gA '/F 'mA, ') (mAp —m p')]

x [k'(p~,+qi,)—»(p' —q') j
—(hgA, 'm, /F 'mA, ')(P&q k q&P k)}. —(3.7)

It is easy to check that (2.22) and (2.23) are then

automatically satisfied, provided only that (2.21) is

satisfied, i.e.,
(3.8)gA mA +F g my

These formulas become much simpler if we apply
the other spectral-function sum rule, which reads here

Cf—K~I )

and use the current-algebra estimate' of g„

gp'~2' ~m, '

(3.9)

(3.10)

which, with (3.8), yields mA, 2=2m, '. Applying these
approximate formulas to (3.6) and (3.7) gives the

We could have assumed (3.1) and (3.2) as part of our
general meson-dominance assumption, but we think it
noteworthy that current algebra and the assumption
of smoothness of proper vertices force the vector and
axial-vector spectral functions to be dominated by
single one-meson states.

Having deduced (3.1) and (3.2), we will only need
our meson-dominance assumption as it applies to the
proper A &-A &-p vertex I'„z, assumed linear in 4-
momenta;

Ip x(q p) I tgp (—p+q)A+I (2gP'kk~ gvxkP)

+I'8(g.~p.+g.~q.) (3.4)
From (2.24) we then have IV. DISCUSSION OF RESULTS

It is of particular interest to apply our results to
the decays Ai —+ p+n. and p ~~+~. From (3.11) one
can read off the effective ~A~p vertex, which on the
particle mass shells is

... (p)r„,(q,p),, (k)=—,„, (p)F.—

X {2m''(2+8)g„i,+fik„qi}e,~(k), (4.1)

where eA, "(p) and e,"(k) are the polarization vectors
of the Ai and p mesons. Similarly, from (3.12) we
obtain the physical pxm vertex,

e "(k)r),(q,p) v2F '-'m, (3—5)(p+q)ge, ~(k) . (4.2)

Equations (4.1) and (4.2), together with (2.2) and
(2.1), allow us to calculate the Ai and p widths:

I'(Ai ~ per) = 7 6(25+228+. 5b') MeV (4.3)
and

I'(p -+ ~7r) = 140[(3—8)/4)' MeV, (4.4)

in terms of the parameter b. The presently accepted
experi melta/ widths are'4

and
I'(Ai ~ p7r) =30&130MeV

I'(p —+ ~7r) =128&20 MeV,

which is consistent with a value of 8~—2. Because of
the uncertainties in the widths and value of F,"we
might reasonably expect 8 to lie in a range —1&8&0.
To compare with other theoretical results, we 6rst note
that for 8=0 our results coincide with those of

'4 See the compilation by A. H. Rosenfeld, N. Barish-Schmidt,
A. Barbaro-Galtieri, W. J. Podolsky, L. R. Price, Matts Roos,
Paul Soding, W. J. Willis, and C. G. Wohl, University of Cali-
fornia Radiation Laboratory Report UCRL-8030 (1967). In par-
ticular, footnote (h) to the meson table indicates the uncertainty
in the p width. Our calculations and those of Refs. 2 and 7 give
support to the interpretation of the A I as the chiral partner of the
p, though the experimental situation is far from clear.

"There is a question of whether the numerical value of F
should be taken from the pion-decay rate or the Goldberger-
Treiman formula. This leads to a corresponding uncertainty in
our predictions. We choose the former, while some of the estimates
of Ref. 9 were made with the latter. This causes a corresponding
mismatch in numerical values.

proper x-A~-p and x-x-p vertices as

I' (q p)=F { 2—m 'g (g—p' p—p )
+ (g.) k' —k„k),)+8(g,yq k —qgk„) }, (3.11)

r, (q,p)=v2F.-'m; {m,2(p+ q)„+-„(1+@
X [k'(p+ q) ~

—kg(p' —q') j}. (3.12)

It is also trivial to derive the proper p-p-p vertex by
these methods. With the assumption of p dominance
of the isovector current one obtains

I"„„), (q,p) 2g, 'm—,'{g„„(p+q)g+2(g„gk„—g„ik„)
gpipv gvxqp} g (3 13)

which has no free parameters.
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Schwinger, ' which means that the phenomenological
Yang-Mills Lagrangian predicts

and

P(Ai-+ pn-)=185 MeV

I' (p —+ m n.)= 78 MeV.

The experimental data do not seem to be over-
whelmingly in favor of this choice, although this model
is not obviously inconsistent with the data. It is also
interesting to compare our results with those of Gilman
and Harari, "who study all the m.p threshold sum rules,
and also obtain m~ Jm„~2, but find that the Ai
decay vertex is given entirely by the invariant k„q),.
This can be realized in our calculation with the choice
8= —2, which eliminates the invariant g„q in (4.1).
This also leads to a prediction

r(Ag~ p~) =9 MeV

I'(p ~me-)=215 MeV,

which is quite diferent from their predicted widths,
and in poor agreement with experiment. Thus there
does not appear to be an obvious connection between
our work and theirs. More precise measurements of
the A~ and p widths should help one to select among
these models, but perhaps the most useful experiment
wouM be a determination of the p spin correlation in
A & decay since this is directly related to b.

From (2.1) and (3.12) we can infer the coupling of
off-shell p mesons to mass-shell pions,

G„(k')= (2m, '/g, )LI+-', (1+b)k'/m, 'g. (4.5)

From this we 6nd the electromagnetic form factor of

F. J. Gilman and H. Harari, Phys. Rev. Letters 18, 1150
(1967l.

the pion to be

G.(k') =-'(1+6)+-'(3—6)m, '/(m, '+k'). (4.6)

From the naive point of view, one would say that the
p meson accounted for only —„'(3—5) of the total pion
charge; however, this is not true, since the result (4.6)
just comes from the k' dependence of the pox coupling.
We can also write explicit expressions for the electro-
magnetic properties of the p and Ai mesons, but there
is little interest in doing this since they do not seem to
be accessible to experimental measurements.

We close with a remark concerning the technical
aspects of the calculation. What has evolved here is a
systematic way of determining m-point functions of
currents, by using the Ward identities obtained from
the current commutator relations. In our treatment one
must retain the gradient-coupling terms, which gen-
erally vanish in calculations with soft pions, to obtain
predictions which are valid even when the pion is not
soft. It is obvious that we do not have to sacrifice
energy-momentum conservation, as is the case in some
treatments of decay amplitudes using soft-pion
techniques.

cVote added ie proof. We recently learned of the work
of J. Wess and Bruno Zumino LPhys. Rev. 163, 1727
(1967)j, which is a study of effective Lagrangians for
nonsoft pions sufficiently general to include 8~0. Their
results for the three-point functions coincide with our
Eqs. (3.5)—(3.7) and (3.13) when we set g, = gg, .
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