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Linearized Theory of Laser-Induced Instabilities in
Liquids and Gases*
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A mRcroscopic Hncarizcd H1stRblllty thcoly 1s developed to dcscrlbc R class of 1Qstabllitics resulting from
optical-acoustic coupHQg of R lRscl beam 1Q Qulds Rnd gRscs. A phenomenon of partlcuIRr interest is thc
initial phase in the development of the high-intensity optical filaments which are observed when an intense
laser beam propagates through certain Quids. It is suggested that for certain laser cell geometries and a
su%ciently high power Qux density, 6lament formation may be preceded by a breakdown in the mode struc-
ture of the incident laser beam as a result of coupling to the eigenmodes of the medium. The interaction
mechanisms considered are stimulated Raman scattering, clectrostriction, the high-frequency Kerr ef'feet,

and thermal-energy deposition, while the response of the laser-Quid system is described by Maxwell's equa-
tions combined with the appropriately modified conservation equations from hydrodynamics. On the basis
of this model, it is proposed that inhomogeneities in the laser intensity, or in the density and temperature
of the Quid, act as sources of instability growth for the induced waves which are generated when the primary
and scattered optical w'aves interfere. The dispersion relation for the problem is derived and a procedure for
calculating the growth rates of this instability is outlined. The method is illustrated by detailed computations
on. carbon disulldc covering a range of laser intensities, and it is shown that the laser-Stokes coupling terms
do not signi6cantly affect the initial growth rates. In the case of gases, where the electrostrictive effect can
be ignored, analytic expressions for the spatial and temporal gains Rze derived. Under the assumption that
the erst-order contributions in the linear theory become important after they have undergone several
e foldings, these results indicate —for a power Qux density, optical-absorption coefFicient product of 10
MWfcm' —that mode degeneration is expected to occur in a laser beam which has propagated a distance
of the order of a few kilometers through air at a prcssure of 1 atm or which has a pulse length of several
microseconds.

EVENT experiments' 3 have shown that high-

intensity optical 6laments are formed, when an
intense laser beam propagates a distance larger than
some critical length through certain bquids. %hen this
filainent formation takes place in Raman-active media,
it is invariably accompanied. by the now vridely

discussed. '—7 phenomenon of anomalous Stokes gain.
The question, therefore, arises whether this gain is a
separate phenomenon explicable in terms of the process
of stimulated. Raman emission, or whether it is govern&
mainly by the mechanism responsible for filament
formation. In support of the latter alternative, there is
now evid, ence'8 indicating that, for a given power 8ux
d,ensity in the incident laser beam, the critical length
for the onset of anomalous Stokes gain is d,etermincd,

not so much by the Raman susceptibility of the medium,
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but lRthcI' by its optical Kerr constRDt —l,c., by the
anisotropic polarizability of its constitUent molecules-
through the process of self-focusing. Essentially, a
positive Kerr constant lead, s to an intensity-dependent
phase velocity of the light wa, ves such that, for a laser
beam with an initial transverse intensity gradient,
the parts of the wave front in the region of highest
intensity lag increasingly further behind those in the
neighboring regions. This results in a transverse
shrinking, or self-focusing, of the laser beam which
contlnUcs Until lt ls llInltccl. by other ploccsscs such Rs

diRractlon oI' induced-dipole IQOIQcnt satuI ation. It
has been proposed, ' that the critical length already
referred, to is the self-focusing length, d,e6ned as that
distance from the plane of incid, ence at which the
optical lDtcDsety starts to become anoQlalously large.
A critical power Aux density can then be found, by
equating the self-focusing and, di8raction lengths. Chiao,
Garl111rcy ancl. Towncsy Askar]any Rnd TalaIlov wel c
among the 6rst to point out the possibility of this self-

focusing action of laser beams, while calculations of the
above type were 6rst carried out by KcHcy. ' Thus,
critical lengths and power cruxes have been computed.
which for certain Quid, s are in reasonable agreement with
experiment. However, this Inodel does not seem

capable of furnishing a satisfactory explanation of at
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least two closely related experimental facts. Firstly,
expcrlments2 3" indicate that the laser beam does not
focus as a single unit. Instead, it breaks up into a
number of rand. omly d.istributed filaments. Secondly,
the self-focusing mechanism predicts a diameter for
the filamcnts which is several orders of magnitude
larger than the observed value. ""It is here suggested,
that the initiaBy single-mode structure of the laser
radiation breaks up into several modes as a result of
the interaction of the laser beam with the Quid, through
electrostriction, thermal-energy deposition, and the
Kerr effect. To d.emonstrate the importance of including
all of these processes and to obtain an estimate of the
d,istance the beam has to travel into the medium before
mod, e breakdown occurs, we develop in the present
paper a lincarized instability theory for the interacting
laser-Quid system. The theory is phenomenological in
the sense that a macroscopic theory is used, to charac-
terize the system, and, the effects are assumed to be
superimposablc. Thus, the medium is d,escribed. by its
gross parameters, and. microscopic processes like two-
photon absorption are not accounted for, except insofar
as they are already contained impheitly in the experi-
mental values selected for such quantities as the optical
Kerr constant, the Raman susceptibibty, and the
optical absorptivity.

In the model adopted here, it is assumed, in the single-
mod, e d.escription of the linearized, theory that the
scattered optical waves resulting from the coupling
of the incid. ent coherent laser signal to the free mod, es
of thc llquld lntclfcrcs collcrcntly with thc primary
wave. As a consequence, interference waves are in-
duced for each eigenmode of the liquid, and it is our
aim to determine whether there exist modes that in the
presence of an inhomogcneity lead to the excitation of
rapidly growing instabilities. Wc should remark here
that any such instabilities are a consequence of the
coherent nature of the induced radiation. When this
coherence is destroyed by instability growth, therefore,
the present mod, el is no longer adequate and must be
replaced with that studied in an earlier paper. "The
possibility of stimulated. Raman scattering is taken
into account by incorporating in the coupled. Maxwell
wave equations, polarization source terms whose
strength and. phase are measured, by the Raman
susceptibility. The coupling of the optical waves to the
Quid is governed by the hnea, rized wave equations and,
the classical conservation equations of hydrodynamics.
In linearized. form, the resultant set of simultaneous
diR'crential equations has solutions which are, by means
of a Green's function, expressible as integrations over
the free modes of the Quid, . As will become apparent,
the poles of the Fouricr-I. aplace transform of this
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Green's function are just the solutions of the dispersion
relation for the problem. The stability of the laser-Quid
system with respect to any given type of disturbance
can, therefore, be deduced from the nature of these
poles. For the calculation of the long-time response
the precise nature of the disturbance is not critical: It
may be duc to small-scale variations in the laser
intensity or in the d.ensity, or temperature, of the liquid. .
The analysis indicates that the nature of the processes
contributing to the maximum over-all gain depends
for a finite system on the duration of the laser pulse.
For su%ciently short pulses (less than I nsec in the
case of a 15-crn long carbon disulfide cell) the acoustic
c6cets, such as eleetrostriction and thermal energy dep-
osition, are small and maximum growth is exhibited
by a Kerr-modulated electro-optic eigenmode which is
phase-matched to the active Geld so that it propagates
freely through the medium. As the pulse length is in-
creased the acoustic processes become progressively
more important until for very long pulse times almost
all the gain comes from this source.

The paper is arranged as follows. In Sec. II, the sct of
coupled, equations relating the physical variables of
the optical rad, iation and. the Quid, is derived, . These
are then linearized and the existence of a differential
operator acting on the variables is d,edueed, formally
from a consistency criterion. In Sec. III, the Green's
function is determined, and. the nature of its singularities
examined. The analysis is illustrated by the d.etailed
calculations for carbon disulfide presented. in the Grst
part of Sec. IV. The second, part of this section pertains
to gases. Here, the analytic d,crivation of general
expressions for the spatial and temporal gains is
followed, by an application to the case of air. Section V
contains a brief recapitulation of the main results of
this investigation.

II. THE LI5'EARIZED DIFFERENTIAL
EQUATIONS

In the following, it is assumed that the incident
radiation passes through a Quid. that is nonmagnetic
and, electrically nonconducting. In addition to stimu-
lated Raman scattering, the main mechanisms coupling
the laser wave to the Quid, are supposed. to be the high-
frequency Kerr c6ect, electrostriction, and thermal-
energy deposition.

The modifica, tion of the dielectric constant e resulting
from the interaction induces a nonlinear polarization
wave. Since only processes involving the acoustical
and molecular, rather than the electronic, states of the
moleeules constituting the liquid are important here,
the change of e over an optical wavelength is small
compared with that over a typical acoustical length.
Thus, in Maxwell's wave equation for the electric 6eld,
vector E in regions free from charges and currents, i.e.,

I 8
V K+V{K.V ln.)=——(.E); (I)

c2 BP
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the'term involving V'c can be neglected, . For a Raman-
active medium with a Raman susceptibility X~,
therefore, the laser and Stokes Acid intensities EI, and
A8, respectively, satisfy the coup1ed equations"

PEI, ———(e+—et&BI,'), +4)rXs~(Es'), )Ei„(2)
c' BP

8
&'Es= —(«—+eels')-+4Iixs'&~1, '). )Es, (3)

c~ 8P

To relate the energy equation (5) to the remaining
conservation equations, we postulate that the thermo-
dynamic state Of thc Quid ls unlqucly spcclGcd by three
local-sta'tc variables —sucll as tllc pl'cssuI'c p, spcclfic
volume V, and temperature T—whose interdependence
is expressed, by a functional equation of state of form
S=S(T V) or S=S(Tp)" Thus T=T(V p) which

together vrith the alternative expressions for thc
equations of state ~ust given, yields'9

matter,
dp—+PV v=O,
dt

in which v is the "partidc" velocity, i.e., the velocity
of the center Of the volume element, p the density, T
the temperature, p~„e, the pressure in the absence of
the 6eld, 5 the entropy, ~ the thermal conductivity
of the medium, and F the time-averaged Poynting
vector. The electrostrictive and viscous force densities
fss and f;„, respectively, are defined by the relations

p Be) E /Be)
f =—v~' —

l

——
l lvT,

g)r Bp/ r g~(aT),

f.;,.= ( +I)))v)(v.v)+))v'v,

ln which g ls thc COCK.clent of shear vlscoslty Rnd g ls
thc second oL' comprcsslonal vlscoslty cocfhclcnt.
Thc viscous dlsslpatlon function p@ CRQ bc sh0%'Q

to bc given by
88;

ps= Z (re's
sj, k g&I

/ Bt)i Bse Bsi
siii)s ))l + +)1 Bik

(BSs BSj BSj

"V. R. Shen and N. 31oembergen, Phys. Rev. 137, j.787
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where ~ is the d,ensity- and. temperature-d. epend, ent
pRI't of thc dielectric constRQt, 6g ls th& Optical Kerr
constant, and the angular brackets indicate averaging
ovcI' tiIQcs that Rrc long coInparcd with Rn optical
period. YVC hRvc Rlso made thc I'cRsonRblc RssuIQptlon
thRt, 6&= 68= 6.

The change in the dielectric constant is, in turn,
related to the varying properties of the Quid which, in
the macroscopic model adopted. here, are governed by
the following equations of classical hydrodynamics:
momentum,

dv
p = ~ph) dr+ fss+ fvv isa q

where C, (C~) is the specific heat at constant volume

(pressure), y=C„/C„, and P is the cubical expansion
coefficient defined as (1/V)(BV/BT)„

Owing to their complexity, it is not possib1e to
obtain the exact solutions for the above set of simul-

taneous diRerential equations in an explicit form.
Howcvel, tllcy 111Ry bc solved Rppl oxlmateiy by
invoking a perturbation technique d.eveloped. by
Eckart. '0 In this scheme, it is supposed, that each of the
physical variables in the pxoblem. is expressible as the
suln of its s10%'ly varying zero-order coInponent Rnd R

small correction. Working only to 6rst ord, er, we d,enote
thc zero- and 6rst-order contributions in the pertur-
batioQ expansion by subscripts 0 and, 1, respectively.
Thc lncldcnt lRscl Rnd thc Stokes %Rvcs RI"c RssUIIled

to bc descrlbcd by inflnitc plRQc, linearly polRI'lzcd

waves with the well-defined frequencies cog and, ~8,
and the corresponding wave numbers ki, and. AB.

After the perturbation has acted let the fields be
represented by

lg{(g Ii+1 Ii)ei[cuSS (Sy, jalap)s]+C C-) —(12)

F Ig((g—8.+g B)ei(as) (ks ials)s)+c —c ) — (13)

where n is the optical absorption coefficient in cm ', and
c.c. stands for "complex conjugate. "In Rddltlon, we set

(BeI)
B» 'Ii

e= e(P, T)=«+p—tl —l
+BI

&BP) r BT),
'

/BP BP
P=P(p, T)=Ps+PII

——+t)I
EBP, BT,

in which e, is thc speed of sound, in the medium, while

the other quantities are as dc6ned before. In the last

~g For complete generality this relation. should read 5=S(T,p,B)
since the state of the Quid depends also on the electric Geld
intensity. However, it can readily be shown that in the present
case the additional terms arising therefrom are negligible.

'9 M. %. Zemansky, Beat and The modywamks (McGraw-Hill
Book Company, Inc., New j|'ork, 1957), 4th ed. , Chap. 13."C. Eckart, Phys. Rev. 73, 68 (1948).



of these expressions, use has been mad, e of well-known
relations from thermodynamics. "

If we now assume that the "particle" velocity v is a
6rst-ord, er quantity, i.e., that it is small compared with
the sound. velocity, we need. no longer distinguish
between Kulerian and, Lagrangian representations in
the first-order calculations, so that d/dt=B/N. Com-
bining Eqs. (4)—(8) and (11) with (12)—(14), and
retaining only the dominant terms, we obtain the 6rst-
order equations

(B2 e2

Pa~2 p i
Ppoe'

V8y

( +2)("-1)&(E.E.), (»)
24m

C, (y—1) BPI BBI—poC.„
P B$ R

(16)

with EeEI=EezEIz+EesEIs and where, in addition
to the already de6ned parameters, we have introduced,
the ind, ex of refraction No —=~o'". The 6rst of these
equations incorporates the CGect of the body forces
on the properties of the Quid. , while the second. takes
account of the deposition of thermal energy by the
incident radiation, The density dependence of the
dielectric constant has been assumed. to be given by the
I.orentz-Lorenz formula: pe(Be/Bp) r Ie (ee+——2) (ee 1)—
In calculating (V f„)l we have retained only the
leading contributions. In particular, terms arising
from the second member of (7) have been neglected
in view of the relative smallness of (Be/BT)„which
Oster" estimates to be about 10 "C '.

To complete the set of equations, we 6nally need. a
relationship between Ej, 8q, and pq. This is given by
the Maxwell wave equations (2) and (3).The linearized.
equation for the laser wave is

1 8' 1 8'
,(o) g~(~),(i)g~(o)

c' BP c' BP
(17)

with R sllllllRI' equation fol thc Stokes wave. Ill (17)
e(o) and ~(" are the zero- and, first-order parts of the
intensity-, density-, and temperature-dependent di-
electric constant.

By (14), therefore, (15) and (16) are reducible to
equations involving only p~ and, 8~. These can be solved
when the perturbations are prescribed; in terms, say,
of their Fourier transforms. The consistency criterion
for nontrivial solutions then states that p~ and 8~ must
both satisfy an equation of form

(18)

The action of the differential operator Z on N is dis-
cussed, in Sec. 3.
"G. Oster, Chem. Rev. 43, 319 (1958).

IH. DERIVATION AND ANALYSIS OF THE
DISPERSION RELATION

Within the framework of our assumptions, Eqs. (15)
and (16), together with (17), constitute a complete
6rst-ord, er d,escription of the Quid's response, in the
absence of any inhomogeneities. Disturbances d,o,
however, exist, either in the incident laser intensity or
in the density and temperature of the Quid, which may
cause a drastic change in the character of the propa-
gating light wave. For example, the coupling to the
incident beam of perturbations in the macroscopic
Quid, d,ensity can und. er certain conditions lead, to an
enhancement in the coherent oscillations of the beam
at the expense of the incid, ent signal energy. The d,is-
turbances can, therefore, act as sources for growing
temporal and. spatial instabilities. To determine the
nature of such unstable modes in the laser-Quid, system,
and. to calculate their initial growth rates, we solve
(15) and (16) subject to the presence of a source
function in one of the physical variables.

Let the source function be represented by s(t, z,rr),
where rg is the position vector transverse to the s axis.
The solution of (18) then takes the form

N(t, s,rr) = G(t t', z—s'—, rr, rr')

Xs.(t',z', rr')dt'dz'd'rr', (19)

where the kernel 6 is the Green's function for the
operator 2 giving the response to an impulse stimulus
at the point (t', s', rr'). An expression for the function
N in terms of the parameters of the problem can now be
derived by resolving G and s in terms of the eigen-
mod. es of the Quid, each of which is d,e6ned, by a fre-
quency ~ and, wave numbers k„k„,and k, .The causahty
condition, which states that for times 1&0 the pertur-
bations must equal zero, can be conveniently satis6ed.
by taking the Laplace transform for the time coord, inate.
Since any disturbance propagates at a 6nitc speed, , the
Fourier transform is appropriate for the spatial
coordinates.

The notation is, without much loss of generahty,
simpli6ed, considerably by selecting a particular trans-
verse eigenmode. We choose k„=o, and. postulate a
plane boundary at a=0 so that k, is restricted, to be
real. The optimum value of 4, depends on the nature
of the dominant intera, ction and will be determined
later. Since %'c alc only interested in the asymptotic
behavior of the integral in (19), the detailed form of
s„does not have to be spcci6ed. It merely needs to
be stated that the only singularities contributing to
maximum instability growth are those of the Green's
function. This condition would be met, for instance, by
any reasonable source function of finite spatial extent,
modulated by a real frequency. In the present problem,
this degree of erudition is unnecessary and it su%ces to
represent the source function by a Dirac 8 function in
time and space. The Fourier-Laplace transform of the
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Green's function of the operator Z, therefore, enables
(19) to be reduced to

Sp
u(t, s,x) =

(2or)o
G(!o,k„k,)s'~"' "'&dood'k (20)

pi
+o(«+2) (oo—1)—,

pp-

kkl. '
F s+E s= E s$ 4orX I' ~(I' ~+E ~)

Rp

pl
+ ', (co+2)(«—1)—-

pp-

(23)

"Since the coupling parameter involves the Kerr constant, it
appears at first sight that the cross terms involving both scattered
waves may be ignored. However, as was pointed out to us by
Professor N. Kroll, this assumption is in general invalid, particu-
larly in the case where the Kerr-efFect modulated waves are phase
matched to the primary waves.

where Np is the strength of the source, This is substituted
in (15) and (16), where the contribution from EoEi
will now be determined via a relation similar to (17)
with the Stokes wave coupled in by means of (3) and
(13). The expression for EoEi is most conveniently
derived by erst expressing the laser and Stokes 6elds
in real form. It is evident that the nonlinear terms in
the field equations couple the scattered waves resulting
from the acoustic lntcI'action. Thus thcsc waves cannOt
be assumed to propagate independently of one another,
and we must write"

Er, =Fo~ cos(rdrI kryo)+L~+~—cos(co+~( Q~ r)—
+F=~ cos(co ~t—k ~ r),

(21)
1.'"s= Eos cos(~st —kss)+E+s cos(oo+st k+s r)—

+F. s cos(a) st —k s r),
in which for the laser perturba, tions

=601AM
& ky =kIZ~k

&

with I.~5 for the corresponding Stokes perturbations,
and where co and k represent the frequency and wave
vector of the perturbation. Substitution into the coupled
Maxwell equations (2) and (3) yields, after averaging
over times that are long compared with an optical
period, the zero-order results

kr, —((or. /c )[oo+-,'«(Eo )'+2mxs(Eo ) i,
ks'= (»'/c')Eoo+-', oo(Eos)'+2or&s(Eoi)'g. (22)

Ke assume for simplicity that the Stokes shifts are
small, and that the phase mismatch between the modes
characterized by the phase factors (or+(—k+r) and
(oo t—k r) is such that these modes may be considered
to move independently. The terms involving the same
phase factors can then be equated, and we have from
Eqs. (2), (3), and (21), that to first order,

kkl. '
I~' ~+E! ~= Eo'$r. 47rXsL~os(P„+s+1" "')

Sp

k'= k.o+k,',
I'r, = (noc/8rr) (Eoc)',

Fs = (noc/Sm. ) (Eos)'.

D(~,k„k,) =0, (26)

D = [pro v 'k' i or (2rl+—g'.)k'/—po] (5 s(r. &'I'r I's)—
+(pr.,"s+&s(r+2~Fr&s)k'(r+&'rr/or) (2r)

We have adopted the following further abbreviations:

!= Lo (oo+2) (oo—1)]'ki'/pono'c,
(»)h= o (oo+2) (oo—1)P&'". ~kr.'/pono'C, .

Evidently, G=D ' and the singularities of G are just
the solutions of the dispersion relation (26).

It may at this stage be instructive to discuss the
ollgln of thc vallous contI'lbutlons ln thc dlspcI'sion
relation, and from the way they are combined therein
gain an intuitive insight into the nature of the various
phenomena that take place in the laser-Quid system.
The last term in Eq. (27) represents the body forces
on the medium arising from clectrostriction and
thermal-energy deposition. These forces couple together
the free-running modes of the system which are de-
scribed by the zeros of the rest of the equation. The
vanishing of the first term in (27), i.e.,

ro'= v,ok'+ior(2q+g')k'/po,

represents the damped acoustic modes of the liquid
moving at sound velocity. The vanishing of the second
factor corresponds to an electro-optic mode propagating
without density Quctuation. In the absence of the
Stokes wave, this free mode satisfies the condition $r, =0,

Eliminating (E+s+E s) with the aid of the second
equation in (23) yields finally that

Sz kJ„' pi
RoEi ———(«——1)(oo+ 2)—

3 'Pl p'C pp

,"d'r+ (rFs+2~pr1's
X— (25)

jar. &'&s.Fs—
in which

K = (32 /rnr) Xskr.'.
Substitution for EoEi into (15) and (16) yields two
equations involving p~ and 0~, and setting the determi-
nant of the cocS.cients equal to zero we obtain the
dispersion relation
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which by Eq. (24) is satisfied when

where

C c
{ks(ks k 2) jr/2

no 2nokl.

kp' ——Srres P1k Is/cn p'. (30)

This result predicts a convective instability whose maxi-
mum spatial growth, obtained by keeping co real" '4 and
maximizing the imaginary part of the right-hand side
of Eq. (29), occurs for k'=-', kp'. For this value of k',
the growing electro-optic mode is described by

no ~ ko
kg= tp+1 )

c 4kL,
(31)

propagating at the group velocity

(32)

i.e., at the speed of light in the medium. The corre-
sponding spatial gain is given by

Imk. =-'(k s/kg), (33)

in agreement with that found by Sespalov and

Talanov, " and subsequently by Chiao, Kelley, and

Garmire, " for the static mode ~=0. The process de-

scribed here is essentially that of matching the phases
of the primary and index modulated waves so as to
maximize the amount of energy transferred from the
active to the passive fields. All other combinations of
frequency and wave number result in phase mismatches
which, because of the resulting destructive interference,
reduce this energy transfer and hence the gain.

In the presence of a Stokes wave, the electro-optic
mode satisfies the more complicated relation

ksb =~'~l.f's

This is once more a wave with the Kerr effect and the
index modulation resulting from the superposition of
the laser and Stokes waves matched to the interference
pattern of the optical waves. Again, other wave
mixtures are possible, but since they do not correspond
to the proper phase-match, destructive interference
would result, preventing the propagation of an electro-
optic eigenmode.

In addition to the electro-optic type of instability
there also exist more slowly convecting acoustically
driven modes which are excited by the body forces in
the medium resulting from the processes of electro-
striction and thermal-energy deposition. In general,

"A. Bers and R. J. Briggs, Massachusetts Institute of Tech-
nology Research Laboratory of Electronics Quarterly Progress
Report No. 71, 1963, p. 122 (unpublished)."R. J. Briggs, Electron-Stream Interaction with I'lasmas (The
MIT Press, Cambridge, Massachusetts, 1964).

2~ V. I. Bespalov and V. I. Talanov, JETP Pis'ma Redaktsiyu
3, 471 (1966) /English transl. :JETP Letters 3, 3D7 (1966)j."R. Y. Chiao, P. L. Kelley, and E. Garrnire (to be published).
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FIo. 1. Laplace and I'ourier contours for an
arbitrary dispersion relation.

neither unstable mode propagates independently of the
other due to the link between the optical intensity and
the density changes caused by the body forces. Thus,
in addition to exciting the acoustic instabilities, the
driving terms in the last member of Eq. (27) mix these
with the electro-optic modes. The determination of the
precise mixture of these distinct types of instability
yielding maximum over-all gain depends, as will be
shown in the succeeding section, on the length of the
cell and the group velocity of the unstable mode in
relation to the duration of the laser pulse. However, if
in anticipation of a conclusion reached later in this
section the laser-Stokes coupling terms are neglected,
we can already make the tentative observations that
for long cells or short laser pulses the most important
unstable Inode is that driven by the Kerr effect with a
gain and group velocity given by (33) and (32), re-

spectively, while for short cells or long laser pulses the
more slowly propagating acoustic type of instability
dominates.

We now turn to a discussion of the integral in (20).
To satisfy the causality condition, the Laplace contour
I.„ is to be chosen such that it passes below all singu-
larities of 6 in the &o plane. In other words, if the real
k, axis is mapped onto the co plane with the dispersion
relation as mapping function, I.„might be as illustrated
in Fig. 1. Two branches of some arbitrary dispersion
relation are shown, and the sole restraint on 0. is that
it must exceed the maximum value of the negative
imaginary part, —Imv, of cv for real k, . The integral
in (20) can now be evaluated for t)0 and s)0 by
closing the contour in the co plane in an anticlockwise
sense and that in the k, plane in a clockwise sense.

In deriving the most rapidly growing unstable modes
from the dispersion relation, we make extensive use of
results obtained by Bers and Briggs" and discussed
exhaustively by Briggs in his monograph" on electron-
stream interaction with plasmas. The following remarks
are included for the sake of completeness. They consti-
tute only a very sketchy outline of the more pertinent
features of the analysis, and the above sources should
certainly be consulted for the detailed justification of
the instability criteria adopted hereinafter.

It will be clear from the preceding considerations
that the integral in (20) diverges exponentially in time
if, for real k„ the dispersion relation admits of solutions
for co which have a negative imaginary part. Moreover,
the maximum temporal growth rate is given by
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max( —Imoo) for real k, . In the absence of any absolute
instabilities, '~ this growing mode will convect through
the medium at a certain speed, ~0 say, where

and ko satisfies the equation

(Im(o) =0.
Bk,

The corresponding spatial gain is then (max( —Imra) }/~o.
When dealing with a 6nite system, the speed ~0 may be
such that during the time of interaction the peak of the
convective instability propagates beyond its con6nes.
In that case, a different mode may yield larger spatial
growth, and the maximum of —Im&o(o)/v will provide a
more significant estimate of the strength of the in-

stability. The speed e is now the group velocity of the
unstable mode whose temporal growth rate is —Im~(e).

To derive the functional dependence of the temporal
gain on v, it is convenient to make a Galilean trans-
formation to a reference frame in which the convective
instability is at rest; i.e., in the moving reference frame
the convective instability becomes an absolute in-

stability. Accordingly, we set s=et in (20) and investi-
gate the long-time behavior of u(t, ot). Note that the
replacement s= v) corresponds to the change of variable
co ~~'= co—k,v. The transformed integral can be
evaluated by the method of steepest descents, and the
asymptotic behavior of g is determined by the solutions
of the saddle-point equation Bra'/Bk, =0, for each value
of e. In fact, if these solutions are denoted by, say,
~, (o) and k, (o), it follows that u e'"'&'&'t '" for large t

Tlills, —ImG) (5) is tile gi'owth 1'ate seell" by some

measuring device moving at speed ~ through the
medium. (This is strictly true only for o'«c, since
otherwise relativistic effects necessitate the replace-
ment of the Galilean by the more cumbersome Lorentz
transformation. ) We make the parenthetical comment
here that while k, (e) is generally complex, the above
considerations indicate that it is real when e=eo, the
group velocity of the waves with maximum temporal
gain. There is usually more than one pair of solutions
to the saddle-point equation, and the choice of ~, and

k, specifying the position of the saddle point to be
employed in the integration is subject to an important
restriction, a consequence of the fact that a physical
variable, such as u in (19), must be described by a
single-valued function. This point has been treated
in detail by Briggs, 24 and, briefly, the condition is as
follows. Since Boo'/Bk, =O implies that BG/Bk, =O,
k, =k, is a double pole of 6, and the path of integration
in the k, plane must be chosen to pass through the
double pole resulting from a merging of those roots

"The de6nition of an absolute instability as it is used here is
given in Chap. 2 of Ref. 2$.

which for Im~ —& —~ lie on opposite sides of the real
k, axis. This bmitation on the choice of k, has an
interesting physical interpretation. Following Briggs,
wc suppose that an illflilltc medium ls cxcltcd by a
spatial impulse source located at some point s= d whose
temporal growth rate exceeds that of any unstable
mode capable of being generated in the system. The
resulting waves must all decay away from the origin
of the source, so that it can be determined which wave
numbers arise for s&d and which for s&d. If the time-

dependent nature of the source is now altered by
decreasing its growth rate, a complex co=or, may be
found for which the wave numbers on opposite sides
of s=d' ai.c equal. At this fi.cqucncy, thclcfolc, a kind
of spatial icsonancc is possible, since a response that
varies smoothly through the point s=d can be set up
in the absence of a source. Clearly, the matching of the
wave numbers for co=a, corresponds to the merging
of the poles in the k, plane referred to above.

In accordance with the above prescription, the
saddle-point equation for the present problem follow's

from (26) by setting BD(o&',k,)/ojk, =0, with a&'=~ ok, —
When this is combined with (26), there results a
twelfth-ordcr equation for ~, in which, for each particu-
lar choice of e, only one root survives on application of
the merging-pole condition. The spatial gain is then

simply the ratio of —Imago, and the appropriate value
of v. We would emphasize that the growing modes thus
determined are a consequence of the coherence of the
interacting waves. When this coherence becomes
degraded due to the instability development, the
present model breaks down and becomes replaced with
that based on the eikonal approximation discussed in
an earlier paper. "For large k„ these approaches merge
in the di6raction limit k, =k,kl, , as is readily verided

by substitution in the respective dispersion relations.
In the next section. , wc study a particular case in

detail. Before doing so, however, we wish to make a
significant simplification. . The range of the Raman
susceptibility for the liquids that are of interest ln

connection with the problem of filament formation is
10 '4—10 " esu, while that for the high-frequency Kerr
constant is 10 "—10 " esu. Typically, kJ.=10' cm '

and, as will be demonstrated shortly, the optimum
value of k' is governed by the magnitude of the Kerr
term in the quantity $r, defined in (24) or by the acoustic
properties of the medium, depending on the mode under
consideration. For these values of the parameters, there-
fore, it is clear from (27) and. (24) that the contributions
to the dispersion relation of the laser-Stokes coupling
terms are small, even for a laser power Aux density of
100 MW/cm' and a Stokes conversion rate of a few

percent.

IV. APPLICATIO5'8

A. Ayylication to Carbon Ihsumde

The structure of (27) is quite complicated and the
general solution may be obtained only~by extensive
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kp /4npp-
I'r,

I

krv2 Ecnp'
(35)

The transverse scale of the instability development,
pr/(k, ), provides an estimate of the initial diameter
of the optical 6laments. To illustrate, the appropriate
data for carbon disul6de are ~2 ——7.5)& 10 "esu, t.p

——2.66,
and, typically, ~&——2.7X10" sec '. Thus, for a power
flux density of 40 MW/cm', n./(k, ), =150p which,
of course, exceeds the observed 6lament diameter''
(=50 p) as this is ultimately governed by strictly non-
linear processes not covered by the present theory. It
is the smallness of this quantity in comparison with the
over-all diameter of the incident laser beam that justices
our representing the primary radiation by a plane wave.
For these values of the parameters and the power Qux
density, the gain for this mode is from (33) given by

kp'/4k' 0.22 cm—'

or about 3 e foldings in a cell 15 cm long. The dependence
of gain on 0 or k, follows directly from (29) and is
illustrated in Fig. 2. The gain does not fall off to zero
at 920 p& due to the presence of acoustical effects. Similar
results have been deduced by Bespalov and Talanov, "
and more recently by Chiao, Kelley, and Garmire. "
(Evidently, there is a close link between the resonance-
type criterion invoked here for the determination of
8,~~ and the phase-matching condition in the "weak-
wave retardation" scheme employed in the latter
reference. ) Equally valid results would have been
obtained with k and k„ interchanged, so that the
scattered radiation forms a cone around the s axis whose
apical angle is approximated by 8„&.

We now set out to calculate the spatial gain and
group velocity for weakly driven acoustical modes. The

numerical study of its zeros. It is, however, of interest
to discuss separately the acoustically driven instabilities
and those of a predominantly electro-optic origin, since
they have widely different regions of importance. As
noted at the end of the preceding section, we may make
the simplification of dropping the Stokes terms in the
equation. The dispersion relation thus reduces to

k'
pt)P —vgkP —tcp (2'q+ 'g )—

pp

c ~' kc y'-
&&

I
~—k.

I
—(k' —ko')

n, *i

c q' ( hq

I
f'd ~+p

2npkpi

We have already seen that the fast-moving instability
is that due to the electro-optic effect. Optimum gain
resulted with k'=-', kp'. For the static mode m =0, we can
define an angle 0=k,/kl, which yields a measure of the
maximum divergence of the scattered beams. Since
kg'))kp' we have for the optimum case

~ l.0

4 0.8
CO

~ 0,6

~ 0.4

~ 0.2

0.Se„, I.08 l.580&t

pIG. 2. Temporal gain for carbon disul6de as a function of ~ in the
vicinity of the Kerr-matched mode.

p) =v,k,+p(p, , (37)

where l(p;I«v, k,. Substituting some typical values for
the fluid parameters in the expressions for & and 5 given
by Eq. (28), it is readily verified that for the values of
pp and k, adopted here

I
l)/cp I«(, so that the last term

on the right of (36) may be ignored. The functional
dependence of the gain on the propagation speed of
the unstable modes is calculated by adopting the tech-
nique outlined in Sec. III. We introduce a Galilean
transformation and set

co'=(u —e k„ (38)

where pp' is subject to the condition cj(d'/Bk, =0, or,
alternatively, (p satisfies (I(p/Bk, =v, . The spatial gain
is then given by —Imp) /v, . Differentiation of Eq. (36)
with respect to k, yields, therefore, that

c
2Mvt) M —k~ I

4
np

c ( c
+2(v,—( '—w, 'k ')( —k, )=0, (39)'

n,
'

E np)

maximum growth rates in this case are expected to
occur for the largest value of k compatible with its
reality, imposed by our assumption of plane waves at
the origin s=0. The limit is set by acoustic damping,
and we must have

(2&+~')k,&&p,v, .
For most liquids this means that we may take 10' cm '
for the maximum value of k,. Since k ' is here much
larger than kp' and k,', the dispersion relation to be
analyzed takes the form

c
((p' —v,'k ')

I
(d——k,

I

—~ =~~il L+i—I, (36)
n() /

where
A =k,'(c/2npkr, )'.

We expect the weakly driven modes to lie close to those
of the free system and hence we write
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np 1k'
C 2kJ

(40)

where the term involving the absorption coef}icient has
again been neglected as we are here only interested in
the region for which v,«c/zzp.

To solve these simultaneous equations for co; and k;,
the imaginary part of k„we note that for power Aux
densities of the order of 40 MW/cm' themagnitude of
the driving terms in Eq. (36) is small. Thus, we must
choose

5.0

~ 4.0
J

m 3.0
I

—2.0

I.O

whence it follows that ~,&&(c/zzo)k, Equ. ating real part:s
and retaining only the dominant terms, we deduce from
Eq. (36) that

0.2 I.O04 0.6 0.8
PROPAGATION SPEED OF INSTABILITV

SPFED OF LIGHT IN THE FLUID

(4 ) Fro. 3. Temporal gain in carbon disulfide as a function of group
velocity for the acoustic regime.

From the real part of (39), it follows that

zzp (r/zzp —2v )
(42)

Combining Eqs. (38), (41), and (42), we obtain the
result that the spatial gain is given by

CV ~i—Till—=k '

Vg

k@f npv,
1 ——— Pr, . ( l3)

2vv kI c

The physical constants for carbon disulfide appearing
in the above expressions have the values: ep=1.63,
ps ——1.26 g/cc, v, = 1.15X 10"" cm/sec, C„=9.86X10'
erg/g'C, P= 1.2X 10 '/'C, 2ri+ri'=0. 726 P, cur, =2.7
X10" sec '. The quantity 2zi+zt', occurring in the
viscous damping coefficient, has been determined by
Truesdell" from acoustical absorption data. For these
values of the parameters and k, =104 cm ' the spa, tial

gain, g say, becomes from Eq. (43)

g= 1.6X 10'(Pr./v )'"
for v,«c/zzs, and where the laser power flux Pr. is in
MW/cm'. For v, =2X10' cm/sec and PJ,=40 MW/cm'
the gain of the acoustically driven instability is about
0.7 e foldings per cm, or more than three times the
Kerr gain. Exactly at v, =0, the gain goes to zero as is
obvious when the substitution is made in Eqs. (39)
and (36).

To determine the growth rate for other than the
extreme cases discussed above, numerical evaluation of
the dispersion relation is necessary. Under these
conditions the strongly driven mode departs very
appreciably from the free-running eigenmodes of the
medium, with the wave-number —frequency relation
shifted markedly from the simple acoustic or electro-

28 C. Truesdell, J. Math. Mech. 2, 643 (1953).

optic match. The results of the calculations are pre-
sented graphically in Figs. 3—5. Figure 3 is a plot of the
temporal growth rate versus the speed of propagation
of the unstable mode, for a 6xed laser intensity and
various values of the optical absorptivity 0.. Figure 4
expresses the relationship between the spatial gain and
the propagation speed of the acoustically driven in-

stabilities, for a given 0. and a number of power Qux

densities Pr, in MW/cm. In Fig. 5 we exhibit the
spatial gain behavior due to the electro-optic effect
augmented at the lower speeds by the gain resulting
from the body forces. For k a number of values has
been chosen in the vicinity of that for the optimum
index matched electro-optic mode. As the group velocity
approaches the speed of light in the medium, the con-
tributions due to the acoustic processes drop out and
we are left with the pure Kerr gain given by Eq. (33).

Comps, rison of Figs. 4 and 5 at Pr, =40 MW/cm'
shows that the gains for the acoustic and acoustico-
electro-optic instabilities become equal for v, = 1.2&10
cm/sec. Denoting the cell length by L and the laser

pulse time by ht, we can, therefore, draw the important
conclusion that the purely acoustic instability pre-
dominates when dt)0.8J nsec, while the mixed mode
yields largest over-all gain when AII(0.81 nsec. Finally,
of course, for hf= (rzs/c)L sec the gain is just that for the
index matched mode as given by Eq. (33). Thus, it is

clear that the over-all gain will depend strongly on the
duration Dt of the laser pulse. More specifically, the
total gain for the acoustical mode is from Eq. (44)
equal to

1.6X10'(P r Lht)'"

or 5 e foldings for 6/=25 nsec and I.=10 cm, always
a,ssuming that the linear theory continues to hold up
to the end of the system.

B. Gases

The growth rates for gases are expected to be ap-
preciably smaller than those for liquids, and to achieve
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1 ain it is necessary to employ aa signi6cant spatial gain i
(=100 sec).laser with a comparative y o g p1 ion ulse time = p,

-switched lasers are now pre-g — " "y w-

ed this means not only t at t e avai a

also that coherence lengths as long as m

al sis of the dispersion relation. or g
is simplified considerably by t e ac

H " '
din the electrostrictive anu viscous or

may be neglected in 4~. For gases&

from (27) that (26) reduces to

oi (oi2 —Q') = i (kI.—/c) r Q'oP

XLf(~,k.)+f( ~, —k—.)~,
where
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Pl, in the vicinitye endence of the spatial gain on ~= I.
of the Kerr-matched mode.

and
f(co,k,)= LQ'+ (2kio, '/c) (ck.—&v)$ ',

0= v,k„
ckr, (eo—1) (y—1

T 10"uPr„
7 amb

(46)

(47)

ego stands for the real part of ~. Subject to this
restriction on 0, there is t e a i

'

that k, has to satisfy

Img =0,
cm'tin the ower Aux density inp g po

C —1)/Py; a result w ic is

'n the incident laser beam, an, b e
pressure defined by po (y-
obtained by combining th

'
-g Ithe ideal-gas law wi

known result from thermo yod namlcs: Cy=
bein the Boltzmann constant. Because t e er

exceedingly small quantity,constant fo g

ar to maximize one of the functions iny
th other will then be smai. us, o
poral gain the independent parameteter 0 is to e
such that

where Imago is the imaginary part of +. T '
pThis roblem can

be conveniently solved by setting

(49)(a= o-e',

izin —Imago with respect to e. Substi-pt g
tuting for z in the dispersion re ation an
condition g48) now yields the relations

o' cos38 Q' cos—8= rQ'/o" sin8,

o'= Q' sin8/sin38,

(50)

(51)

Q'= (2kl,o '/c) (Reoi —ck,),
uated real and imaginary parts. The

Q' in (50) can be eliminate wi e(4g) parameter in
(51), and it follows that

l.4

I
I.2 —

I and hence that

o'= rsm38/sin8 —sin28, (52)

I.O- Q' = —r (3—4 sin'8)'/sin28. (53)

Im~ on 8 is, therefore,The functional dependence of Imcv

given by
Imoi = —(-'r)'"(—sin38/cos8)'". (54)
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8
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Qnite —Imor attains its maximum vaue a
where 80 satisfies the equation

(55)tan38o tan8o+3 =0,

the solutions of which are
nication, has listed the optical9 F. %. Quelle (private communication

Kerr constants for a number of gases. 8o= +tan '(—3+2VS)"2. (56)
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Evidently, the only solution leading to temporal gain
is 80= —0.60 rad.

The spatial gain is —Imol(80)/~„and ~,—the
"group" velocity of the unstable mode —will now be
calculated in accordance with the procedure outlined
in Sec. III. The preliminary remark should be mad. e
here that in differentiating (45) with respect to k„O
is to be regarded as a constant parameter whose
optimum value is fixed by the right-hand side of (53)
evaluated at 8=00. Performing the differentiation and
invoking (48) yields, after setting 81mol/cjk, =0 and

equating imaginary parts that

1 g
——o/(1+3 sin'Oo) . (5&)

A simphfication was achieved here by utilizing (52)
'and (53). Thus, we deduce the general result that for a
given gas the spatial gain varies as the square root of
the product of the power Aux density and the absorption
coefficient.

To illustrate, consider the case of air at 1 atm for
which" &2= 2X 10—"esu, e0—1=5.8/10 ', ~,=3.3X104
cm/sec, &=1.4, and p, b=10' dyn/cm'. Equations
(49), (53), Rnd (54) predict tliRt fol' tile mode glowlllg

fastest in time

o& = (2.8—i1.9)10'(nPg, )'", (58)

corresponding to the wave numbers k =13 cm ' and

k, = —9X10 ' cm '. The velocity with which the peak
of the instability convects through the medium is from

(57) given by v, =2c. The maximum spatial gain is,
therefore, approximately equal to 10 ' cm ' for a power

Aux density, absorption coeScient product of 10 '
MW/cm', provided the interaction length L, say, is
infinite as far as this unstable mode is concerned, i.e.,
provided the laser pulse time At(2L/c. If this in-

equality is not satisfied, the peak of the temporal
instability moves beyond the limits of the system

during the interaction time, and a larger over-all gain

may be realized by an unstable mode whose propa-
gation speed is such that it reaches the end of the system
in time At. %e will now calculate the maximum gain for
this case by the procedure set forth in Sec. III. Since

the Kerr constant for gases is exceedingly small, we

ignore it and, retaining one function f, as before, write

Kq. (45) as

and lillpose tile saddle-p01nt condlt10n (el&@ /Bk )=0.
Thus, co must satisfy

with
y +y —3AQ —21K=0

~

ol'= 0'(1+y),

(62)

ct' n

0' 1 4 2kz)
(63)

The damping term in X has been retained to avoid a
singularity at 1 =c. Once (62) has been solved for y
(and hence for ol) over a range of e, the corresponding
values of the saddle points o&,

' are determined by (61),
k, being given by (59). For small X, Kq. (62) can be
solved by substituting for y a power series in iX and

equating the coeScients of equal powers in X. Selecting
the root predicting maximum gain, we obtain to 0(»)
that

y = 1+—» iX— (64)

This expression is valid for X&(1, which by (63) corre-

sponds to the inequality

k '(c/v —1)))5.51X10'nPr, , (66)

for air at 1 atm. Thus, for nP1, =10 ' MW/cm' and

k, & 10 cm ", (65) is a good approximation to the spatial

gain up to v~-, c as is verified by Figs. 6 and 7, which

exhibit the behavior of the exact solutions for O.PI.= 10 '
MW/cm'. In particular, Fig. 7 substantiates the con-

clusion based on (65) that for k, sufliciently large or e

small the gain approaches a limiting value which is

independent of k . For the slowly moving modes, i.e.,
e small, we deduce that the number of e foldings in a

The corresponding values for ~ and k, are given by
(63) and (59), respectively. Carrying out the algebra,
we find for the spatial gain

—Imcv, 1 c
L1+-',~——',»+ O(»)]. (65)

'V C 'V

rk, = —q+ so)—c/ol (oF—fl'),

q
= c/2kl, ll,'r, .

r = (c/n'r) (1 cn/2k, ), —
s= (Pr) '.

(59)

(60)
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To derive the dependence of the growth rate on the

group velocity, we make the transformation

~0 These resu1ts have been verihed by the detailed numerical
computations of S. S. Rangnekar (private communication).
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FIG. 6. Temporal gain in gases as a function of group velocity.
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distance I. is approximately
40

(~o—1)(v—1) —1/2

=4.4&X ~06 kl, LnPr, hI, (67)
"rPsmb

where d, t is the, pulse time of the incident laser beam.
As an example, let the cell length be 10 km. Since

the propagation speed of the fastest growing temporal
mode is ~~@ with k =13.4 cm ', a disturbance growing
according to this mode spends 70 psec in the cell. If
At is less than this critical value, the cell is essentially
infinite and the gain is, from (58) or Fig. 6, given by
. (1.9LU) 10' e foldings. For Dt&70 psec the maximum
gain is exp(gX10'), where g is the spatial gain deter-
mined from (65) or Fig. 7 with v= 10'/hf. For instance,
if At=200 psec the optimum speed 21=0.16c and the
total gain is 27 e foldings. We note from inequality
(66) that this result is relatively insensitive to changes
in k, provided k &5 cm '.

To sum up, the foregoing indicates that as a result
of the laser-induced instabilities, breakdown in the
mode structure of the laser beam can occur in distances
of the order of a few kilometers if we adopt the criterion
that a few e foldings are necessary for the perturbations
to attain slgnlhcant levels.

V. CONCLUSIONS

The linearized macroscopic theory developed in this
paper shows that the induced waves generated by the
coupling of a laser beam to the free modes of a Quid

can, in the presence of Quctuations in the laser intensity
or in the thermodynamical properties of the medium,
lead to the establishment of rapidly growing spatial
and temporal instabilities. The results indicate that
stimulated Raman scattering plays a relatively minor
role in the initial stages of the instability growth,
even for a Stokes conversion rate as high as a few
percent, and that the main contributions to such growth
arise from thermal-energy deposition, electrostriction,
and the optical Kerr effect. We would also suggest
that it is the breakup of the mode structure caused by
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j.'xG. 7. Spatial gain in gases as a function of group velocity.

the instability development that is ultimately re-
sponsible for the random distribution of the optical
6laments observed by Garmire, Chiao, and Townes. '
In gases, the effect of electrostriction is negligible and
the strength of the instability is governed mainly by
thermal-energy deposition. While the growth rates are
much smaller than those in liquids, mode breakup
should also occur in these media, albeit at a consider-
able distance down the laser beam.

The actual distance at which the perturbations
attain significant values depends, of course, on the
magnitude and dispersive character of the inhomoge-
neities acting as sources for the instability development.
The detailed treatment of this problem, which wouM
entail replacing the 8 function assumed for s„ in (19)
by a more realistic function and actually evaluating
the residue of the integrand in (20) at the saddle point,
lies outside the scope of this paper. The subject of
our inquiry has instead been the more general question
of determining the nature of the instabilities induced
by the laser in the Quid, and their initial growth rates.
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