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A macroscopic linearized instability theory is developed to describe a class of instabilities resulting from
optical-acoustic coupling of a laser beam in fluids and gases. A phenomenon of particular interest is the
initial phase in the development of the high-intensity optical filaments which are observed when an intense
laser beam propagates through certain fluids. It is suggested that for certain laser cell geometries and a
sufficiently high power flux density, filament formation may be preceded by a breakdown in the mode struc-
ture of the incident laser beam as a result of coupling to the eigenmodes of the medium. The interaction
mechanisms considered are stimulated Raman scattering, electrostriction, the high-frequency Kerr effect,
and thermal-energy deposition, while the response of the laser-fluid system is described by Maxwell’s equa-
tions combined with the appropriately modified conservation equations from hydrodynamics. On the basis
of this model, it is proposed that inhomogeneities in the laser intensity, or in the density and temperature
of the fluid, act as sources of instability growth for the induced waves which are generated when the primary
and scattered optical waves interfere. The dispersion relation for the problem is derived and a procedure for
calculating the growth rates of this instability is outlined. The method is illustrated by detailed computations
on carbon disulfide covering a range of laser intensities, and it is shown that the laser-Stokes coupling terms
do not significantly affect the initial growth rates. In the case of gases, where the electrostrictive effect can
be ignored, analytic expressions for the spatial and temporal gains are derived. Under the assumption that
the first-order contributions in the linear theory become important after they have undergone several
e foldings, these results indicate—for a power flux density, optical-absorption coefficient product of 1078
MW /cmd—that mode degeneration is expected to occur in a laser beam which has propagated a distance
of the order of a few kilometers through air at a pressure of 1 atm or which has a pulse length of several
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microseconds.

I. INTRODUCTION AND SUMMARY

RECENT experiments'™ have shown that high-
intensity optical filaments are formed when an
intense laser beam propagates a distance larger than
some critical length through certain liquids. When this
filament formation takes place in Raman-active media,
it is invariably accompanied by the now widely
discussed*~" phenomenon of anomalous Stokes gain.
The question, therefore, arises whether this gain is a
separate phenomenon explicable in terms of the process
of stimulated Raman emission, or whether it is governed
mainly by the mechanism responsible for filament
formation. In support of the latter alternative, there is
now evidence''8 indicating that, for a given power flux
density in the incident laser beam, the critical length
for the onset of anomalous Stokes gain is determined
not so much by the Raman susceptibility of the medium,
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but rather by its optical Kerr constant—i.e., by the
anisotropic polarizability of its constituent molecules—
through the process of self-focusing. Essentially, a
positive Kerr constant leads to an intensity-dependent
phase velocity of the light waves such that, for a laser
beam with an initial transverse intensity gradient,
the parts of the wave front in the region of highest
intensity lag increasingly further behind those in the
neighboring regions. This results in a transverse
shrinking, or self-focusing, of the laser beam which
continues until it is limited by other processes, such as
diffraction or induced-dipole moment saturation. It
has been proposed® that the critical length already
referred to is the self-focusing length, defined as that
distance from the plane of incidence at which the
optical intensity starts to become anomalously large.
A critical power flux density can then be found by
equating the self-focusing and diffraction lengths. Chiao,
Garmire, and Townes,® Askarjan,!* and Talanov'? were
among the first to point out the possibility of this self-
focusing action of laser beams, while calculations of the
above type were first carried out by Kelley.® Thus,
critical lengths and power fluxes have been computed
which for certain fluids are in reasonable agreement with
experiment. However, this model does not seem
capable of furnishing a satisfactory explanation of at
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least two closely related experimental facts. Firstly,
experiments®3® indicate that the laser beam does not
focus as a single unit. Instead, it breaks up into a
number of randomly distributed filaments. Secondly,
the self-focusing mechanism predicts a diameter for
the filaments which is several orders of magnitude
larger than the observed value.2®* It is here suggested
that the initially single-mode structure of the laser
radiation breaks up into several modes as a result of
the interaction of the laser beam with the fluid through
electrostriction, thermal-energy deposition, and the
Kerr effect. To demonstrate the importance of including
all of these processes and to obtain an estimate of the
distance the beam has to travel into the medium before
mode breakdown occurs, we develop in the present
paper a linearized instability theory for the interacting
laser-fluid system. The theory is phenomenological in
the sense that a macroscopic theory is used to charac-
terize the system, and the effects are assumed to be
superimposable. Thus, the medium is described by its
gross parameters, and microscopic processes like two-
photon absorption are not accounted for, except insofar
as they are already contained implicitly in the experi-
mental values selected for such quantities as the optical
Kerr constant, the Raman susceptibility, and the
optical absorptivity.

In the model adopted here, it is assumed in the single-
mode description of the linearized theory that the
scattered optical waves resulting from the coupling
of the incident coherent laser signal to the free modes
of the liquid interferes coherently with the primary
wave. As a consequence, interference waves are in-
duced for each eigenmode of the liquid, and it is our
aim to determine whether there exist modes that in the
presence of an inhomogeneity lead to the excitation of
rapidly growing instabilities. We should remark here
that any such instabilities are a consequence of the
coherent nature of the induced radiation. When this
coherence is destroyed by instability growth, therefore,
the present model is no longer adequate and must be
replaced with that studied in an earlier paper.’® The
possibility of stimulated Raman scattering is taken
into account by incorporating in the coupled Maxwell
wave equations, polarization source terms whose
strength and phase are measured by the Raman
susceptibility. The coupling of the optical waves to the
fluid is governed by the linearized wave equations and
the classical conservation equations of hydrodynamics.
In linearized form, the resultant set of simultaneous
differential equations has solutions which are, by means
of a Green’s function, expressible as integrations over
the free modes of the fluid. As will become apparent,
the poles of the Fourier-Laplace transform of this
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Green’s function are just the solutions of the dispersion
relation for the problem. The stability of the laser-fluid
system with respect to any given type of disturbance
can, therefore, be deduced from the nature of these
poles. For the calculation of the long-time response
the precise nature of the disturbance is not critical: It
may be due to small-scale variations in the laser
intensity or in the density, or temperature, of the liquid.
The analysis indicates that the nature of the processes
contributing to the maximum over-all gain depends
for a finite system on the duration of the laser pulse.
For sufficiently short pulses (less than 1 nsec in the
case of a 15-cm long carbon disulfide cell) the acoustic
effects, such as electrostriction and thermal energy dep-
osition, are small and maximum growth is exhibited
by a Kerr-modulated electro-optic eigenmode which is
phase-matched to the active field so that it propagates
freely through the medium. As the pulse length is in-
creased the acoustic processes become progressively
more important until for very long pulse times almost
all the gain comes from this source.

The paper is arranged as follows. In Sec. II, the set of
coupled equations relating the physical variables of
the optical radiation and the fluid is derived. These
are then linearized and the existence of a differential
operator acting on the variables is deduced formally
from a consistency criterion. In Sec. III, the Green’s
function is determined and the nature of its singularities
examined. The analysis is illustrated by the detailed
calculations for carbon disulfide presented in the first
part of Sec. IV. The second part of this section pertains
to gases. Here, the analytic derivation of general
expressions for the spatial and temporal gains is
followed by an application to the case of air. Section V
contains a brief recapitulation of the main results of
this investigation.

II. THE LINEARIZED DIFFERENTIAL
EQUATIONS

In the following, it is assumed that the incident
radiation passes through a fluid that is nonmagnetic
and electrically nonconducting. In addition to stimu-
lated Raman scattering, the main mechanisms coupling
the laser wave to the fluid are supposed to be the high-
frequency Kerr effect, electrostriction, and thermal-
energy deposition.

The modification of the dielectric constant e resulting
from the interaction induces a nonlinear polarization
wave. Since only processes involving the acoustical
and molecular, rather than the electronic, states of the
molecules constituting the liquid are important here,
the change of ¢ over an optical wavelength is small
compared with that over a typical acoustical length.
Thus, in Maxwell’s wave equation for the electric field
vector E in regions free from charges and currents, i.e.,

VZE4-V(E-V Ine)= ~1~i—(eE), 6))
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the'term involving Ve can be neglected. For a Raman-
active medium with a Raman susceptibility Xg,
therefore, the laser and Stokes field intensities Ey, and
Eg, respectively, satisfy the coupled equations!®

a2

1
VZEL=— —(et ex( B2 av+4mX e Es®av)EL, (2)
¢ o

62

1
VEs=——(e+ ex(EsDuvt+ 40X Er2)av)Es, (3)
2 ot

where e is the density- and temperature-dependent
part of the dielectric constant, e is the optical Kerr
constant, and the angular brackets indicate averaging
over times that are long compared with an optical
period. We have also made the reasonable assumption
that ez=es=e.

The change in the dielectric constant is, in turn,
related to the varying properties of the fluid which, in
the macroscopic model adopted here, are governed by
the following equations of classical hydrodynamics:
momentum,

dv
P;j—t-= - V?hydr‘l‘ fes"’"fvi»w; (4)
energy,
iAY
pT-d—=KV2T'—'V'F+ @ns ®)
t
matter,
dp
__+ pv cv=0 , (6)
dt

in which v is the “particle” velocity, i.e., the velocity
of the center of the volume element, p the density, T°
the temperature, pnyar the pressure in the absence of
the field, S the entropy, x the thermal conductivity
of the medium, and F the time-averaged Poynting
vector. The electrostrictive and viscous force densities
fes and fyi, respectively, are defined by the relations

0 Je E?/de
I
8w dp/r) 8x\dT/,
fvisn= (77+77’)V(V 'V)+17V2V, (8)

in which 7 is the coefficient of shear viscosity and 7’ is
the “second” or compressional viscosity coefficient.
The viscous dissipation function ¢, can be shown'’
to be given by

09;
=2 Cii—, )
. 65k xz,
with
a'l),' avk 37),'
oi= 77('—+—>+7)'5ik'—— . (10)
ax,, axi 6x,~

( 18 Y) R. Shen and N. Bloembergen, Phys. Rev. 137, 1787
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To relate the energy equation (5) to the remaining
conservation equations, we postulate that the thermo-
dynamic state of the fluid is uniquely specified by three
local-state variables—such as the pressure p, specific
volume V, and temperature 7—whose interdependence
is expressed by a functional equation of state of form
S=S(T,V) or S=S(T,p).® Thus T=T(V,p), which
together with the alternative expressions for the
equations of state just given, yields!®

as dT C,(y—1)d
pT—=pC——m ",

(11)
dt dt B at

where C,(C,) is the specific heat at constant volume
(pressure), y=C,/C,, and B is the cubical expansion
coefficient defined as (1/V)(8V/dT),.

Owing to their complexity, it is not possible to
obtain the exact solutions for the above set of simul-
taneous differential equations in an explicit form.
However, they may be solved approximately by
invoking a perturbation technique developed by
Eckart.20 In this scheme, it is supposed that each of the
physical variables in the problem is expressible as the
sum of its slowly varying zero-order component and a
small correction. Working only to first order, we denote
the zero- and first-order contributions in the pertur-
bation expansion by subscripts 0 and 1, respectively.
The incident laser and the Stokes waves are assumed
to be described by infinite plane, linearly polarized
waves with the well-defined frequencies wz and wg,
and the corresponding wave numbers kr and ks.
After the perturbation has acted let the fields be
represented by

Er=1{(Eob+ EF)eilent-Gi—iamalf e}, (12)
Es=13{(EoS+E,S)eilesi—ks—iamel fcc},  (13)
where « is the optical absorption coefficient in cm™, and
c.c. stands for “complex conjugate.” In addition, we set

p=potp1, T=Tot+01,

Je de
eEe(p,T)=€o+m<—> +01(—) )
dp/ T a7/,

D=peta() +(7)
p=p(0,T)=10 pl(ap T+ 57 ,,

22 0,

= po+—p1+—">Bpob1, (14)
Y Y

in which v, is the speed of sound in the medium, while
the other quantities are as defined before. In the last

18 For complete generality this relation should read S=5 (T, ,E)
since the state of the fluid depends also on the electric field
intensity. However, it can readily be shown that in the present
case the additional terms arising therefrom are negligible.

1 M. W. Zemansky, Heat ¢m§ Thermodynamics (McGraw-Hill
Book Company, Inc., New York, 1957), 4th ed., Chap. 13.

2 C, Eckart, Phys. Rev. 73, 68 (1948).
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of these expressions, use has been made of well-known
relations from thermodynamics.!®

If we now assume that the “particle” velocity v is a
first-order quantity, i.e., that it is small compared with
the sound velocity, we need no longer distinguish
between Eulerian and Lagrangian representations in
the first-order calculations, so that d/di=3/d¢. Com-
bining Egs. (4)-(8) and (11) with (12)-(14), and
retaining only the dominant terms, we obtain the first-
order equations

2 92 Bpovs?
(B B
o v v

—1
=—(ert2) (0= 1)V2(EoEr), (15)
24w

C'v ('Y—— 1) apl

poC (16)
B ot o 4r

with EoE;=EylE“4E¢E;® and where, in addition
to the already defined parameters, we have introduced
the index of refraction no=¢'2. The first of these
equations incorporates the effect of the body forces
on the properties of the fluid, while the second takes
account of the deposition of thermal energy by the
incident radiation. The density dependence of the
dielectric constant has been assumed to be given by the
Lorentz-Lorenz formula: po(d¢/dp)r=1%(e0+2)(e0—1).
In calculating (V-fe;); we have retained only the
leading contributions. In particular, terms arising
from the second member of (7) have been neglected
in view of the relative smallness of (d¢/d7T),, which
Oster? estimates to be about 10—5°C—1,

To complete the set of equations, we finally need a
relationship between Ej, 6, and p;. This is given by
the Maxwell wave equations (2) and (3). The linearized
equation for the laser wave is

1 92 1 9?
|:V2_“"“‘_E(O)JEL(1)=—_€(1)EL(O) , (17)
2 at2

c? o ¢

with a similar equation for the Stokes wave. In (17)
€® and €® are the zero- and first-order parts of the
intensity-, density-, and temperature-dependent di-
electric constant.

By (14), therefore, (15) and (16) are reducible to
equations involving only p; and ;. These can be solved
when the perturbations are prescribed; in terms, say,
of their Fourier transforms. The consistency criterion
for nontrivial solutions then states that p; and 6; must

both satisfy an equation of form
Lu=0. (18)

The action of the differential operator £ on # is dis-
cussed in Sec. 3.

% G. Oster, Chem. Rev. 43, 319 (1958).
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III. DERIVATION AND ANALYSIS OF THE
DISPERSION RELATION

Within the framework of our assumptions, Egs. (15)
and (16), together with (17), constitute a complete
first-order description of the fluid’s response, in the
absence of any inhomogeneities. Disturbances do,
however, exist, either in the incident laser intensity or
in the density and temperature of the fluid, which may
cause a drastic change in the character of the propa-
gating light wave. For example, the coupling to the
incident beam of perturbations in the macroscopic
fluid density can under certain conditions lead to an
enhancement in the coherent oscillations of the beam
at the expense of the incident signal energy. The dis-
turbances can, therefore, act as sources for growing
temporal and spatial instabilities. To determine the
nature of such unstable modes in the laser-fluid system,
and to calculate their initial growth rates, we solve
(15) and (16) subject to the presence of a source
function in one of the physical variables.

Let the source function be represented by s(#,z,r7),
where rr is the position vector transverse to the z axis.
The solution of (18) then takes the form

u(tzrr)= / G(@—t,z—3,rr,17")

Xsu(t' 2 pr)dt'dz' d?er’,  (19)
where the kernel G is the Green’s function for the
operator £ giving the response to an impulse stimulus
at the point (#,2',r7"). An expression for the function
u in terms of the parameters of the problem can now be
derived by resolving G and s, in terms of the eigen-
modes of the fluid, each of which is defined by a fre-
quency w and wave numbers &, k,, and k.. The causality
condition, which states that for times <0 the pertur-
bations must equal zero, can be conveniently satisfied
by taking the Laplace transform for the time coordinate.
Since any disturbance propagates at a finite speed, the
Fourier transform is appropriate for the spatial
coordinates.

The notation is, without much loss of generality,
simplified considerably by selecting a particular trans-
verse eigenmode. We choose %,=0, and postulate a
plane boundary at z=0 so that k. is restricted to be
real. The optimum value of £, depends on the nature
of the dominant interaction and will be determined
later. Since we are only interested in the asymptotic
behavior of the integral in (19), the detailed form of
s, does not have to be specified. Tt merely needs to
be stated that the only singularities contributing to
maximum instability growth are those of the Green’s
function. This condition would be met, for instance, by
any reasonable source function of finite spatial extent,
modulated by a real frequency. In the present problem,
this degree of erudition is unnecessary and it suffices to
represent the source function by a Dirac § function in
time and space. The Fourier-Laplace transform of the
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Green’s function of the operator £, therefore, enables
(19) to be reduced to

u
u(t,z,x)=——o—/ /6(w,kz,k,)ei(”“k'”dwdzk, (20)
(2m)* J 1, Jx

where 1, is the strength of the source. This is substituted
in (15) and (16), where the contribution from E.E;
will now be determined via a relation similar to (17)
with the Stokes wave coupled in by means of (3) and
(13). The expression for EoE; is most conveniently
derived by first expressing the laser and Stokes fields
in real form. It is evident that the nonlinear terms in
the field equations couple the scattered waves resulting
from the acoustic interaction. Thus, these waves cannot
be assumed to propagate independently of one another,
and we must write?

Ep=Ey cos(wpt—krz)+ E L cos(wi it—k, L)
+E_Ecos(w_tt—k_L-r),

Egs=ES cos(wst—ksz)+ES cos(wy Si—k, 8- 1)
+E_5 cos(w_Si—k_5-1),

in which for the laser perturbations

kﬂ:L= kLé:f:k y

(21)

wil=wrtw,

with L — .S for the corresponding Stokes perturbations,
and where w and k represent the frequency and wave
vector of the perturbation. Substitution into the coupled
Maxwell equations (2) and (3) yields, after averaging
over times that are long compared with an optical
period, the zero-order results

ki?= (wr?/¢*) eotdea(Eo™)*+2mXp (£e5)1],

kg?= (ws*/ [ eot3ea(EoS)2+ 2mXp (Eo)?].
We assume for simplicity that the Stokes shifts are
small, and that the phase mismatch between the modes
characterized by the phase factors (w f—k;-7) and
(w—t—k—-7) is such that these modes may be considered
to move independently. The terms involving the same

phase factors can then be equated, and we have from
Egs. (2), (3), and (21), that to first order,

(22)

kki\? _
E{.L"f"E_L: <—> EOI‘EL[‘LWXRI’:()S (1’:+ S+]£_S)
o
p1
D],
)
BReX)
kk\?
L S+E 8= <—> Eosis[%xnlfoj‘ (E\"+E_L)
Mo

P1
et DD,
Po

% Since the coupling parameter involves the Kerr constant, it
appears at first sight that the cross terms involving both scattered
waves may be ignored. However, as was pointed out to us by
Professor N. Kroll, this assumption is in general invalid, particu-
larly in the case where the Kerr-effect modulated waves are phase
matched to the primary waves.
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where

Rr=k24k,2,
Pr=(noc/8m) ("),
Pg= (n06/87r) (EOS)2.

Eliminating (E,;5+FE_5) with the aid of the second
equation in (23) yields finally that

_ 8 kil p1
EoEl = —‘—(60"‘ 1) (€0+ 2)"‘
3 no*c Po
ESP LA ELPsH2NP P
X - , (25)
Egk—NPLPg
in which

A= (327{'2/%036))(3}6[,2 .

Substitution for E,FE; into (15) and (16) yields two
equations involving p; and 64, and setting the determi-
nant of the coefficients equal to zero we obtain the
dispersion relation

D(wk,k.)=0, (26)
where
D=[w*—v,2k*—iw(2n+n")k*/po](§sEL—NLPLP )
+ (P]f,s—{—])sfj,-l- 2/\P1Ps)k2(l,+16/w) o (27)

We have adopted the following further abbreviations:

L= [% (60+ 2) (60_ 1)]2kL2/P0"03C s
o= -§ (60+ 2) (60" 1)61’32akL2/p0n02Cp .

Evidently, G=D"" and the singularities of G are just
the solutions of the dispersion relation (26).

It may at this stage be instructive to discuss the
origin of the various contributions in the dispersion
relation, and from the way they are combined therein
gain an intuitive insight into the nature of the various
phenomena that take place in the laser-fluid system.
The last term in Eq. (27) represents the body forces
on the medium arising from electrostriction and
thermal-energy deposition. These forces couple together
the free-running modes of the system which are de-
scribed by the zeros of the rest of the equation. The
vanishing of the first term in (27), i.e.,

w?=v2k2 1w (2n+1")k%/ po,

represents the damped acoustic modes of the liquid
moving at sound velocity. The vanishing of the second
factor corresponds to an electro-optic mode propagating
without density fluctuation. In the absence of the
Stokes wave, this free mode satisfies the condition £1,=0,

(28)
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which by Eq. (24) is satisfied when

c
w——k, ==+

{k2(k2_k02)}1/2 ,
Mo 2nok1,

(29)

where

ko =87r€2PLkL2/67L()3. (30)

This result predicts a convective instability whose maxi-
mum spatial growth, obtained by keeping w real?! and
maximizing the imaginary part of the right-hand side
of Eq. (29), occurs for k2=3ke? For this value of £?
the growing electro-optic mode is described by

Mo 1 1602
k,=—w+i-—, (31)
C 4 kL
propagating at the group velocity
kN ¢
Re(———) =—, (32)
ow n

i.e., at the speed of light in the medium. The corre-
sponding spatial gain is given by

Imk,=1% (ko’/kL), (33)

in agreement with that found by Bespalov and
Talanov,?® and subsequently by Chiao, Kelley, and
Garmire,2® for the static mode w=0. The process de-
scribed here is essentially that of matching the phases
of the primary and index modulated waves so as to
maximize the amount of energy transferred from the
active to the passive fields. All other combinations of
frequency and wave number result in phase mismatches
which, because of the resulting destructive interference,
reduce this energy transfer and hence the gain.

In the presence of a Stokes wave, the electro-optic
mode satisfies the more complicated relation

Egk=NP.Pg.

This is once more a wave with the Kerr effect and the
index modulation resulting from the superposition of
the laser and Stokes waves matched to the interference
pattern of the optical waves. Again, other wave
mixtures are possible, but since they do not correspond
to the proper phase-match, destructive interference
would result, preventing the propagation of an electro-
optic eigenmode.

In addition to the electro-optic type of instability
there also exist more slowly convecting acoustically
driven modes which are excited by the body forces in
the medium resulting from the processes of electro-
striction and thermal-energy deposition. In general,

% A, Bers and R. J. Briggs, Massachusetts Institute of Tech-
nology Research Laboratory of Electronics Quarterly Progress
Report No. 71, 1963, p. 122 (unpublished).

2 R. J. Briggs, Electron-Stream Interaction with Plasmas (The
MIT Press, Cambridge, Massachusetts, 1964).

%V, 1. Bespalov and V. 1. Talanov, JETP Pis’'ma Redaktsiyu

3, 471 (1966) [English transl.: JETP Letters 3, 307 (1966)7].
% R, Y. Chiao, P. L. Kelley, and E. Garmire (to be published).
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neither unstable mode propagates independently of the
other due to the link between the optical intensity and
the density changes caused by the body forces. Thus,
in addition to exciting the acoustic instabilities, the
driving terms in the last member of Eq. (27) mix these
with the electro-optic modes. The determination of the
precise mixture of these distinct types of instability
ylelding maximum over-all gain depends, as will be
shown in the succeeding section, on the length of the
cell and the group velocity of the unstable mode in
relation to the duration of the laser pulse. However, if
in anticipation of a conclusion reached later in this
section the laser-Stokes coupling terms are neglected,
we can already make the tentative observations that
for long cells or short laser pulses the most important
unstable mode is that driven by the Kerr effect with a
gain and group velocity given by (33) and (32), re-
spectively, while for short cells or long laser pulses the
more slowly propagating acoustic type of instability
dominates.

We now turn to a discussion of the integral in (20).
To satisfy the causality condition, the Laplace contour
L, is to be chosen such that it passes below all singu-
larities of G in the w plane. In other words, if the real
k, axis is mapped onto the w plane with the dispersion
relation as mapping function, L, might be as illustrated
in Fig. 1. Two branches of some arbitrary dispersion
relation are shown, and the sole restraint on ¢ is that
it must exceed the maximum value of the negative
imaginary part, —Imw, of w for real k,. The integral
in (20) can now be evaluated for :>0 and z>0 by
closing the contour in the w plane in an anticlockwise
sense and that in the %, plane in a clockwise sense.

In deriving the most rapidly growing unstable modes
from the dispersion relation, we make extensive use of
results obtained by Bers and Briggs® and discussed
exhaustively by Briggs in his monograph? on electron-
stream interaction with plasmas. The following remarks
are included for the sake of completeness. They consti-
tute only a very sketchy outline of the more pertinent
features of the analysis, and the above sources should
certainly be consulted for the detailed justification of
the instability criteria adopted hereinafter.

It will be clear from the preceding considerations
that the integral in (20) diverges exponentially in time
if, for real k., the dispersion relation admits of solutions
for w which have a negative imaginary part. Moreover,
the maximum temporal growth rate is given by

Imuw| w-PLANE

/N

N, /& A Rew Re K,

ATy

-ig Ly

Im K| K-PLANE

Fic. 1. Laplace and Fourier contours for an
arbitrary dispersion relation,
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max(—Imw) for real k.. In the absence of any absolute
instabilities,?” this growing mode will convect through
the medium at a certain speed, v, say, where

90=——(Rew) | k,=k,

and k, satisfies the equation

2 (=0
—{1Mw)="V.
ok

z

The corresponding spatial gainis then {max(—Imw)} /7.
When dealing with a finite system, the speed v, may be
such that during the time of interaction the peak of the
convective instability propagates beyond its confines.
In that case, a different mode may yield larger spatial
growth, and the maximum of —Imw(v)/v will provide a
more significant estimate of the strength of the in-
stability. The speed v is now the group velocity of the
unstable mode whose temporal growth rate is —Imew(2).

To derive the functional dependence of the temporal
gain on v, it is convenient to make a Galilean trans-
formation to a reference frame in which the convective
instability is at rest; i.e., in the moving reference frame
the convective instability becomes an absolute in-
stability. Accordingly, we set z=v¢ in (20) and investi-
gate the long-time behavior of #(f,2). Note that the
replacement z=1¢ corresponds to the change of variable
w— o' =w—Fkw. The transformed integral can be
evaluated by the method of steepest descents, and the
asymptotic behavior of « is determined by the solutions
of the saddle-point equation dw’/dk,=0, for each value
of ». In fact, if these solutions are denoted by, say,
ws(v) and k&, (v), it follows that u~eiws® 12 for large /.
Thus, —Imw,(v) is the growth rate ‘“‘seen” by some
measuring device moving at speed o through the
medium. (This is strictly true only for 2*<c? since
otherwise relativistic effects necessitate the replace-
ment of the Galilean by the more cumbersome Lorentz
transformation.) We make the parenthetical comment
here that while %,(v) is generally complex, the above
considerations indicate that it is real when v=1,, the
group velocity of the waves with maximum temporal
gain. There is usually more than one pair of solutions
to the saddle-point equation, and the choice of w, and
ks specifying the position of the saddle point to be
employed in the integration is subject to an important
restriction, a consequence of the fact that a physical
variable, such as # in (19), must be described by a
single-valued function. This point has been treated
in detail by Briggs,2 and, briefly, the condition is as
follows. Since dw'/dk,=0 implies that 9G/dk.=0,
k.=k, is a double pole of G, and the path of integration
in the k, plane must be chosen to pass through the
double pole resulting from a merging of those roots

27 The definition of an absolute instability as it is used here is
given in Chap. 2 of Ref. 24.
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which for Imw— — o lie on opposite sides of the real
k. axis. This limitation on the choice of %, has an
interesting physical interpretation. Following Briggs,
we suppose that an infinite medium is excited by a
spatial impulse source located at some point z=d whose
temporal growth rate exceeds that of any unstable
mode capable of being generated in the system. The
resulting waves must all decay away from the origin
of the source, so that it can be determined which wave
numbers arise for z>d and which for z<d. If the time-
dependent nature of the source is now altered by
decreasing its growth rate, a complex w=w, may be
found for which the wave numbers on opposite sides
of z=d are equal. At this frequency, therefore, a kind
of spatial “resonance” is possible, since a response that
varies smoothly through the point z=d can be set up
in the absence of a source. Clearly, the matching of the
wave numbers for w=w, corresponds to the merging
of the poles in the %, plane referred to above.

In accordance with the above prescription, the
saddle-point equation for the present problem follows
from (26) by setting 0D (w',k.)/ 0k, =0, with o' =w—1k..
When this is combined with (26), there results a
twelfth-order equation for w, in which, for each particu-
lar choice of , only one root survives on application of
the merging-pole condition. The spatial gain is then
simply the ratio of —Imw, and the appropriate value
of v. We would emphasize that the growing modes thus
determined are a consequence of the coherence of the
interacting waves. When this coherence becomes
degraded due to the instability development, the
present model breaks down and becomes replaced with
that based on the eikonal approximation discussed in
an earlier paper.!® For large k., these approaches merge
in the diffraction limit k.2=Fk.kz, as is readily verified
by substitution in the respective dispersion relations.

In the next section, we study a particular case in
detail. Before doing so, however, we wish to make a
significant simplification. The range of the Raman
susceptibility for the liquids that are of interest in
connection with the problem of filament formation is
10~14-10~2 esu, while that for the high-frequency Kerr
constant is 1072-10~1 esu. Typically, kz=~10° cm™
and, as will be demonstrated shortly, the optimum
value of k? is governed by the magnitude of the Kerr
term in the quantity £, defined in (24) or by the acoustic
properties of the medium, depending on the mode under
consideration. For these values of the parameters, there-
fore, it is clear from (27) and (24) that the contributions
to the dispersion relation of the laser-Stokes coupling
terms are small, even for a laser power flux density of
100 MW/cm? and a Stokes conversion rate of a few
percent.

IV. APPLICATIONS
A. Application to Carbon Disulfide

The structure of (27) is quite complicated and the
general solution may be obtained only,by extensive
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numerical study of its zeros. It is, however, of interest
to discuss separately the acoustically driven instabilities
and those of a predominantly electro-optic origin, since
they have widely different regions of importance. As
noted at the end of the preceding section, we may make
the simplification of dropping the Stokes terms in the
equation. The dispersion relation thus reduces to

B2
l:wz— v2k2—tw(2n+ n')—:l

Po

¢ \? ke \?
o (o-a) (L)
Mo 27’LokL
¢ \? b
e
2nokL w.

We have already seen that the fast-moving instability
is that due to the electro-optic effect. Optimum gain
resulted with k2= %kq% For the static mode w=0, we can
define an angle 8=k,/k, which yields a measure of the
maximum divergence of the scattered beams. Since
k1Z>ke?, we have for the optimum case

ko 47!'62 1/2
Oopt= = <——-P L) .
kL\/j (J'}‘lg3

The transverse scale of the instability development,
7/ (kz)max, Provides an estimate of the initial diameter
of the optical filaments. To illustrate, the appropriate
data for carbon disulfide are es=7.5X 10~ esu, ¢o=2.66,
and, typically, wz=2.7X10' sec™. Thus, for a power
flux density of 40 MW/cm?, 7/ (ks)max=150 u which,
of course, exceeds the observed filament diameter??
(=50 u) as this is ultimately governed by strictly non-
linear processes not covered by the present theory. It
is the smallness of this quantity in comparison with the
over-all diameter of the incident laser beam that justifies
our representing the primary radiation by a plane wave.
For these values of the parameters and the power flux
density, the gain for this mode is from (33) given by

ko?/4k1~0.22 cm !,

or about 3 ¢ foldings in a cell 15 cm long. The dependence
of gain on 0 or k, follows directly from (29) and is
illustrated in Fig. 2. The gain does not fall off to zero
at V20,4 due to the presence of acoustical effects. Similar
results have been deduced by Bespalov and Talanov,?s
and more recently by Chiao, Kelley, and Garmire.2s
(Evidently, there is a close link between the resonance-
type criterion invoked here for the determination of
Oops and the phase-matching condition in the “weak-
wave retardation” scheme employed in the latter
reference.) Equally valid results would have been
obtained with %, and %, interchanged, so that the
scattered radiation forms a cone around the z axis whose
apical angle is approximated by 8,p4.

We now set out to calculate the spatial gain and
group velocity for weakly driven acoustical modes. The

(34)

35)
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Fic. 2. Temporal gain for carbon disulfide as a function of 8 in the
vicinity of the Kerr-matched mode.

maximum growth rates in this case are expected to
occur for the largest value of k, compatible with its
reality, imposed by our assumption of plane waves at
the origin 2=0. The limit is set by acoustic damping,
and we must have

(2n+n")kLpovs.

For most liquids this means that we may take 10¢ cm™!
for the maximum value of %,. Since %2 is here much
larger than k¢* and k.2 the dispersion relation to be
analyzed takes the form

o) o). o

where
A=kA(c/2noky)?.

We expect the weakly driven modes to lie close to those
of the free system and hence we write

W= 7),,]3_—;+’L'w5 5

@37

where |w;|<<v:k,. Substituting some typical values for
the fluid parameters in the expressions for ¢ and § given
by Eq. (28), it is readily verified that for the values of
o and k, adopted here |§/w|<¢ so that the last term
on the right of (36) may be ignored. The functional
dependence of the gain on the propagation speed of
the unstable modes is calculated by adopting the tech-
nique outlined in Sec. III. We introduce a Galilean
transformation and set

o' =w—yk,,

(38)

where ' is subject to the condition dw’/dk,=0, or,
alternatively, w satisfies dw/0k,=1,. The spatial gain
is then given by —Imw’/v,. Differentiation of Eq. (36)
with respect to k&, yields, therefore, that

c \2
Zwvg[ (w-— —kz> —4 ]
o

+2(v.,—f)(w?—v.w)(w—f—ok,>=o, (39)

0 n
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where the term involving the absorption coefficient has
again been neglected as we are here only interested in
the region for which v,<&c/n,.

To solve these simultaneous equations for w; and £,
the imaginary part of k,, we note that for power flux
densities of the order of 40 MW/cm? the magnitude of
the driving terms in Eq. (36) is small. Thus, we must
choose

o 1 kﬁ
b= —A12=—

; (40)
4 2 kL

whence it follows that w,<&(c/n0)k.. Equating real parts
and retaining only the dominant terms, we deduce from
Eq. (36) that

¢ no AP
wi<w,~——ki>=— . (41)
7o ¢ 4wk,
From the real part of (39), it follows that
¢ vk
W= —— ———————— (42)

Q) (C/ﬂo* 2‘1)") .

Combining Eqgs. (38), (41), and (42), we obtain the
result that the spatial gain is given by
w' Wy
—Im—=k;——
P i

kot o0, 1/2
T T
200,k 1, c

The physical constants for carbon disulfide appearing
in the above expressions have the values: #o=1.63,
po=1.26 g/cc, v,=1.15X10% cm/sec, C,=9.86X10°
erg/g°C, f=1.2X10"3/°C, 29+7'=0.726 P, w,=2.7
X 10 sec™’. The quantity 2n+7#’, occurring in the
viscous damping coefficient, has been determined by
Truesdell?® from acoustical absorption data. For these
values of the parameters and k,=10* cm™! the spatial
gain, g say, becomes from Eq. (43)

g=1.6X103(P1/v,)'?,

for v,&c/ny, and where the laser power flux Py is in
MW/cm?, For v,=2X10% cm/sec and Pr=40 MW/cm?
the gain of the acoustically driven instability is about
0.7 e foldings per c¢m, or more than three times the
Kerr gain. Exactly at v,=0, the gain goes to zero as is
obvious when the substitution is made in Egs. (39)
and (36).

To determine the growth rate for other than the
extreme cases discussed above, numerical evaluation of
the dispersion relation is necessary. Under these
conditions the strongly driven mode departs very
appreciably from the free-running eigenmodes of the
medium, with the wave-number-frequency relation
shifted markedly from the simple acoustic or electro-

m () Truesdell, J. Math. Mech. 2, 643 (1953).

(43)

(44)
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F16. 3. Temporal gain in carbon disulfide as a function of group
velocity for the acoustic regime.

optic match. The results of the calculations are pre-
sented graphically in Figs. 3-5. Figure 3 is a plot of the
temporal growth rate versus the speed of propagation
of the unstable mode, for a fixed laser intensity and
various values of the optical absorptivity a. Figure 4
expresses the relationship between the spatial gain and
the propagation speed of the acoustically driven in-
stabilities, for a given o and a number of power flux
densities Pz, in MW/cm? In Fig. 5 we exhibit the
spatial gain behavior due to the electro-optic effect
augmented at the lower speeds by the gain resulting
from the body forces. For 2 a number of values has
been chosen in the vicinity of that for the optimum
index matched electro-optic mode. As the group velocity
approaches the speed of light in the medium, the con-
tributions due to the acoustic processes drop out and
we are left with the pure Kerr gain given by Eq. (33).

Comparison of Figs. 4 and 5 at Pr=40 MW/cm?
shows that the gains for the acoustic and acoustico-
electro-optic instabilities become equal for 7,=1.2X10°
cm/sec. Denoting the cell length by L and the laser
pulse time by A¢, we can, therefore, draw the important
conclusion that the purely acoustic instability pre-
dominates when Af>0.8L nsec, while the mixed mode
yields largest over-all gain when Af<0.8L nsec. Finally,
of course, for Af= (n/c)L sec the gain is just that for the
index matched mode as given by Eq. (33). Thus, it is
clear that the over-all gain will depend strongly on the
duration At of the laser pulse. More specifically, the
total gain for the acoustical mode is from Eq. (44)
equal to

LO6X103(PLLAL) 2,

or 5e foldings for Af=25 nsec and L=10 cm, always
assuming that the linear theory continues to hold up
to the end of the system.

B. Gases

The growth rates for gases are expected to be ap-
preciably smaller than those for liquids, and to achieve
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a significant spatial gain it is necessary to employ a
laser with a comparatively long pulse time (= 100 usec).
Since high-intensity Q-switched lasers are now pre-
cluded, this means not only that the available power
flux densities are limited to relatively low levels, but
also that coherence lengths as long as 10 km become
attainable.

The analysis of the dispersion relation for gases
is simplified considerably by the fact that, because of
the smallness of ¢c—1 and the virtual lack of viscous
damping, the electrostrictive and viscous force densities
may be neglected in (4). For gases, therefore, it follows
from (27) that (26) reduces to

o (wt— @)= —i(ky/c)r QP

X[f(w,kz)-i-f(—w, _'kz)] ) (45)
where
flwk)=[Q (2k2/c) (cks—w)]™,  (46)
and
Q=1vks,
T=c—————kL(€0_ eAL 1)1013aPL, 4
'Ypamb

with Py, representing the power flux density in MW/cm?
in the incident laser beam, and p.mp the ambient
pressure defined by poCp(y—1)/By; a result which is
obtained by combining the ideal-gas law with the well-
known result from thermodynamics: C,=C,+Nk, k
being the Boltzmann constant. Because the Kerr
constant for gases® is an exceedingly small quantity,
the Kerr-type resonance condition that was adopted
for liquids becomes replaced with the vanishing of the
real part of the denominator in f(w,k;). It is only
necessary to maximize one of the functions f in (45) as
the other will then be small. Thus, for maximum tem-
poral gain the independent parameter Q is to be fixed
such that

Q= (2k10.2/c) Rew—ck,) (48)
14 ' T T T T T T T T T
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Fi1G. 4. Spatial gain in carbon disulfide as a function of group
velocity for the acoustic regime.

¥ F. W. Quelle (private communication) has listed the optical
Kerr constants for a number of gases.
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where Rew stands for the real part of w. Subject to this
restriction on , there is the additional requirement
that %, has to satisfy

]
— Imw=0,
ok,

where Imow is the imaginary part of . This problem can

be conveniently solved by setting
(49)

w=oe?,

and then optimizing —Imw with respect to 6. Substi-
tuting for w in the dispersion relation and imposing
condition (48) now yields the relations

02 c0s30—2 cosf=710%/g? sind ,

o?=0? sinf/sin36 ,

(50)
(51)

where we have equated real and imaginary parts. The
parameter 02 in (50) can be eliminated with the aid of
(51), and it follows that

o?= — 7 sin36/siné sin20 , (52)

and hence that

Q= —7(3—4 sin?)?/sin26. (53)
The functional dependence of Imw on 6 is, therefore,
given by

Imw= — (37)'2(—sin36/cosh) /2. (59)

The corresponding expression for Rew follows directly
from (49). Since © is physically restricted to remain
finite, —Imw attains its maximum value at 6=40,,
where 0, satisfies the equation

tan36, tanfy+3=0, (55)
the solutions of which are

fo=F=tan"1(—342V3)12, (56)
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Evidently, the only solution leading to temporal gain
is 8= —0.60 rad.

The spatial gain is —Imw(6y)/v,, and v,—the
“group” velocity of the unstable mode—will now be
calculated in accordance with the procedure outlined
in Sec. III. The preliminary remark should be made
here that in differentiating (45) with respect to k.,
is to be regarded as a constant parameter whose
optimum value is fixed by the right-hand side of (53)
evaluated at 6=46,. Performing the differentiation and
invoking (48) yields, after setting 9 Imw/dk,=0 and
equating imaginary parts, that

v,=c/ (143 sin?f,). (57)

A simplification was achieved here by utilizing (52)
and (53). Thus, we deduce the general result that for a
given gas the spatial gain varies as the square root of
the product of the power flux density and the absorption
coefficient.

To illustrate, consider the case of air at 1 atm for
which?8 e 2X 10716 esu, ¢o—1=5.8X 1074, 2,=3.3X10*
cm/sec, y=1.4, and pump=10° dyn/cm? Equations
(49), (53), and (54) predict that for the mode growing
fastest in time®

w=(2.8—i1.9)10°(aP1)'"2, (58)

corresponding to the wave numbers k,=13 cm™ and
k.= —9X10"* cm™. The velocity with which the peak
of the instability convects through the medium is from
(57) given by v,~%c. The maximum spatial gain is,
therefore, approximately equal to 10~% cm™ for a power
flux density, absorption coefficient product of 1078
MW/cm?, provided the interaction length L, say, is
infinite as far as this unstable mode is concerned, i.e.,
provided the laser pulse time Af<2L/c. If this in-
equality is not satisfied, the peak of the temporal
instability moves beyond the limits of the system
during the interaction time, and a larger over-all gain
may be realized by an unstable mode whose propa-
gation speed is such that it reaches the end of the system
in time Az, We will now calculate the maximum gain for
this case by the procedure set forth in Sec. III. Since
the Kerr constant for gases is exceedingly small, we
ignore it and, retaining one function f, as before, write
Eq. (45) as

rh,= —q+sw—i/w(@—0Q?), (59)
where
g=c/2krvir,
r=(c/r)(1—ia/2k1), (60)

s= ()7L,

To derive the dependence of the growth rate on the
group velocity, we make the transformation

w=w'+k,, (61)

30 These results have been verified by the detailed numerical
computations of S. S. Rangnekar (private communication).
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and impose the saddle-point condition (dw’/dk.)=0.
Thus, w must satisfy

Y342 —3iNy—2iN=0, (62)
with
w2=92(1+3’) y
T[c a 1
)\=——I:—<1——i—)——1:| . (63)
QLo ZkL

The damping term in X has been retained to avoid a
singularity at »=c. Once (62) has been solved for y
(and hence for w) over a range of v, the corresponding
values of the saddle points w,” are determined by (61),
k. being given by (59). For small X\, Eq. (62) can be
solved by substituting for y a power series in 4\ and
equating the coefficients of equal powers in \. Selecting
the root predicting maximum gain, we obtain to O(\*)
that

y=—14N—i\. (64)

The corresponding values for w and %, are given by
(63) and (59), respectively. Carrying out the algebra,
we find for the spatial gain

- Imw"li[z(f— 1>T]m[1+%x—§->\2+0(k3)]. (65)

v [4 v

This expression is valid for A1, which by (63) corre-
sponds to the inequality

k2(c/v—1)>>5.51X10%P,, (66)

for air at 1 atm. Thus, for aP,=10" MW/cm?® and
ko>10 cm™, (65) is a good approximation to the spatial
gain up to 2~2¢ as is verified by Figs. 6 and 7, which
exhibit the behavior of the exact solutions for aPr= 108
MW/cm®. In particular, Fig. 7 substantiates the con-
clusion based on (65) that for %, sufficiently large or v
small the gain approaches a limiting value which is
independent of k.. For the slowly moving modes, i.e.,
v small, we deduce that the number of ¢ foldings in a
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F1c. 6. Temporal gain in gases as a function of group velocity.
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distance L is approximately

Imw,’ 27\ /2
LzL(——)
v cv

=4.47X 10"[

—1)(y—1 e
Sﬁ-"——)g——)kLLapLAz] . (67)
YPamb

where At is the pulse time of the incident laser beam.

As an example, let the cell length be 10 km. Since
the propagation speed of the fastest growing temporal
mode is 3¢ with k,=13.4 cm™, a disturbance growing
according to this mode spends 70 usec in the cell. If
At is less than this critical value, the cell is essentially
infinite and the gain is, from (58) or Fig. 6, given by
(1.9A%) 10° ¢ foldings. For Af>70 usec the maximum
gain is exp(gX109), where g is the spatial gain deter-
mined from (65) or Fig. 7 with »=10%/A¢. For instance,
if At=200 usec the optimum speed v=0.16¢ and the
total gain is 27 e foldings. We note from inequality
(66) that this result is relatively insensitive to changes
in k;, provided £,>5 cm™.

To sum up, the foregoing indicates that as a result
of the laser-induced instabilities, breakdown in the
mode structure of the laser beam can occur in distances
of the order of a few kilometers if we adopt the criterion
that a few ¢ foldings are necessary for the perturbations
to attain significant levels.

V. CONCLUSIONS

The linearized macroscopic theory developed in this
paper shows that the induced waves generated by the
coupling of a laser beam to the free modes of a fluid
can, in the presence of fluctuations in the laser intensity
or in the thermodynamical properties of the medium,
lead to the establishment of rapidly growing spatial
and temporal instabilities. The results indicate that
stimulated Raman scattering plays a relatively minor
role in the initial stages of the instability growth,
even for a Stokes conversion rate as high as a few
percent, and that the main contributions to such growth
arise from thermal-energy deposition, electrostriction,
and the optical Kerr effect. We would also suggest
that it is the breakup of the mode structure caused by
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the instability development that is ultimately re-
sponsible for the random distribution of the optical
filaments observed by Garmire, Chiao, and Townes.?
In gases, the effect of electrostriction is negligible and
the strength of the instability is governed mainly by
thermal-energy deposition. While the growth rates are
much smaller than those in liquids, mode breakup
should also occur in these media, albeit at a consider-
able distance down the laser beam.

The actual distance at which the perturbations
attain significant values depends, of course, on the
magnitude and dispersive character of the inhomoge-
neities acting as sources for the instability development.
The detailed treatment of this problem, which would
entail replacing the & function assumed for s, in (19)
by a more realistic function and actually evaluating
the residue of the integrand in (20) at the saddle point,
lies outside the scope of this paper. The subject of
our inquiry has instead been the more general question
of determining the nature of the instabilities induced
by the laser in the fluid, and their initial growth rates.
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