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dominant role in determining the spectrum of r and v'

decay, but rather that it cue be much more important
than one would have guessed. It is always possible to
have direct E—+ p+sr weak coupling, 'r but we have
shown here that even without any direct coupling,

G. Barton and C. Kacser, Phys. Rev. Letters 8, 226, 353(E)
(1962).' M. A. B. Beg and P. C. DeCelles, Phys. Rev. Letters 8, 46
(1962).

final-state multiple scattering can generate enough p
wave to dominate the E-decay spectrum. '

The large role played by final-state interactions in this calcu-
lation is not necessarily inconsistent with the recent successful
current-commutator calculations of Z ~ 3n decay Le.g. , H. D. I.
Abarbanel, Phys. Rev. 153, 1547 (1967)g since the resulting matrix
element has a phase near 0' or 180' and is linear in the pion
energies. These two features rather than the total lack of final-
state interactions are sufhcient to allow the extrapolation required
by current-commutator calculators.

PHYSICAL REVIEW VOLUME 164, NUM B ER 5 25 DECEM BER 1967

New Formalism for the Quantization of a Spin--, Field

HERMAN MUNCZEK

Department of Physics, Northwestern University, Fvanston, Illinois

(Received 23 June 1967; revised manuscript received 14 August 1967)

The general equation satisfied by a vector-spinor Geld is considered and it is found that in addition to the
spin--, solution there are two spin-~2 solutions of arbitrary masses. The conditions for these masses to be

infinite are identical to the irreducibility conditions of the Rarita-Schwinger formalism. It is shown that a
consistent quantization can be achieved, and some of the usual difBculties avoided, if the limit of infinite

masses is taken after the quantization. This is similar to what happens in Lee and Yang s &-limiting formal-

ism for vector bosons. It is also found that the spin-~ part acts as a regulator for the propagator of the field.

I. INTRODUCTION
' PROBABLY the main difficulty in a relativistic field

theory for high-spin particles is the one related to
the quantization of the 6eld. Since in the usual represen-
tations of such fields' —' there are too many components,
some of these have to be eliminated as field variables.
This is achieved through the imposition of supple-
mentary conditions which permit one to express these
components in terms of a smaller set of field variables.
In order to obtain a consistent theory, the supple-
mentary conditions are required to be a consequence of
the Euler-Lagrange equations of motion. Subsequently,
the canonical commutation relations are imposed on the
set of independent field variables. ' This is a procedure
that can be applied without trouble as long as there are
no interaction terms in the Lagrangian. When an in-

teraction is introduced, however, there appear incon-

sistencies, mainly related to Lorentz invariance. ' '
Serious difficulties also appear in field theories in which

there are no redundant components. ' '

' P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936).
2 M. Fierz, Helv. Phys. Acta 12, 3 (1939).
' M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211

(1939).
' W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
' For general reference see H. Umezawa, QNultgm Field Theory

(North-Holland Publishing Company, Amsterdam, 1956).
6 J. Schwinger, Phys. Rev. 82, 914 (1951}.
7 K. Johnson and E. C. G. Sudarshan, Ann. Phys. {¹Y.) 13,

126 (1961).
s J. Schwinger, Phys. Rev. 130, 800 (1963).
' W. K. Tung, Phys. Rev. Letters 16, 763 (1966).
"S.Chang, Phys. Rev. Letters 17, 1024 (1966).

Some time ago, Lee and Yang" introduced the so-

called $-limiting formalism for a massive vector-boson
field. In that formalism the original equations of motion
for a pure spin-1 6eld are modified in order to display
the simultaneous presence of a scalar field. The mass of
the particles associated with the scalar 6eld goes to
infinity when the equations are made to go back to the
original ones. The procedure followed by Lee and Yang
is, then, to quantize the fields and to calculate physical
processes before taking the limit. With this prescription
some of the difhculties mentioned above do not arise
because all the 6eld variables are independent. More-
over, they obtain for the field a I eynman propagator
which for high values of the momentum does not have
the divergent behavior of the pure spin-1 propagator.
This allows them to expect finite results from a theory
that would, otherwise, be unrenormalizable. "

We give here an analogous limiting formalism for non-

interacting spin-~ fields. We show that in this case all
the essential features of the $-limiting formalism are
present although the theory is more involved because
of the greater complexity of the spin-~3 representations.
We shall use the Rarita-Schwinger4' formalism for
spin-2 fields. In this formalism, when there are no sup-
plementary conditions, the field represents the super-
position of a spin-2 plus two spin-~ fields. We show that
the mass of each one of these 6elds depends on the values
of the parameters in the equations of motion. We see
then that when the parameters attain the values that

"T.D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).
''-T, D, Lee, Phys. Rev, 128, 899 (1962).
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imply the supplementary conditions, the masses of the
spin-$ particles tend to infinity. The quantization can
be carried out consistently before taking that limit,
although it is necessary to introduce a negative metric
in the Hilbert space for at least one of the spin- —,'fields.
This is similar to what happens in the (-limiting formal-
ism of Yang and Lee, and does not present any physical
difhculties as long as the spin-~ masses are suKciently
large. " We also find that the canonical commutation
relations do not allow, in this formalism, a representa-
tion which might contain both a spin-23 and a spin- —,

'
finite-mass field. There is no restriction on the way the
masses tend to infinity. This freedom in the theory
might be a useful feature when an interaction is
introduced.

We study also the Feynman propagator, and we show
that its high-momentum dependence is similar to that
of a spin-2 field, quite independently of the value of the
spin- —', masses as long as they are finite. It means that,
as in Lee and Yang's formalism, the propagators of the
redundant fields act as regulators for the spin-~ propa-
gator, which would otherwise be highly divergent.

We discuss also the interaction with the electro-
magnetic field and we show that the difFidulties pointed
out by Johnson and Sudarshan' do not seem to appear
within this formalism.

II. KINEMATICS

v,f"=o,
p„/~=0. (2)

These conditions eliminate the solutions of Eq. (1)
which would represent two spin-~~ fields.

In a Lagrangian formulation, (1) and (2) are required
to be a consequence of the Euler-Lagrange equations.
So we consider the most general first-order Hermitian
Lagrangian density

~(x)= P~L„„f"——
P(p"A—„„+mCy„,y„mg„„)P—", (3)

where

AX, pv YXgpv+A(Ypgkv+pvgpX)+8+p+Xpv ~ (4)

A, 8, and C are real arbitrary constants. By variation
of 2, we obtain the equation

L„„P"=0.

In the Rarita-Schwinger formalism, 4 a spin-2 free
field satisfies the equation"

(P—m)y„=o,

and the supplementary conditions

The canonical momenta conjugate to the p& are

IIs=BZ/cl = tg'Ap, vp.
Bt

We can find also the divergenceless current.

J(x)—=—PvA gP

This current suggests the scalar product

(P(x),P(x))=— P"(x)A p, „„P&(x)d'x.

Multiplying (5) by 7& and p&, respectively, we obtain
two coupled equations for yqP and peak". Simple algebra
shows that, with the restriction A &—~~, if

and

8= s(3A'+2A+1),

(9)

then the conditions (2) follow. We shall discuss the case
A= ——,

' later on. The usual treatments of spin--', fields
use the relations (9) and some arbitrary value of A.
Hence, Eqs. (1) and (2) have, for each givenmomentum,
a set of four spacelike solutions which correspond to the
four different projections of the spin. Quantization of
the field is carried out in the conventional way without
major troubles as long as there are no interaction terms
in the Lagrangian. When these terms are present, how-
ever, there appear difhculties~ ' due to the nonindepend-
ence of the canonical momenta. This nonindependence
follows from the fact that the matrix Ao, „„is singular
when Eqs. (9) are satisfied.

C= A+28,

where
&.(i)= (p.+~~.)4(i)

(P—M~)P(i) =0,

;=Pm —M, (1~A)j/(2~4A).

(10)

(12)

By substitution in (5), we find that the M; are the roots
of the equation

M'(3A'+2A+1 28)+Mm(2A+48 —2C)—
+m'(4C —1)=0. (13)

III. SOLUTIONS

We proceed now to study the solutions of Eq. (5) in
the general case in which the relations (9) do not hold.

As before, we have the four spin--,' solutions satisfying
(1) and (2). In addition, we find two spin-rs solutions
with different masses M„(i=1,2), which have the form

"We use throughout this paper the metric goo= —g»= —goo For A=~~ Eq. (13) does not apply. In such a case one
+' ' 2" „~ 't '' *"W,„",„,th", ;„,"p„of thesolutionswillbeM=2m, independentof8and

dice@, and p„=—p„t(x}&0. C. We will see below that the corresponding held would
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have to be quantized with a negative metric. Hence,
we disregard this value of A. It is an immediate
consequence of the equations of motion that any two
solutions of different mass are orthogonal with respect
to the scalar product (8). We 6nd it convenient to have
as parameters of the theory the constants A, M&, and
M& instead of A, B, and C."We therefore get from (13)

C= —,'+ (MiM2/4m') (3A'+2A+1 —2B), (14)

B= Pm —2mA+ (MiM2/2m —Mi —M, ) (3A'+2A+ 1)
Xi MiM2/m —2Mi —2M2+4mj '. (15)

We note that we can choose a particular value of A
without losing any generality. This is a consequence of
the existence of the point transformation~

4,'= (g..+Hv.v.)4"=A..f", (16)

with 5&—1. This transformation is nonsingular. It
does not alter the spin-~3 solutions nor the masses 3E;.
It will, however, change the values of A, 8, and C,
since Eq. (5) will now be

(A
—1) Iax(A—1) f~ 0

will be diKculties with the metric of the spin-2 fields.
To see the nature of the difficulty, let us consider (19)
in greater detail. We express the field as a superposition
of the spin-23 and the two spin-2 fields as follows:

4'(&) =4""(*)+4.(*»)+4'(*2) (20)

where the three fields on the right side anticommute
with each other. For f„"2(x)we assume, as usual, "the
anticommutation relations

with

A(x,0; m) =0,
POD(x; m) I., p ———ib'(x).

(23)

A„„(p)= —(p+m)Lg„„—2p„p„/3m'

+ (p„y„—p„y„)/3m —-',y„y.j, (22)

where the derivatives are acting on x, and A(x—y; m)
is the solution of the Klein-Gordon equation which
satisfies the initial cond. itions

Under transformation (16) we have

A'= (2A —5)/2 (1+5),

The spin--,' fields are expressed in the form

p„(x,i) =X,(p„—,'my„)ip(xi—). (24)

which shows that A can attain the forbidden value ——',

only if 8=~00, or if the original A is already —2.
Hence, from now on, we shall use the particular value
A= —1. The corresponding singular values of 8 and
C are both 1. From Eqs. (14) and (15) we learn that
when IMii and IM2I tend to infinity in any order, B
and. C tend to the singular values (9). This is similar
to what happens in the $-limiting formalism for vector
bosons, and suggests that the correct procedure to
follow with Eq. (5) is to quantize the 6elds before taking
the limit IM;I —+~. The alternative procedure spoils
the completeness of the solutions of the equation and is
the source of some of the difhculties commonly
encountered.

IV. QUANTIZATION

g (x,i),ip(y, i)) =i(P+M;)A(x —y; M;). (25)

From (25) we obtain the representation in terms of
creation and annihilation operators

0(*,') = (2~)-"'2 d'P(IM*/&. I)'"

with

xL~'(P;)I'(P;)~ '" *+f*t(p;)~'-(P;)'" *j, (26)

(&'(P,s)A'(P', "))= (~*(p,s),~~'(P', s') )
=8'(p —p')b„b;;, (27)

The E; are normalization factors which will be deter-
mined later on, and P(x,i) obeys the standard anticom-
mutation relations for a spin-~~field;

Since the canonical momenta (6) are independent,
we can impose the anticommutation relations

(P—M;)u;(P, s) =0,
M;)r;(p, s) =0,(p+

44(*),~.(y))*,-..=ig"~'(x-y) (17)

H. (*),4.(y)) *.=.o= o.

Using (6), we can write (17) in the form

(4'(*)P( )A . .).,=.,= —..~'( —y) (19)

The particular sign of the right side insures the correct
anticommutation relations for the spin-~ part of the
field, but the indefiniteness of g„„suggests that there

"(p, ),(p, )= "(p, ) '(p, )= I po/M'I
u, ,(p,s)N;(p, s) = rr;(p, s)v;(p, s) =M—;/I M,

i
.

From (20), (21), (24), and (25) it follows that

(&.(*),0"(y)) = iA" (P)A(*—y; m)

+i p Ix I~(p —i2m&„)(p+M, )

(29)

"Equation (13) can have as solution a pair of complex conju-
gate masses without altering the Hermiticity of the Lagrangian.
We shall consider here, however, only real masses M;.

X (p,—~mr, )&(x—y; M ) (30)
' R. E. Behrends and C. I'ronsdal, Phys. Rev. 106, 345 (1957).
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Multiplying (30) from the right by Ao „&„we obtain

(~.(*),4 (y)A. ..) ='LA..(p)~.-A. (P)v.j~(*-y; )
+i 2 I

&' I'(P. 2m—v.) (P+Jrl')
i=1, 2

X (p).yo —povx —(~'—m) go),

+Pm+8(1|I; 2m—)jyopz)LL(x y —M;.). (31)

namely,
2 3f;—2m

U&i).
3m2 Mi—3E;

The operator g is given by

'91 l2 y

g;= exp( 2'—iver—(1 o—;) p I a;t(p, s)a;(p, s)

(40)

(41)
We have to check now whether (31) is consistent with
(19).We consider the (00) component of (31) at xo——yo,
and get

(It'o(x»4" (y)A o,.o) *2-„
= P I&'I'((~' —iv V)(~;—2m)(a —1)

i 1, 2

If the right side has to be equal to —P(x—y), then we
must have

—&"(P,s)&'(P,s)3) .

As a consequence of the new metric, in all previous
equations P„and

I
1V;

I

' have to be substituted by P„and
I
X,I2cr, , respectively. It is a simple task, now, to check

that (19) and (31) are consistent. The particular values
of the 1V; are related to the normalization of the spin-22

solutions under the scalar product (8). Thus, if

f„(x,i)=N„(P,i)e '"*

P IX, I
(cV,—2m)=0,

i 1, 2

(1~—I) g I1~I;Ious;yr; —2m)= —1.
i 1, 2

(33) then from (8) and (24), (29), and (40) we have

p~(p—,i)Ao„„N"(p,j )=o;Ipo/M;I 5@.

V. HAMILTONIAN

(42)

Substituting 8 from (15), we obtain
We can evaluate the Hamiltonian which because of

the new metric turns out to be positive definite. We have

IS;I2M;(M;—2m) =
i=1, 2

(Mg —2m) (M2—2m).
3m2

(35)

H= d'x ~„(x)p~(x)= — dox p(x)Ao, „„poII "(x). (43)

From (33) and (35) we get

2 M2—2m

3m2 ~1—~2
2 M1—2ns

3m2 M2 —M1

(36)

Using (42), we get for the normal-ordered Hamiltonian

d'PEZ ( '(P, ) (P )+&'(P )&(P ))

X(y'+m')"'+ 2 2 (a"(P,s)a'(P, s)
i 1, 2+8

+b; (p, )b;(P, ))(p+~, )", (44)

We see that the right-hand terms in (36) can not be
positive simultaneously for any choice of the masses M;.
This shows that at least one of the fields f(x,i) has to
be quantized with a negative metric in the Hilbert
space. We can see, too, that if one of the masses goes to
infinity, the other one remaining finite, then the Gnite
mass Geld has to be quantized with a negative metric.
To introduce the appropriate metric we substitute P„
by P„, where

(37)
with

where the a(p, r) and b(p, r) are the particle and anti-
particle annihilation operators for the four possible
states of spin--,'.

VI. PROPAGATOR

The propagator for this Geld is given by the time-
ordered product

Z„.(*)—= -i(OIP„(x)j„(0)Io)e(*,)
+i(0I0.(0)4.(x) I0&|I(—xo) (45)

SI22I—1—P 2/2
As a consequence of the equations of motion we have

(38)
L "(P)&» ( )= «I (Ao. 8"( ),4 (o)) l0)~(*.) (46)

2'„(i)2I '= o;P„(i)—. .

The o; can be +I for each index, but not +1 for both.
They are to be obtained from the modified Eq. (36), I-x"(P)&"(*)= —e.~'(x) (47)

(39) From the commutation relations (19) and the fact that
Ao has an inverse, we get
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We see that the propagator defined by the time-ordered
product coincides with Feynman's Green's function of
Eq. (5). E„„(x)has the Fourier representation

action principle' allows us to write for the interacting
vector-spinor field the same equal-time anticommuta-
tion relations (17) and (18) we had for the free field,

namely,

where

P„„(x)=
(2~)4

d4p P (p)~
—iy z (48) H. (~)P b)A o. .)*,=.,= —g"~'(»—y), (52)

(53)
A„,(p) ( 2 M,—2m)

&"(p)=, . + Z I

P2—m+ie i=1, 2 (3m M —M j
m P+M,

&I p. ~. . 1(p. lmv.—) (49)
p' —M(+i,eJ

Here A„„(p) is given by (22) and j&i. The first term is
the Feynman propagator for a pure spin-~3 field. As is
well known, ' it differs from its time-ordered product,
which contains noncovariant equal-time terms. How-
ever, in (49) they do not appear. They cancel with
identical terms that come from the spin- —,'part.

For Axed masses M;, we find from (22) and (49) tha, t
for high values of the momentum E„„(p) O(1/p). The
contribution to the propagator from the spin- —,

' part
cancels the divergence of the spin-~3 propagator, which
would otherwise behave like O(p).

VG. INTERACTION WITH THE ELECTRO-
MAGNETIC FIELD

As discussed by Johnson and Sudarshan, ' there ap-
pear inconsistencies when one introduces the interaction
with the electromagnetic field in the conventional theory
for a spin-&~ field. These inconsistencies are related to
the fact that the matrix Ao „„is singular and conse-
quently some of the equations are constraint conditions
rather than equations of motion.

This does not seem to be the case in the formalism
developed here when the parameters 8 and C are dif-
ferent from their singular values because all the equa-
tions are true equations of motion. We introduce the
interaction with the electromagnetic field 6,„ through
the "minimal" substitution

p~ pl

and we get an interaction Lagrangian

(50)

&z=ef~Ax, „Q"0',". (51)

With this interaction the canonical momenta still have
the form given by Eq. (6) and are still independent. The

Since in (52) and (53) the fields are interacting fields, a
meaning has to be given to P(y). This can be done by
invoking translational invariance of the theory. That is,
if Po is the generator of time translations, we have

4.(y,y.) =~'""4"(y,0)~-'"" (54)

and at time yo ——0 we assign to P(y, 0) the same formal
structure given to the free field. This will ensure the
validity of (52) and (53) at all times.

The inconsistencies pointed out by Johnson and
Sudarshan do not seem to appear in any obvious way
within this approach. We do not know whether these
will appear in a more careful examination. At least, these
are reQected in the fact that the S matrix is not unitary.
This is a de.culty that can be handled as in the
i-limiting formalism by taking the masses

~
M,

~
larger

than the total energy of the initial state in the calcula-
tion of any particular process.

VIII. CONCLUSION

From the preceding discussion it becomes clear that
some of the usual difficulties met with in the quantiza-
tion of a vector-spinor field derive from the fact that
one deals with a singular equation. This equation has
two spin-~ solutions of infinite mass, and if they are not
taken into account the completeness of the field variables
is lost. A correct procedure seems, therefore, to be the
limiting formalism developed above. Moreover, the
subsidiary conditions (2) appear as necessary for a
consistent quantization, since if either of these is not
satisfied one gets a spin-~ solution of finite mass which
would have to be quantized with a negative metric.
These features and the similar ones for vector bosons
strongly suggest that a limiting procedure should be
applicable also to fields of any spin.
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