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Event Horizons in Static Vacuum Space-Times
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The following theorem is established. Among all static, asymptotically Rat vacuum space-times with
closed simply connected equipotential surfaces g00=constant, the Schwarzschild solution is the only one
which has a nonsingular infinite-red-shift surface gpp =0. Thus there exists no static asymmetric perturbation
of the Schwarzschild manifold due to internal sources (e.g. , a quadrupole moment) which will preserve
a regular event horizon. Possible implications of this result for asymmetric gravitational collapse are briefly
discussed.

1. INTRODUCTION

HK peculiar properties of the infinite-red-shift
surface g00= 0 (r= 2trt) in Schwarzschild's spheri-

cally vacuum field, and the question qf whether analo-
gous surfaces exist in asymmetric space-times' ' have
become a focus of attention in connection with recent
interest in gravitational collapse.

For static fields (to which we confine ourselves in this
paper) the history of an infinite-red-shift surface can
be de6ned as a 3-space S on which the Killing vector
becomes null. Then S itself is null, and acts as a station-
ary unidirectional membrane for causal inQuence. '

In the special case of axial symmetry, the effect on S
of static perturbations of the Schwarzschild metric can
be worked out explicitly. ' "A fundamental diEerence
emerges according to whether the source of the pertur-
bation is external or internal. If the perturbation is due
solely to the presence of exterior bodies, and if it is not
too strong (e.g., if the spherically symmetric particle is
encircled by a ring of mass some distance away), the
effect is merely to distort S while preserving its essential
qualitative features as a nonsingular event horizon. ' On
the other hand, superimposing a quadrupole moment q,
no matter how small, causes S to become singular. ' (The
square of the four-dimensional Riemann tensor diverges
according to

RABCDR &I /g00 as g00 ~ 0) ~

A study of small (linearized) static perturbations
of the Schwarzschild manifold4 points to similar
conclusions.

Partial results of this type suggest strongly that
Schwarzschild's solution is uniquely distinguished
among all static, asymptotically Bat, vacuum 6elds by
the fact that it alone possesses a nonsingular event

'A. G. Doroshkevich, Ya. B. Zel'dovich, and I. D. Xovikov,
Zh. Eksperim. i Teor. Fiz. 49, 170 (1965) (English transl. : Soviet
Phys. —JETP 22, 122 (1966)j.

'C. V. Vishveshwara, University of Maryland Report, 1966
(unpublished).' L. A. Mysak and G. Szekeres, Can. J. Phys. 44, 617 (1966);
W. Israel and K. A. Khan, Nuovo Cimento 33, 331 (1964).

" T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
" Q. Krez and N. Rosen, Bull. Res. Council Israel Fs, 47 (1959).
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horizon. It is the aim of this paper to give a precise
formulation (see Sec. 4) and proof of this conjecture.

2. IMBEDDING FORMULAS

Ke begin by collecting some general formulas for the
immersion of hypersurfaces in an (st+1)-dimensional
Riemannian space. '

Let the equations

x =x'(e', ,e",V), V=const (2)

represent an orientable hypersurf ace 2 with unit
normal n;

+1 (spacelike n)
(3)—1 (timelike n)

n e&;&=0, n n=e(n)=

( e e e e expel&—
e& &"= -R"-ere&.

& (7)
(be ee' be'be ee'ee

lead, with the aid of (5) and (6), to the equations of

Greek indices run from 1 to I+1. Italic indices distinguish
quantities defined on the imbedded manifold (e.g. , E~f„g is the
intrinsic curvature tensor of Z) and have the range 1—sz. Covariant
differentiation with respect to the (n+1)-dimensional or n-dimen-
sional metric is denoted bv a stroke or a semicolon, respectively.
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The e holonomic base vectors e(;) tangent to Z,
with components

e&;& ——ex /Be' (4)

are such that an infinitesimal displacement in Z has
the form e(;~d8'.

The Gauss-%eingarten relations

be&,&o/M'= —e(n)E, srto+1' 0'e&,&" (5)

decompose the absolute derivative b/bee Lreferred to the
(rt+1)-dimensional metric( of the vector e&,&

with
respect to the (st+1)-dimensional basis fe&,&,n). They
may be regarded as defining the extrinsic curvature
tensor E ~ and the intrinsic one connection I',~' of Z.
From (3) and (5).

erto/be'= E;e&.&o.

The Ricci commutation relations
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Gauss and Codazzi,

Rnpybe{e) e(b) e{e) e(4)
=R,b,g+ e(n) (K.sK b, K„—Kbe),

Rapped+ e(b) e(c) e(d) be;d M;c ~
a p y 5 K x

(8)

(9)

Ke consider next a regular family of hypersurfaces
(2), parametrized so that 8' are constant along the
orthogonal trajectories: n B8'/Bx = 0 Then.

the basis fe(,),n};
2G enane= —e(n)g bR, b+KabK, b K-'

R pe e(b) p= BbK—Kb', „
Rape(a) e(b) Rab+p p;ab+e(n)KKab

+e(n)p 'g, „BKb)'/BV

3. STATIC VACUUM FIELDS

(23)

(24)

B8'/Bx = g*&e(,)a=e—")

Bx (8', V)/BV=ptb,

with p delned by'
I =e(n)pB„V,

1.e.)

p=[e(n)g e(B.V)(BpV)$-'".

It follows that
p'V)„„e"= —B„p.

(10)

(»)

(13)

(14)

A space-time manifold is called static if it admits a
hypersurface-orthogonal Killing vector field g which is
timelike over some domain. From this definition it
follows that the four-dimensional curl of V 'g vanishes,
if V/0, where

(26)

Hence, in a simply connected region which has g $(0
throughout, there will exist a scalar field t such that
V '(=Vt. If we introduce special coordinates x'=t,
x' x' x' chosen so that (( V)x =0, the line element
reduces locally to

From (4), (11), and (6),

be(;)a/bV = b(ply)/b8'= (B;p)ma+ pKje„)a

and hence

Bg.b/BV= (b/bV)(e(. ) e(b)) = 2pK. b

b)s /bV= —e(n)(B p)e ( ),

(15)

(16)

(17)

with the aid of (3). Again from (6),

K,b ——e(a)abn„/b8'=e(, ) rb„(„e(b)" Pe( ) e——(b)"V~„„(18).

Sy virtue of the completeness relation

g""=gabe(a) "e(b)"+e(n)tb"rb",
g ~V( e=0 (VNO). (29)

ds'= g e(x' x' x')dxadxe —V'df'

V= V(x',x',x') .

(Greek indices run from 1 to 3; lower case and upper
case italic indices are reserved for the ranges 1 to 2
and 0 to 3, respectively. )

In terms of the three-dimensional quantities char-
acterizing a hypersurface i= const, the vanishing of the
four-dimensional Ricci tensor for a static vacNNm mani-
fold is expressible as follows'.

g eR e=0, R e+V 'Vi s=0 (VPO). (28)

Thus V is harmonic;

(14) and (18) yield
These equations are again recast by projecting onto

V~»= P E,be ~e .—&i+iP i~~P(0) ( ) ( i —( the two-dimensional subspaces V= const/0 of the
X(e(a)„tb„+e')„tb„) e(n)p —'(Bp/BV)n„n„. (20) 3-spaces t=c otn. sWe apply the formulas of Sec. 2

withn=2, e(n)=+1. From (21) and (29),
For the mean curvature E=—g bK, b, we thus obtain

K=pg""Vl(„„+e(n)p sBp(V 8')/BV (21)
Bp/BV =p'K. (30)

On the other hand, we have from (16),

B in(gg)/8 V= pK,
We form [(b/bV)(b/b8') —(b/b8')(b/bV) jrba, and take

into account (5), (6), (15), (17), and the Ricci commuta-
tion relations. The result is

(31)

where g is the 2)&2 determinant of g, b. Hence

(B/BV) [(V'g)/p3 =0

Contraction of (8), (9), and (22) with use of (19)
yields the decomposition of the Ricci tensor R p=—R& p„
and the associated Einstein tensor G p with respect to

pRaavpe(a) I rb e(b) e(n)p;ab+gayBKb /BV (32)
+pK.~b&. (22)

Equations (23) and (24) [in combination with (28),

7 It is assumed that the right side of (13) vanishes nowhere in
the region of interest; see Sec. 4.

' This is immediately veriaable from the general formulas (23),
(25) of the previous section (with appropriate changes of notation),
upon noting from (16) that the extrinsic curvature qV Bg p/at
of the 3-spaces t=const vanishes; see A. Lichnerowicz, Theories
Relativistes de la Gravitation et fje L'electromagnetisme (Masson,
Paris, 1955), Chap. VII.
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(14), and (30)j yield, respectively,

&'&R= g—'R,s=E,sK ' K—' 2K—/pV,

B,p =p"V(.B,K K—,', s).,

(33)

(34)

(4)R y5 (8)R y8 ~ ~75v (3)g y
V (36)

(')Rp p~=o, 4)R ppp= VV

where e p~ is the Levi-Civita permutation symbol.
Hence

t (4iR (4)RABOD —isiG (sigpv+ U- Ui Uiyv (37)

for an arbitrary static held. In M,ceo, this reduces, by
virtue of (28) and with the aid of (20), to

(4)R (4)RABcD V—2 V Vj Pv

= (Up)
—~LK bK &+2p ~pp'&,

+/ '(Bp/BU)'3 (39)

4. THE THEOREM

From (25) we obtain

(B/BV+ V ')E =—p. ,' sp" &R—B, pKK—s, (35)

with the aid of (28), (18), and (16).
Equations (16), (30), and (35) provide a complete

system for determining the variables g, ~, p, E ~ as
functions of V. They respect the constraint equations
(33) and (34); i.e., if (33) and (34) are satisfied for one
value of V they will hoM identically. '

Finally, we record an expression for the invari-
ant square of the four-dimensionaI Riemann tensor
&4&R~scn. From the general formulas (8), (9), and (22)
(with appropriate changes of notation) we readily find

E,g(0+,O', B')=0,

p(0+ 0' e') —=ps ——const,

lim (K/V) = ——',ps "&R(0+,O', 8'),

(41)

(42)

(43)

where use has been made of (39) and (33).
By integrating (32) over Z, and using (42) and the

asymptotic conditions (40), we find

intrinsic geometry (characterized by &'&R) of the
2-spaces V=c approaches a limit as c—+0+, cor-
responding to a closed regular 2-space of Qnite area.

Theorem. The only static space-time satisfying (a),
(b), (c), and (d) is Schwarzschild's spherically sym-
metric vacuum solution.

To prove this statement, we note the fact (proved in
the Appendix) that, since V is harmonic on Z Lsee
(29)j, a point where V has zero gradient would be a
point of bifurcation of the equipotential surfaces. This
possibility is ruled out by condition (b). It follows that
two distinct equipotential surfaces are associated with
different values of U, and that p, as defined by (13), is
finite for V&0,

Let us dispose erst of the trivial case where V has a
positive lower bound on Z. In this case, Z is complete
and simply connected and the harmonic function V is
regular because of (c) I see (38)j and tends to unity
uniformly at inanity, Hence V=1 everywhere, space-
time is Qat, and the theorem holds trivially. 'p

If the greatest lower bound of V on Z is zero, condi-
tion (d) in combination with (32) implies that p ap-
proaches a regular nonzero limit as V~0+. From
(c), we have

In a static space-time, let Z be any spatial hyper-
surface t=const, maximally extended consistent with where

g g(0. We consider the class of static fields such that
the following conditions are satisaed on Z:

Sp/pp ——4s.m,

gl/2(0+ el B2)ggtd02

(a) Z is regular, empty, noncompact, and "asymp-
totically Euclidean. " More precisely, the last term
means that the metric (27) (in suits, ble coordinates) has
the asymptotic form

is the area of the 2-space V=0+. This implies that the
constant m in (40) is necessarily positive.

The identities

g p bp+O(r '), B,——g p=O(r '),
V = (—goo)

'"=1—m/r+r/, m= const,

r/=O(r ') B,r/=O(r '), B Bpr/=0(r '),
(

gl/2 K) 2gl/2
Li7&(pt/s)

BV p'/' V) U

+V "'(kV;~"+0.sk') j (45)
when r= (o pz xP)'/s~~. —

(b) The equipotential surfaces V= const) 0, t= const
are regular, simply connected closed 2-spaces.

(c) The invariant R~iionR" formed from the
four-dimensional Riemann tensor is bounded on Z.

~ ~
r

-gl/2
~

~

EV+
~

= —g'/ UPV (jnp)
BV p ( p1

+V '(f;.V"+24"0"') "'Rj (46)—
(d) If U has a vanishing lover bound on Z, the

are obtainable in a straightforward way from 30,
9A similar (though di&'erent) way of formulating the static ( )& (3 )~ and (35) Here + (' ' ')=g ( ),,& repre-

Geld equations has been noted by R. K. Sachs, Perspectives in
Geometry aid Relativity, edited by B.Hoffmann (Indiana Univer-
sity Press, Bloomington, 1966), p. 340. "Cf. Lichnerowicz, Ref. 8.
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sents the two-dimensional I.aplacian, and

tt'ab P(+ab 2 gab+) ~ (47)

These equations are now integrated over Z. We ob-
serve that

(V'f)g't'de'de'= 0

(2)@~i/2ggly02 8&

(4g)

(Gauss-Bonnet theorem), for a simply connected,
closed regular 2-space and any regular function f, and
we employ (40), (42), and (43) to evaluate the surface
integrals. We find

pp&4m,

Sp&XPp'

(49)

(50)

from (45) and (46), respectively, with equality if and
only if

ct.p=0=$ b (51)
everywhere on Z.

Comparison of (44), (49), and (50) shows that
equality must hold. The spherical symmetry of the
field then follows immediately from (51),and establishes
the theorem. To verify that the Schwarzschild solution
(for any rN&0) indeed satisfies conditions (a)—(d) is, of
course, trivial.

S. DISCUSSION

The search for a space-time possessing a regular
event horizon can be regarded as a nonlinear eigenvalue
problem. For the class of static, asymptotically Qat
vacuum 6elds, it has here been formulated as the
problem of selecting well-behaved solutions of the
systein of differential Eqs. (16), (30), and (35), which
have V=O as a singular boundary point. It has been
shown that the eigensolutions are the Schwarzschild
6elds, characterized by a continuous spectrum of non-
negative eigenvalues m. Extensions of this result" would
be of great interest. In particular, it is natural to ask
whether the 2-parameter family of Kerr solutions"
embraces all eigenfields in the stationary case.

"It has been shown recently PW. Israel (to be published)g that
the Reissner-Nordstrom solutions with rrt &

( e
~

comprise all eigen-
6elds in the class of static, asymptotically Qat electrovac space-
times.

's R. P. Kerr, Phys. Rev. Letters 11, 237 (1963); R. H. Boyer
and R. W. Lindquist, J. Math Phys. 8, 265 (1967).

The result of this paper would have important
astrophysical consequences if it were permissible to
consider the limiting external field of a gravitationally
collapsing asymmetric (nonrotating) body as static.
In that case, only two alternatives would be open—
either the body has to divest itself of all quadrupole
and higher moments by some mechanism (perhaps
gravitational radiation), or else an event horizon ceases
to exist. "

ACKNOWLEDGMENTS

I am indebted to V. de la Cruz, C. W. Misner, and
particularly F. A. K. Pirani for stimulating discussions.
This work was carried out during tenure of a Senior
Research Fellowship from the National Research Coun-
cil of Canada.

APPENDIX

In connection vvith the argument of Sec. 4, it will
be shown here that the level surfaces of a regular
harmonic function V (defined on a three-dimensional
Riemannian space) are many-sheeted in the neighbor-
hood of a point I'p, where V has vanishing gradient.

Let V~„... „(rt&2) be the covariant derivative of
lowest order which does not vanish at I'p. In terms of
Riemannian normal coordinates with origin at I'p, we
have

g'I ~.=~' I'-s"
I ~.=0,

„I t .——0, (rl(rt)
ct, ct „UIQ —V[ ...

I
j» —N.c ... +0.

The harmonic condition g
' 'VI, ,... „=0 requires that

c,... „be traceless. Thus the leading term in the power
series expansion

V—Ve=c~. ..~ x '. .x ~+ LVe =—V(Ps)j

in a solid spherical harmonic Y„(x',x',x') of degree tt.
Hence V—Ve vanishes on rt distinct curves of a (suf-
ficiently sinall) geodesic sphere with center Ps, and the
surface V= Vp has more than one sheet.

"ln this connection, it is perhaps signi6cant that one can
construct a sequence of static vacuum fields with axial symmetry,
which are nonsingular to well within the gravitational radius—
they display only a "pointlike" multipole singularity at the origin
of Weyl's coordinates —which are free of event horizons, and which
deviate arbitrarily little from spherical symmetry for r) (1+@2)et.
See W. Israel, Nature 216, 148, 312 (1967).


