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Some general properties of the electromagnetic corrections to the 8 decay of a physical nucleon, that is,
a nucleon in the presence of strong interactions, are discussed. The aim of the paper is to isolate and deter-
mine general properties which are independent of the details of the strong interactions and the assumptions
about the existence of the intermediate boson. The method used consists essentially in separating out in a
finite and gauge-invariant manner all the terms of order 1/k in the hadronic covariants, and then examining
properties of the other contributions. Under some general and plausible mathematical assumptions, it is
shown that all the terms of order « in the correction factor to the electron spectrum which explicitly depend
on the electron energy E and the electron mass 7 can be rigorously computed, in spite of the complications
of the strong interactions, provided that contributions of relative order ag/M, a(E/M)In(M/E), and avy/c
are neglected. In particular, the electromagnetic correction of order « to the shape of the allowed electron
spectrum is given by a single universal function g(E,Em,m) of E, m, and the end-point energy E; this
function is independent of the details of the strong interactions and the assumption that the weak inter-
actions are mediated by an intermediate boson. It is furthermore independent of the ratio M ¢r/M r, and is
physically significant, particularly if applied to nuclear 8 decays with E,/m>>1. These propositions do not
preclude the existence of model-dependent terms which give contributions to the lifetime. No attempt is
made here to evaluate these quantities, but their role on the physical observables is discussed. It is pointed
out that, aside from the electron spectrum, there are other observables for which the corrections can be
evaluated in a model-independent manner. This assertion is illustrated by giving the expression for the
virtual radiative corrections of order « to the longitudinal polarization of the electron in allowed transitions.
The contribution of the universal function g(E,En,m) to the lifetime is briefly discussed. This paper im-

25 DECEMBER 1967

plicitly assumes the validity of the vector and axial-vector theory of weak interactions.

I. INTRODUCTION

HE radiative corrections to the B decay of a
nucleon have been discussed extensively in the
past.r7 One reason why these corrections are of interest
is their relevance to the problem of universality of the
weak interactions. There are other practical reasons
which, although not so well known, are also of experi-
mental interest: for example, the corrections alter the
shape of the allowed electron spectrum in 8 decay and
these effects are significant when the end-point energy
of the electron is large in comparison with the electron
mass.?

An interesting theoretical aspect of the corrections
is that they are logarithmically divergent in the V—4
theory when evaluated in the case of a bare nucleon,
i.e., a nucleon in the absence of strong interactions,
while the corresponding quantities for muon decay are
finite and well defined. In order to save the principle
of universality of the weak interactions, which in the
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usual formulation relates the bare weak-coupling con-
stants of these processes, two main approaches have
been suggested. One, proposed by Lee® and also in-
vestigated by other authors, assumes that the weak
interactions are mediated by an intermediate boson.
We recall that one of the main results of these calcula-
tions is that the relative renormalization in x and 8
decay, which is the physically observable quantity,
turns out to be finite. The other approach, discussed by
Feynman,! by Berman and the present author,* and by
Killén,” suggests that the strong interactions them-
selves may provide a natural cutoff in the ultraviolet
region. Recently, Bjorken,® and Abers, Norton, and
Dicus,! using current-algebra techniques have asserted
in very interesting papers that that part of the electro-
magnetic corrections to the vector decay coupling con-
stant which arises from the vector current contains a
divergent part which is independent of the strong
interactions and is therefore identical to the correspond-
ing infinity in the calculations of Refs. 2-4. Even if
this assertion is correct, it does not give a complete
answer to the problem of the relative renormalization
to u and B decay for two reasons: (a) In the first place,
as these authors emphasize, there is a contribution
from the axial current which may be also divergent and
model-dependent, and (b) these calculations follow
implicitly the usual assumption that the hadronic and

8 T. D. Lee, Phys. Rev. 128, 899 (1962) ; R. A. Shaffer, ibid. 128,
1452 (1962); G. Dorman, Nuovo Cimento 32, 1226 (1964); D.
Bailin, Phys. Rev. 135, B166 (1964).

9 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

W E. S. Abers, R. E. Norton, and D. A. Dicus, Phys. Rev.
Letters 18, 676 (1967).
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leptonic currents are taken at the same space-time point
in the weak-interaction Lagrangian. However, from the
calculations with intermediate bosons we know that
possible intrinsic structure effects of the weak inter-
actions may alter the convergence properties of the
electromagnetic corrections.!

The investigation of these convergence properties is
clearly a subject of great practical and conceptual
interest. The corrections as a whole cannot be lightly
dismissed as a subject of study because they are im-
portant in providing a detailed understanding of the
experiments on the muon decay energy angle distribu-
tion’? and some aspects of B8 decay. Without these
corrections, for example, the very precise experiments
available in u decay would not coincide with the
predictions of the ¥—A4 theory. One is then faced with
the problem that the calculations are necessary in order
to understand in detail some experiments while their
effect on the problem of universality is far from clear.

In the present paper, the problem of the convergence
properties of the electromagnetic corrections in the
ultraviolet region is not investigated and is to a large
extent bypassed. We will take here the hopeful point
of view that somehow the weak, electromagnetic, and
strong interactions successfully conspire to give a finite
value for the relative renormalization of the 8 and p
decay coupling constants.

Rather, the aim of the present paper is to try to
isolate and determine some general properties of the
corrections which are independent of the details of the
strong interactions and of the assumption that the weak
interactions are mediated by an intermediate boson.®
We will show, under some general and plausible mathe-
matical assumptions, the validity of the following
proposition. “All the terms of order « in the correction
factor to the electron spectrum! which explicitly depend
on the electron energy E and the electron mass 7 can
be rigorously computed in spite of the complications of
the strong interactions, provided that contributions of
relative order ag/M, «(E/M) In(M/E), and avy/c are
neglected.’ Moreover, such terms modify the Fermi

1 This intrinsic space-time structure of the weak interactions
need not be necessarily associated with intermediate bosons. We
may consider more general structures such as discussed, for ex-
ample, by T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).

2V, L. Telegdi, University Lectures on Physics, New York
University, 1967 (unpublished). . )

12 That there are properties of the electromagnetic corrections
which can be determined independently of detailed assumptions
about the strong interactions was already recognized on the basis
of heuristic arguments in Ref. 4 (Sec. VI and Appendix). In
that paper this “universality property” was conjectured for the
term 3(e/27) In(m,/En) which plays an important role in the
corrections to the lifetime. In the present paper we refine the
theoretical arguments and extend the determination of such
properties to physical observables.

14 The spectrum can be expressed as the usual allowed spectrum
multiplied by an energy-dependent factor of order a. We refer to
the latter as the correction factor.

16 Here vy is the nucleon velocity, ¢ is the total momentum
transfer to the leptons, and M is a hadronic mass. All noncovariant
statements in this paper refer to the rest frame of the decaying
system. A more detailed characterization of M is given in Sec. I1L.
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and Gamow-Teller contributions to the transition
probability in the same manner and coincide exactly
with the corresponding quantities in the bare nucleon
calculations.” In particular, we conclude that the
“electromagnetic corrections of order « to the shape of
the allowed electron spectrum in neutron 8 decay is
given by a single universal function g(Z,E.,m) of E, m
and the end-point energy E.,, which is independent of
the details of the strong interactions and the assumption
that the weak interactions are mediated by an inter-
mediate boson.” Furthermore, they can be applied to
allowed nuclear 8 decay using an independent-particle
model of the nucleus.’

It is important to note that the above propositions
do not preclude the existence of terms independent of
I and m which are affected by the strong interactions.
Such terms give contributions to the S-decay lifetime.
We will not attempt to evaluate them in this paper, as
they are model-dependent, but rather we will limit
ourselves to indicating the contribution of the finite
function g(E,E,.,m) to the lifetime. If the relative re-
normalization of the u and 8 decay-coupling constants
turns out to be finite, we believe that these contribu-
tions will play a significant role, as they contain the
large terms of logarithmic order in the electron energy.

The discussion in the paper proceeds according to the
following pattern. In Sec. II the virtual radiative cor-
rections of order « are separated into two parts. The
first part, which can be evaluated independently of the
details of the strong interactions, contains among other
contributions all the terms of order 1/% in the hadronic
covariants (% is the photon four-momentum); it is also
finite (in the uv region) and gauge-invariant. This first
part, when integrated over the photon four-momentum,
gives the usual infrared-divergent terms, the Coulomb
term of order a, and various logarithms and Spence
functions characteristic of the point-structure calcula-
tion. This method of separation is in principle similar to
a procedure used by Frautschi, Suura, and Yennie!¢ and
by Meister and Yennie!'” in their investigations of the
infrared divergence in quantum electrodynamics. How-
ever, our presentation is quite different, as we wish to
emphasize some of the effects of the strong interactions.
In the discussion of Sec. IT we first consider a nucleon
in the presence of strong interactions without assuming
that the decay is mediated by an intermediate boson.
At the end of Sec. IT we then explain the simple changes
needed to allow for this possibility. In fact, it seems
very likely that the discussion and results of this paper
can be extended to more general space-time structures
for the weak interactions, such as those investigated, for
example, in Ref. 11. However, we will not study this
point in the present paper.

The second class of contributions, which do not con-
tain terms of order 1/k in the hadronic covariants,

16D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N.Y.) 13, 379 (1961).
17 N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1962).
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depend on the details of the strong interactions and the
assumptions about the intermediate boson. They in-
volve three- and four-point functions. In Sec. III, we
discuss these contributions and show, under general and
plausible mathematical assumptions, that they consist
of terms independent of E and m plus terms of order
ag/M and o(E/M) In(M/E). We further prove some
general properties of the first type of terms, which are
necessary for the physical applications.

In Sec. IV we give the general expression for the
correction factor to the electron spectrum. We discuss
then the role played by the model-dependent and
model-independent terms regarding the physical ob-
servables. After taking note of the contributions of the
universal function g(E,E.,m) to the lifetime, we empha-
size that there are other observables, aside from the
electron spectrum, for which the radiative corrections
of order a can be evaluated in a model-independent
manner. We illustrate this point by giving the expression
for the virtual radiative corrections to the longitudinal
polarization of the electron in allowed decays.

The discussion and results of this paper implicitly
assume the validity of a vector and axial-vector theory
of weak interactions.

II. THE SEPARATION

In this section the virtual radiative corrections of
order a are separated into two parts. The first part is
characterized essentially by the following properties:
(i) It is independent of the details of the strong inter-
actions; (il) it contains all the terms of order 1/% in
the hadronic covariants; (iii) it is finite (in the uv
region) and it is invariant under gauge transformations
of the photon propagator. The second part depends on
the details of the strong interactions and involves three-
and four-point functions.

We consider first the diagrams in which a photon is
exchanged between the hadronic and electron lines.
Such diagrams can be divided into three classes accord-
ing to whether the photon is emitted from an electro-
magnetic vertex attached to the external proton line, or
the external neutron line, or from the internal structure
of the weak vertex. The contribution of the first class of
diagrams [Fig. 1(a)] is given by!8

Gy’ « d*® Dvu(k)[ﬂe(ZZv_'Yvk)O)\vv]

MP)= e
V2 4x¥ (k2—21-k+ie)

X [a,T 0P (pa, pat-k) S (pat-k)Wr(patk, pr)un],
1

where py, ps, !, and % stand for the neutron, proton,
electron, and photon four-momenta; Amin is the photon
mass, Or=v,(141s); Gv° is the bare-coupling constant
of the weak-vector current, Wy and T,® are the fully

18 Tn this paper we adopt the same conventions and definitions
as R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin,
Inc., New York, 1962), with the exception of vs; which we define
as v5=471727870-
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I'16. 1. Diagrams involving photon exchanged between
hadronic and electron lines.

dressed renormalized proper vertices of the weak inter-
action and electromagnetic currents; and Sy’ is the
fully dressed renormalized propagator of the proton. It
is important to note that ¥, obtains contributions from
both the vector and axial-vector currents. The quantity
—iD,,(k) is the photon propagator, which we choose
to write in the Landau gauge:

(gw_ kvkﬂ/kz_"ie)

Dyp, (k) = N . (2)
k2— >\min2'1'le

We now introduce the ‘“proton electromagnetic form
factor” F,» (ps, pa-+k) for the case in which p, corre-
sponds to a proton on the mass shell but p,+*% is off
the mass shell:

@pLu® (o, pat-k)Se (patk)
=1ZPF“(P) (P% P2+k>[p2+k—mp]_l7 (3)

where m, is the proton mass. This equation may be
regarded as the definition of ,(»), Using the generalized
Ward identity, one readily checks from Eq. (3) that

kuFﬂ(p) (P% P2+k) = k; (48‘)
F,® (P27P2) =Yu> (4b)

where it is understood that F,(® acts on the spinor 4,
on the left.
Equations (4) suggest writing!®

F#(p) (p% P2+k)=7M+Xn(p> (P2; P2+k) > (Sa)

where
kﬂXM(p) (P% {72+k)=0 ) (Sb)
Xu® (p2,p2)=0. (5¢)

We now insert Egs. (3) and (Sa) into Eq. (1) and
separate the terms of order 1/% in the hadronic covariant
in the following manner:

H“)\(p) (P27P1)k)5 dpfﬂ(p) (P2; P2+k)§F'(P2+k)
XW(patk, pun= (R2+2ps-k+ie)~
Xp[ 2poutk) Wa(po,p1)+Rin P (po,p1,k) Jubn,  (6a)

19 A similar decomposition was used for different reasons by
B. Zumino, Nuovo Cimento 17, 547 (1960).
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where

R @ (po,p1,k) = 2poutk)[Wi(petk, pr)—Wi(pe,p1)]
+ X, (P, pat-k) (potR+mp) Wi(potk, p1)
+[vwRIWa(pat-k, p1)/2. (6b)

Assuming that aW»/0ku(pe+k, p1)|k—0 exists, we see
that R,\® — 0 linearly with %, as £, — 0. Thus, while
the first term in Eq. (6a) is obviously singular as
k,— 0, we notice that the term proportional to R, ®
X (pa,p1,k) is “regular as 2, — 0” in the sense that

lim lim (k242ps- k) LR\ @ (pa, p1,k)

ko—0 k;—0
exists. The term k,Wi(ps,p1) in Eq. (6a) has been
separated together with the term of order 1/k for tech-
nical reasons that will become apparent later.

It is clear that a similar analysis can be made for the
diagrams in which the photon is exchanged between
the electron and the electromagnetic vertex attached to
the external neutron line [Fig. 1(b)]. The electromag-
netic form factor of the neutron F,™ (p1—k, p1) can be
introduced by means of an equation analogous to Eq.
(3). However, because the neutron has zero charge,
instead of Eq. (4a) one obtains

k#Fu(n)(Pl—kr PI)ZO: (73')
Fﬂ(n)(Plapl)zoa (7b)

where it is understood that F,( acts on the spinor #,
on the right. The matrix element for this contribution
is analogous to Eq. (3) with the hadronic covariant
H 2\ (po,p1,k) of Eq. (6a) replaced by

Ho ™ (po,pr,k) =[R2 —2p1-k+ie]™
X [apW(pa, pr—k) (pr—k+m.)
XFu(") (Pl_k: Pl)”n]

Clearly, H,\ is “regular” as k, — 0.

Let us now call G (ps2,p1,k) the matrix element for
the emission of a photon of four-momentum & and
polarization u from any internal line of the proper
vertex of the weak-interaction current [Fig. (1c)]. By
judicious use of the generalized Ward’s identity for the
electromagnetic vertex functions, one finds the relation:

kuG o (P2, p1,8) = Wi (po,p1) — Wi (p2tk, p1).  (8a)

Expressions analogous to Eq. (8a) are well known in the
literature.?? Perhaps the simplest way of obtaining Eq.
(8a) in our case is to consider an arbitrary graph for the
process #— p+e+» without any photons and then
insert a photon of four-momentum %, and polarization
x in all the charged lines of the graph, including the
external proton and electron lines. Demanding that the
sum of the corresponding matrix elements should vanish
after multiplication with %, and summing over all pos-
sible initial graphs one readily obtains Eq. (8a).

20 B, V. Geshkenbein and V. S. Popov, Zh. Eksperim. i Teor.

Fiz. 41, 199 (1961) [English transl.: Soviet Phys.—JETP 14,
145 (1961)1.

(7c)
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A fundamental property of G (pa,p1,£) is that it is
“regular’ as £, — 0. This can be shown in a number of
ways that we briefly summarize:

(a) Assuming that (3W,/0k,)| k=0 exists, Eq. (8a)
tells us that 2,Gu\(pa,p1,k) vanishes linearly with %, as
k,— 0. This implies that G, cannot have singularities
of the form £,/ (p2-k), where £,» is a tensor independent
of %,.

(b) Consider an arbitrary diagram W, (ps,p1) con-
tributing to the proper vertex of the weak-interaction
current and not involving photons.? From perturbation
theory, it is known that the matrix element G, *(p2,$1,0)
for the emission of a zero-momentum photon from the
internal lines of Wyi(ps,p1) can be obtained by dif-
ferentiation with respect to the proton four-momentum,
that is,

4N

Gu)\i(pZ,PI,O) = (P%Pl) ’ (Sb)

2p

which, of course, is consistent with Eq. (8a). Eq. (8b)
can be proved by following the charge line ending in the
proton. It is always possible to choose the internal
momenta in this line in such a manner that, for example,
the propagators of positively and negatively charged
fermions are of the form 7(po+ki—m;)! and i(—p,
~+k;—m;)7Y, respectively, where the m; and &; stand
for internal masses and momenta. Differentiation with
respect to py, inserts a zero-momentum photon in each
charged propagator of this line with the correct sign,
while, as it is well known, insertions of zero-momentum
photons in closed loops give a vanishing contribution.
Equation (8b) shows that G, is finite at 2=0 provided
OW(p2,p1)/dp2y exists.

(¢c) The matrix element for the emission of a photon
of momentum %, and polarization p from any vertex
on the hadronic line is given by

Mao=—i / dix e =(p| T[7.(x)7x*(0)]|n), (8c)

where j, and j,* are the electromagnetic and weak
currents. Inserting a complete set of intermediate states
one sees that only the one-proton state gives rise to a
1/k singularity (as k, — 0) and that the residue of this
singularity coincides with the first term in the square
bracket of Eq. (6a). Thus, the only 1/k singularity in
M, corresponds to the term already separated in Eq.
(6a). Consequently, we see that G (p2,p1,k) is “regular’”’
as k,— 0.

Inserting Eq. (6a) into Eq. (1) and adding the con-
tributions from diagrams in which the photon is emitted
from the electromagnetic vertex attached to the ex-
ternal neutron line and from the internal lines of the
proper vertex of the weak-interaction current, we obtain

1 The index ¢ labels the particular diagram under consideration
and 2 Wh, (pa,p1) =W (b2, 1)
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the matrix element M;:

Gy’ « d*k Dl’u(k)Eae(2lﬂ_‘Yl’k)O>\'D‘l’]
UUVE 4t (B— 21 ktie)
2poutE)Wa(ps,
[ﬂp{( poutku) x(jl-z P1)+ Tu)\(pZ,phk)}un],
(k2+2py k+ie)
(9a)
where R (pap)
T (payp1k) = — " Gy (po,p1k)
2L 2py btie
R, ™ Pk
" ™ (pa,p1 )’ ob)
2= 2py-ktie
R ™ (po,p1,6) = Wi (p2, p1—k) (p1— k+m.)
XF, ™ (p1—Fk, p1). (9c)

The quantity M, is the matrix element (in the
Landau gauge) of all the diagrams in which a photon is
exchanged between the hadronic and electron lines
[Figs. 1(a), (b), (c)]. The term proportional to
(2p2utk)Wa(ps,p1) in Eq. (92) and the term involving
R® in T, represent the contribution from graphs
in which the photon is emitted from a vertex attached
to the external proton line, while G, and the term
involving R\ in T, correspond to the diagrams in
which the photon is emitted from the internal lines of
the weak vertex and from a vertex attached to the
external neutron line, respectively.

The tensor-pseudotensor T, (p2,p1,k) has two basic
properties: (a) T, is “regular” as k—0; (b) T, is
transversal in the sense that

B T a=0. (10)

Equation (10) is obtained immediately by using
Egs. (4a), (7a), (8a) and the definitions (9b) and (9c).
We also note that the contribution of the term propor-
tional to (2psu+k,)Wa(p2,p1) in Eq. (9a) can be com-
puted explicitly: one readily finds that the correspond-
ing % integration is finite in the uv region [in the
Landau gauge used in Eq. (9a)7], although it is infrared
divergent (i.e., it depends on InAmin).

Thus, in Eq. (9a) we have achieved a separation of
the diagrams depicted in Figs. 1(a)-(c) into two parts:
the first part is finite (in the Landau gauge used here),
contains all the terms of order 1/ in the hadronic co-
variant and can be evaluated independently of the
details of the strong interactions; the second part
depends on the details of the strong interactions through
T and is regular as 2, — 0 in the manner described
above.

Equation (9a), by itself, is not invariant under gauge
transformations of the photon propagator. As is well
known, in order to obtain matrix elements which are
invariant under such transformations, it is necessary to
add to Eq. (9a) the diagrams in which the photon is
emitted and absorbed by the electron line (electron
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Fi1c. 2. Wave function renormalization
of electron.

wave function renormalization) and also the diagrams
in which the photon is emitted and absorbed by the
hadronic line.

In the Landau gauge, after mass renormalization,
the electron wave function renormalization (Fig. 2) to
order a is given by

a Gy’
M,= —5;3; E[ﬁpwk (szpl)u"]
a4k Dm(k)[ﬁe(ﬂ”-—y,‘k)l(ﬂy— k'YV) (l+m)0)\’l)v:l
X/ (k2—21-k4ie)2m?

(11)
One readily verifies that the integral in Eq. (11) is
finite in the uv region, a well-known property of the
electron wave function renormalization in the Landau
gauge. Moreover, M is proportional to the zeroth-order
matrix element
0
14
Mo=—La.0x0, L, W (ps2,p1)16n]. (12)
V2
From Lorentz covariance, it is clear that the matrix
element for the diagrams in which a photon is emitted
and absorbed by the hadronic line (Fig. 3) must have
the following structure:

o
M3=5‘—['IZBO)\Z),,][V)‘+A )\], (13&)
™

where Vy and A4y are hadronic covariants of the form

=1, fil@mtife(@ong~+ f:(DpTJun,  (13b)
A=1,[g1(M+1g2(Dongs g3 (@A Tvsun, (13c)

and we remember that ¢ is the total-momentum transfer
to the leptons. If we neglect the terms proportional to
ag and the ¢* dependence of the form factors, which
most likely are excellent approximations, only the terms
f1(0)yx and g1(0)yxys survive in Eqgs. (13). The effect of
contributions of this type on the physical observables
is discussed in Sec. IV.

As it is well known, all the infrared terms in the con-
tributions of Fig. 3 arise from graphs in which the
photon is emitted and absorbed by the outgoing proton
and are entirely contained in the following quantity?:

MS(L‘)___ __a_M /d4k Dvu(k) (2P2—k)ﬁ‘(2p2'—k),,
(k2= 2py- k+ie)?

, (14
8731 (14)

% These contributions must be included in the model-indepen-
dent part of the corrections to guarantee the gauge invariance of
the separation and the cancellation of the infrared divergences.
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P ¢ ) (10) and have set Amin=0 because the integral is
v F1c. 3. Photon emitted and absorbed infrared-convergent. Equation (15) depends on the

by hadronic lines. We include symboli-
cally in Fig. 3 the diagrams with one or
two ends of the photon line attached to
the external hadrons.

where we have introduced the superscript ¢ to indicate
that M3 is a convection-convection contribution in
the classification introduced in Ref. 17. The fact that
Eq. (14) contains all the infrared terms in the con-
tributions of Fig. 3 can be discussed by methods
similar to those explained after Eq. (8a) and is con-
sistent with statements made in Refs. 16 and 17.

Finally, let us consider the contribution of Egs. (11),
(14), and the first term in Eq. (92): each of these
terms is finite in the uv region and their sum is invariant
under gauge transformations of the photon propagator.
The last statement can be checked immediately by
making the replacement D,, (k) — k,k.c(k?) (where ¢ is
arbitrary) and observing that the sum vanishes. The
explicit contribution of these terms and the inner
bremsstrahlung diagrams is given in Sec. IV; we antici-
pate that their dependence on E and  is identical to
that obtained in the bare nucleon calculation.

Thus far, we have considered a nucleon in the
presence of the strong interactions, but we have not
taken into account the possibility that the decay occurs
via an intermediate boson. However, it is clear that the
separation and all equations discussed in this section
can be extended immediately to the case of an inter-
mediate boson by making the following changes: Wy
is replaced everywhere by W,D B, where DB is the
propagator of the intermediate boson and G\ is re-
defined so as to include the emission of a photon by the
intermediate boson. Graphs in which a photon is ex-
changed between the boson and the electron are in-
cluded in the contribution involving T, in Eq. (9a),
while all other graphs in which a photon is attached to
the intermediate boson are included in Eq. (13a). In
other words, the role of the intermediate boson in this
separation is simply to “‘enlarge” the structure of the
weak vertex. As it was mentioned in the Introduction,
it is very likely that these arguments can be extended
to more general space-time structures for the weak
interactions.

III. ON SOME GENERAL PROPERTIES OF THE
MODEL-DEPENDENT CONTRIBUTIONS

In this section we discuss some general properties of
the term involving T, in Eq. (9a). Aside from constant
factors, it is given by the integral

o d“k[ﬁe (21,‘— ’Y“k)O)\vr][apTM)\ (P%plyk)u’n]

[=——
21 (k*+1€) (k2—21-k+1i¢€)

(15)

where we have used the transversality relation of Eq.

details of the strong interactions and the assumptions
about the existence of an intermediate boson via the
tensor-pseudotensor 7. In particular, the convergence
of I in the uv region depends on the asymptotic prop-
erties of T',\ as £ — 0, and these are model-dependent.
We will assume that Eq. (15) is either finite in the uv
region or that otherwise it has been regularized so as to
have mathematical meaning.

Let us first consider the contribution X to Eq. (15)
involving the factor v,k in the leptonic covariant:

[ a*% k [1'2 T )\(P ;P )k)u"]
K=_—[1Z67n7p0)\vﬂ]/ ’ . i i . (16)
2w (k24-ie) (k2—21-k+ie€)
Using the separation
[B2—2l-k+ie] = [k2+iec] ™
+20-k[R+ie ] [h2—21-k+ie]?, (17a)
K can be written as:
K=K+K,, (17b)
@ %k ko[ T i\ (P2, pr,k)t0n
K1=__[7267u7p0)\7’v]/ e X e ]: (17C)
2r (k*+ie)?
a % kol o[ AT un (payp1,k)thn ]
Ko=—1,[dy:7,0\0,] / ,,‘ BT ——.
T (R2+-1€)2(k2—21-k+i¢€) 7d)

Because T (p2,p1,k) is “regular” as k,— 0, K; and K,
converge in the infrared region.

The integral in Eq. (17c) does not involve the electron
four-momentum !, explicitly. If the total-momentum
transfer to the leptons ¢ is neglected in 7, so that
T\ (po,p1,k) is approximated by T (py,p1,k), it is easy
to see after performing the % integration that K, is of
the form (see Appendix A):

K1= (a/27r)[ﬂ80)\vy][ﬂp(a’)(x+b’Yx’Ya)un] ’

where ¢ and b are constants independent of Z,. The
precise values of @ and b depend on T, and, therefore,
on the details of the strong interactions and the assump-
tions about the existence of an intermediate boson. The
effect of contributions of the form (17¢) on the physical
observables is discussed in Sec. IV.

We now consider the contribution K, of Eq. (17d)
and discuss its dependence on the four-vector I. We
will illustrate our procedure by considering the contri-
bution to K from the term involving R,\® (p2,p1,k) in
the definition of 7, [Eq. (9b)]. The other two terms
can be discussed in a similar manner.

Using the fact that R\ (ps,p1,k) — 0 ask— 0 we
expand this quantity as follows:

R @ (po,pr,k) =k aS e (pa,p1)
+kakﬁsaﬂu)‘(b) (p2>P1)k) )

(17¢)

(18a).
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where San @ (po,p1) is independent of % and Sap“)\(b)X(pz,pl,k) is regular as k— 0. Using Eq. (18a), and
denoting by K,® the contribution from the R, term in Eq. (9b), one obtains:

A%k Bk o[ (B oS aurn @ (2, 1)+ FaepS apur @ (pz,pl,k))un]

K@ = (a/m)l, [ue'y,ﬁpox%]/

The integral involving .Squn(® (ps,p1) can be evaluated
by standard methods and one finds, as intuitively ex-
pected, that it contains terms of logarithmic order in
E and m but it does not contain terms of order 1/I. As
this particular integral is multiplied by /., we see that
the first term in Eq. (18b) gives contributions of order
o(E/my) In(m,/E), a(E/m,), and smaller. We refer to
these contributions as ‘‘terms of higher order in the
lepton four-momentum”; they are affected by the
strong interactions but very likely they are quite small,
as they involve two small factors.

The integral involving Sagum® (pe,p1,k) cannot be
evaluated explicitly in our method, as the exact de-
pendence of this function on % has not been determined.
For the purpose of further discussion, let us define the
expression

A ok ok akpS apin® (P, p1,k)

L®({) =/ )
(B ie PR — 201 k+ie]Tki+2pa- ktie]
(18¢)

where we have suppressed the tensor indexes in L and
¢ is a numerical variable. We note that L®(1) is the
integral involving Sesn® in Eq. (18b). For {=0,
L®(0) is well defined. In fact, because Sagn® is
regular as k£, — 0, L®(0) is convergent in the infrared
region, and it possesses the same convergence properties
in the ultraviolet as L®(1). We will assume in this
paper that L®({) is a continuous function of { in the
interval —1<¢<1 or that, at least, L®({) remains
bounded in this region. The continuity assumption
seems to be a very plausible mathematical hypothesis
and it is illustrated in Appendix B by choosing a par-
ticular form for Sasn® (pe,p1,k). In this Appendix we
discuss also the continuity properties of L® regarded
as a function of the four variables I, (u=1,2,3,0), in
connection with the problem of mass singularities.
Under the above mentioned assumptions we see that
the second term in Eq. (18b) is also of “higher order in
1,” as the integral L® (1) is multiplied by I,. Therefore,
the same is true for Ko . More precisely, the second
term in Eq. (18b) is of the order «E/M, where M may
be the proton mass m,, the mass of the intermediate
boson, or the mass of the hadrons which characterize
the behavior of the structure function S® (ps,p1,k). A

similar analysis shows that the term involving /, in the

leptonic covariant of Eq. (15) is also of higher order
in the lepton momentum.

In summary, we conclude that the contributions of
the term T, in Eq. (92), which depends on the details
of the strong interactions and the assumptions about

[k2+iePLR2—

(18b)
2 kt-ie [k 2ps- k+ie]

the existence of the intermediate boson, are of the form
(17e), provided that terms of order a(E/M) In(M/E)
and ag/M are neglected.

IV. GENERAL RESULTS

In Sec. I we have separated the contributions from
the diagrams of Fig. 1 into two parts discussed in detail
in Eq. (9a) and subsequent paragraphs. We pointed out
that the first part, when combined with the electron
wave function renormalization (Fig. 2) and the con-
vection-convection contribution to the diagrams of
Fig. 3, [Eq. (11)7, is invariant under gauge transforma-
tions of the photon propagator, is finite in the uv region,
and is independent of the details of the strong inter-
actions and the assumptions about the existence of the
intermediate boson. These particular contributions are
expressed in terms of well-defined integrals and can be
evaluated by standard methods. Aside from these, we
encounter contributions which do depend on the details
of the strong interactions and the assumptions about the
intermediate boson, namely the term involving T, in
Eq. (92) and the contributions to Fig. 3 not contained
in Eq. (11). In Sec. III and in the discussion in Sec. IT
after Eq. (13a) we have shown, under some general and
plausible assumptions, that these two contributions are
of the form given in Eq. (17e), provided we neglect
terms of order a(E/M) In(M/E) and ag/M.

Thus, we can write all these “model-dependent
terms” in the form

0

S= E E;[ﬂeow,,][’ﬂp(C’Y)\"‘Pd')’)\'ﬁ)“ﬂ] , (19)

p=—G4/Gy, (192)

where ¢ and d are constants independent of E and .
Equation (19) obviously contributes to the corrections
to the lifetime. However, if we neglect terms of order
o?, it is clear that these terms can be formally ‘“ab-
sorbed” in the zeroth-order matrix elements by re-
defining the vector and axial-vector coupling constants.
Therefore, up to terms of order « the contribution of
Eq. (19) will not alter any observable which to zero
order in « is independent of the values of Gy° and G 4°.
If the initial neutron is unpolarized, there are two such
observables: (i) the electron spectrum when the neu-
trino direction and lepton polarizations are undetected
and (ii) the longitudinal polarization of the electron
when the neutrino direction and polarization are
undetected.

Combining the contribution of the first term of Eq.
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(9a) with Egs. (11), (14), and (19), and the inner
bremsstrahlung diagrams, we obtain the following ex-
pression for the decay probability of a neutron after
averaging over the initial nucleon polarization, inte-
grating over the neutrino direction and summing over
the lepton polarizations:

HE.—EPp?

T 21]"
where

My tanh™'g
g(E,Em,m>=31n<——>~—z—+4[— —1]

m 8

E.—E 2(En—E 4 72
e L
3E m B \1+g
—E)?

1
+5 tanh‘lﬁ[Z(l—l—Bz)—l-( ) —4 tanh‘lﬂ:l , (20b)

6F2
and

- |GV012<1+3‘ Rec)lMF|2
™

+1GA°|2<1+S Red>]MGT12. (20¢c)

In these equations E, is the end-point energy of the
electron, p is the electron momentum, 8= p/E, My and
Mg are the Fermi and Gamow-Teller matrix elements,
and L(x) is the Spence function:

L(x)=ﬁx?ln(1—t). (20d)

In the case of the decay of a free neutron, as it is well
known, | M¥|?=1, | Mgt|?>=3. We have used the more
general notation of Eq. (20c) to facilitate further
discussion.

The model-dependent constants ¢ and d, which remain
undetermined in this approach, have been absorbed in
the definition of the factor £. Equations (20) show quite
clearly that these terms give contributions to the life-
time but do not alter the shape of the electron spectrum
(at least up to terms of order a). Following the usual
convention® we have not included in Eq. (20a) the
Coulomb term of order «, although it arises from one of
the integrals in Eq. (9a). The reason is that such con-
tribution is already incorporated in the Fermi function
F(Z,E). We further recall that terms of relative order
a(E/M) In(M/E), ag/M, and smaller have been neg-
lected in the square bracket of Eq. (20a).

Equations (20) can be applied to allowed nuclear 8
decay by using an independent particle model of the
nucleus.” The function g(E,En,m) is independent of the
details of the strong interactions and the assumptions
about the intermediate boson, it is independent of the
value of Mgr/Mp, and it is the same for electron and
positron decay. Thus, g(E,En,m) is a universal function

SIRLIN
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which describes the deviations from the allowed electron
spectrum arising from the radiative corrections of order
a. It differs from the corrections computed in the past
in a numerical constant, independent of E, E., and m.%
Therefore, it gives the same corrections to the shape of
the electron spectrum as the “bare-particle” calcula-
tions. The difference, of course, is that in the present
approach we have concluded that this function is not
altered by “structure effects.” As was mentioned in
Sec. 4 of Ref. 3, the corrections to the spectral shape
arising from these effects is significant, particularly in
allowed nuclear 8 decays with E,>>mc?

For given values of the coupling constants Gy° and
G4% the function g increases the decay probability
for neutron 8 decay by 1.5%, and that of O* by 1.3%,.
Clearly, this is not a complete calculation of the cor-
rections to the lifetime because we have not considered
the model-dependent contributions of Eq. (20c). How-
ever, the effect of g on the lifetime is rather large as it
gives rise to the term 3(a/2x) In(m,/En), which was
discussed in detail in Ref. 4.

Aside from the electron spectrum, there are other
observables for which the radiative corrections can be
computed in a “model-independent manner,” provided
that the terms of order ag/M and «(E/M) In(M/E) are
neglected.?* Although at present this seems to be only
of academic interest, we illustrate the point for the case
of the longitudinal polarization of the electron when the
initial nucleus is unpolarized and the neutrino direction
is undetected. Most of the terms in the radiative cor-
rections turn out to be proportional to the uncorrected
matrix M, of Eq. (12). However in Eq. (9a) there are
some induced terms of a different tensor character.2
For allowed decays the interference with the zeroth-
order terms can be rigorously computed and we find
for the longitudinal polarization the expression

a (1-6Y)  /1+
P=—ﬂ|:1 | ln( ﬁ)]
2r B 1—8

In Eq. (21) we have only included the contribution of

2y

% The function g(E,Em,m) differs from the expression between
curly brackets in Eq. (4.1) of Ref. 3 by a constant term 6 In(\/m,)
+9/4, where X is the uv cutoff in the bare-particle calculation. We
have simplified the structure of this function by using the identity

2L(8)—2L(—B)+L((1—B)/2)—L((1+B)/2)
=2L(26/(1+8))—In((1+£)/2) In((1+6)/ (1-4))-

2 The number of such observables is particularly large for pure
Gamow-Teller or pure Fermi transitions.

% In the allowed approximation these terms may be written
as scalar and tensor contributions of order « multiplied by a func-
tion of E. Their interference with M gives a contribution of order
a to the Fierz interference coefficient . The origin of Eq. (21) can
then be understood in terms of the conventional theory of 8 decay
by observing Egs. (9), (AS5), and (A10) of the paper of J. D. Jack-
son, S. B. Treiman, and H. W. Wyld, Jr. [Phys. Rev. 106, 517
(1957)7]. These interference terms give also a contribution to the
electron spectrum, which have been included in the function
g(E,Emym). The expression of the terms not proportional to Mo
in terms of induced scalar and tensor terms is not necessary to
perform the calculations but it is mentioned here for orientational
purposes,
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the virtual radiative corrections.?® This result is valid
for an arbitrary value of Mgr/Mr. The absence of the
model-dependent terms ¢ and d indicates again that
Eq. (21) is independent of the details of the strong
interactions and the assumptions about the existence
of the intermediate boson.
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APPENDIX A

In Eq. (17¢) we write Ox=v,(1+vs) and use the
identity

'Yn,m=gnnx—g“wfi—gmu" ieup)\a’)’a’Ys ; (Al)

where we adopt the convention ¢p23=1. The contribu-
tion of the first term in Eq. (A1) to K is

d4k pk Ty. 2 l,k n
‘—[um(l-*-vs)v J f Listuliobifhn] o)
(B2 4-1€)?

Neglecting the momentum transfer to the leptons ¢
= p1—ps so that T (pe,p1,k) = T (p1,p1,k), remember-
ing that %,k,T i (p1,p1,k)%, is a combination of vector
and axial-vector terms, and noting that after integration
over £ we have only at our disposal the four-vectors
Pax, T, and yyys, we see that (A2) reduces to an expres-
sion of the form (17e), provided that terms of order ¢
are neglected. Identical conclusions hold for the other
contributions of (A1).

APPENDIX B

In this Appendix we discuss continuity properties of
some Feynman integrals with reference to Eq. (18c) and
the discussion thereafter. As an illustration we consider
the following special form for Seg0®:

Saﬁuh(b) i gaﬂtu)\A2/ (A2_k2) b (Bl)

where £, is independent of % and A is a constant such
that A>>E. Equation (B1) satisfies the condition that
S® is finite as k, — 0. Its particular structure has been

26 If real photons are undetected, there may be additional con-
tributions from the nonclassical contributions of the inner
bremsstrahlung. As it stands, Eq. (21) refers to a hypothetical
experiment in which only soft photons are undetected.
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chosen in order to simplify the algebra. In such case the
integral L®(¢) in Eq. (18c) is proportional to the
expression

T30n(0) =80 (2m)2
&% bk LAY (A2—£2)]
(ki€ k2~ 2¢1- kie Tk +2pe- k+ie]

We recall that p, and / are the proton and electron
four-momenta; 7, and m are the corresponding masses.
This integral can be evaluated by standard methods.
One finds that J3,, is in fact a continuous function of
¢ in the interval —1<¢<1. If A>>m, and terms of order
mp/A are neglected,

(B2)

. _ _PZUPZ‘r 1 A
{*1_13‘]3”(3')—-]3‘11—(0)— y '—gu'r[ + n(mp>]. (BS)

My

This is in agreement with the general discussion after
Eq. (18c).

It is interesting to note, however, that J3,, is not a
continuous function of the four variables 7, (u=1, 2,3,0)
in the neighborhood of /,=0. The reason is that if one
regards J3,- as a function of these four variables /,, the
cone =0 (we might call it “the light cone of the
massless electron”) is a surface of logarithmic singu-
larities. These are the mass singularities discussed in
Ref. 3 and, in greater depth elsewhere.?”:?® To illustrate
this point we note that in the proton rest frame, one of
the contributions to (B2) can be written approximately

—L{als)/ (2mpp) ] In[ (E+p)/ (E—p)], where we re-
call that £ and p are the electron energy and three-
momentum. Replacing I, — {ls, p — {p, E— (P, we see
that this term is a continuous function of { and tends
to 0 as {=0. However, it is not a continuous function
of E and p as E=p is a line of logarithmic singularities.
This is the only contribution to Eq. (B2) which in-
volves mass singularities. It is, however, a term of higher
order in the lepton momentum in the sense of Sec. III.
By examining the continuity properties with respect to
¢ we avoid, so to speak, the light cone of “the massless
electron.”

We note that for the general argument of Sec. III
it is not actually necessary to assume the continuity or
even the boundedness of the second term of Eq. (18b).
The minimal required property is that such contribution
should not diverge faster than In{ as { — 0.
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