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Nonrelativistic SuIn Rules and the Binding Energy of the Deuteron
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Nonrelativistic sum rules obtained by one of the authors in potential scattering with potentials of 6nite
radius are used to calculate in a very simple way the deuteron binding energy from the neutron-proton
triplet-5 phase shift, In order to use these sum rules, one must know the imaginary zeros in the k plane
(k= gE) of the regular solution pq(k, r) of the radial Schrodinger equation. These are studied in detail for an
arbitrary potential (whether having a finite radius or not), and their properties are established. It is found
that these zeros are closely related to the bound states. In particular, their number is the same as the number
of bound states. If we denote the zeros by i y, (r), j=1~ e, it is shown that each y, (r) is an increasing
function of r and has a finite limit for r —& ~, which corresponds to a bound state of energy F.;= —7P ( ~).
These facts, together with the sum rules, enable us to calculate the bound-state energies in a very simple
and direct manner from the phase shift and the interaction radius, which is an arbitrary parameter in the
sum rules and may be chosen as large as necessary in order to be sure that one is really outside the range of
the interaction. The method is applied to the deuteron, assuming that the n-p interaction in the Si state
has a radius of the order of the triplet scattering length (o&

——5.4 F), i.e., more than 3 times the triplet ef-
fective range (ra~=1.73 F). The result is 2.30 MeV, in good agreement with the experimental value 2.224
MeV. This particular example shows that although, in general, the phase shift and the binding energies are
(except for the Levinson theorem) independent of each other, it may be possible, for interactions of short
range, to calculate the latter from the former in a simple way by making the physically reasonable assump-
tion that the interaction vanishes identically beyond some radius, which may be taken as large as necessary.
Some possible applications of the sum rules are briefly indicated at the end.

I. INTRODUCTION
' 'N this paper we consider the problem of scattering
~ - and bound states of a nonrelativistic particle of
mass M in a central potential V(r). The potential is
assumed to satisfy the customary conditions

b, (0)=tsp-, (2)

positive variable k, ' and n~ arbitrary real negative
numbers,

0&E1&E» "&&.„
such that fi~(~)=0 and

rs
l V(r) l

dr & oo, (Ib)
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' R. G. Newton, J. Math. Phys. I, 319 (1960). We shall follow

the notations of this review article, to which the reader is referred
for a good collection of references on classical works on potential
scattering and the inverse-scattering problem.

'M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964); R. G. Newton, Scattering
Theory of S'aves and I'articles (McGraw-Hill Book Company, Inc. ,
New York, 1966); V. de Alfaro and T. Regge, Potential Scattering
(North-Holland Publishing Company, Amsterdam, 1965).

' See Ref. 1, Sec. 8 and references therein.

where A(~ and 8&0. Under these assumptions, it is
well known' ' that the scattering problem is well de6ned,
and can be developed in terms of the Jost solutions and

the Jost functions. Moreover, the inverse-scattering

problem in a given angular momentum stat- -i.e., to
6nd the potential from the knowledge of the phase shift

at all energies and of the binding energies in the angular
momentum state under consideration —is also well

defined and leads to the Gel'fand-Levitan integral
equation. The following theorem can then be proved'.
Given any real continuous function B&(k) of the real

then there is a family of potentials, the so-called phase-
equivalent family, which admits, in the angular mo-

mentum state t, the phase shift 3q(k) and ts~ bound states
with energies L&1 E„.

This family depends on e& arbitrary positive parame-
ters, X1 X,. These parameters are related to the
residues of the S matrix, S~= exp2ib~, at the poles 8;.'
ln other words, except for the Levinson theorem (2),
there is no relationship, in general, between the phase
shift and the binding energies. Each one can be chosen
arbitrarily. The potential is therefore a definite universal
function (functional) of all the above quantities:

'As usual, we take A=23f =1. The energy is then given by
E=k', when k is the wave number. For negative values of k, the
phase shifts are defined by St(—k) = b&(k), i.e., they—are all odd
functions of k.

'In the case of n-p interaction in the 'Sj state, the phase-
equivalent family depends on one free parameter ) . One can show,
in general LR. G. Newton, Phys. Rev. 101, 1588 (1956)j, that if
the phase-equivalent family contains a potential decreasing at
infinity like exp( —2xr), x&x„„this potential is unique among all
the potentials of the family. It has the shortest range. On the
contrary, if one of them behaves like exp( —2xr), xCX&, they all do
so. For the n-p interaction in the state 'S~, the value of the free
parameter X can be obtained from the cross section of the deuteron
photodisintegration at low energies, or from radiative capture of
therma) neutrons by protons, because the wave function of the
bound state depends explicitly on P. See K. Chadan, J. Phys.
Radium 16, 843 (1955); Compt. Rend. Acad. Sci. Paris, 242, 1964
(1956); R. G. Newton, Phys. Rev. 105, /63; 107, 1025 (195'I); J.
S. Levinger and M. L. Rustgi, ibid. 106, 607 (1957). It is to be
noticed that this determination of X in the simple model considered
for calculations (Eckart potentials) gives precisely the potential
with the shortest range.
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~=&(&i(k); Ei. . E~,; )i. ),; r). The situation is
quite diQerent if we know beforehand that the potential
must have some definite properties (given asymptotic
behavior, etc.). In that case, we may be able to find
some relations (compatibility conditions) among the
above quantities. The simplest example is the one dis-
cussed in Ref. 5.

The case we consider here is the one in which the
potential has a 6nite radius R:

V—=0 for r)R. (3)

It is obvious here that 8r(k), E,, and ), are no longer
independent of each other. In fact, according to (3),
we have a continuous infinity of relations among them.
This, of course, means not only that the above quantities
are not independent of each other, but also that the
phase shift itself, as is well known, can not be arbitrarily
chosen. Therefore, using (3), we can in principle cal-
culate the binding energies and X; if we know the phase
shift. Even if the potential has an in6nite tail, it may
happen that putting V—=0 for r&R, and R large enough,
will lead to good approximate values for the binding
energies. Unfortunately, the Gel'fand-l. evitan integral
equation is of the Fredholm type, so that its general
solution is not explicitly known. Despite this, the situa-
tion is not hopeless, because, assuming (3), we can ob-
tain other types of functional dependence between the
phase shift and the binding energies. A 6rst type of
relation is given by the sum rule'

valid for allr+R and all real k. X, is de6nedby 8,= —X'
and

Xj
8(x)= —2P tan '—

the sum over j being limited, of course, to bound states
of angular momentum /. At zero energy we get

»
I
cosI kr+&(k)+ e(k) j I

X (6)

where ap is the S-wave scattering length and B~p is the
Kronecker symbol. If there are no bound states, one
must simply put all X;=0 in (4).

A second, more general type of sum rules has also been

' K. Chadan, Nuovo Cimento 40, 1194 (1965). To simplify the
writing, we shall henceforth drop the subscript l in all the sum
rules.

d6 ~ 2X, i
r+

dk ~=i k'+&,' rr

»
I cosI «+~(k+s) —~(k)+0(k+z) —0(k) g I

X (4)
S2

obtained, which apphes to all cases, i.e., whether the
potential has a 6nite radius or not. If the potential has
a finite radius R, and for S wave, they read'

X2. 1 +"
r+—= C(k, r) —2 P I'—— dk'

dk ~ k'+Xrs

ln
I
k sinI k'r+h(k')g/k' sintkr+&(k)] I

X — . (7)
(k' —k)'

Once more, this formula applies for all r&E. and all

real k. I' n1eans the principal value of the integral, and

C(k,r) is given by

I»ni)„'(kr)
I

C(k,r) =P (g)
Ik„'(k,r) I

where fl„' and
I
k„'I are, respectively, the argument and

the modulus of the complex zeros, in the k' plane, of
the regular solution qt(k'+k, r) of the reduced radial
Schrodinger equation

l(1+1)-
4i"+ E — 4—t= Vkt,

(21+1)!!
lim —

q t(k, r) =1.
r O

For other waves, one simply has to replace in (7) the
sine functions by appropriate combinations of the
spherical Hankel functions k~t+'(kr) and exp(&inst).
One can also take the limit k —+ 0 in (7) and obtain a
formula similar to (6).

The above sum rules may be used for many purposes.
We list here the most interesting applications.

A. Physical De6nition of the Radius of Interaction

Knowing the phase shift —even if it does not corre-
spond to a potential of finite radius R—and the binding
energies, one may use Eq. (4) to define an interaction
radius at the energy E=k'. Indeed, it is clear that (4)
and (7) should hold for very large values of r. The larger
r is, the better the right-hand side wiH agree with the
left-hand side. The agreement is, of course, complete
for r &R if the potential vanishes beyond R. In the limit
of r -+~, both (4) and (7) a,re exact whatever the phase
shift and the binding energies may be, under the sole
restriction (2). This is because cutting off a given po-
tential with infinite tail, satisfying (1b), at a very large
distance E, does not affect appreciably 8(k) and E;, so
that, by making R ~~, all the above quantities reach
sn1oothly and continuously their limits. Everything in
(4) and (7) being continuous (continuous functionals)
and the integrals absolutely convergent, one finds that

' K. Chadan, Nuovo Cimento 41, 115; 44, 838 (1966).
s To obtain Eq. (7), or its generalization for other waves, we

just have to replace, for r)R, the Jost solutions f&(&k,r) by the
free solutions (spherical Hankel functions) in Eq. (3.1) of the Grst
paper of Ref. 7.
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both are exact for r —+~, i.e., the difference between
the left-hand side and the right-hand side goes to zero
in that limit. If we now start from a given large value
of r, at which we have a good agreement between the
two sides of (4), and make it smaller and smaller, the
agreement will break down at some value of r. We may
then take this value as a definition of the interaction
radius at the energy 8=k'. Note that our sum rules
make use only of well-de6ned physical quantities. They
do not contain anything (the potential or the wave
function) referring to the interaction region. This point
is very important because the concept of the radius of
interaction should not depend on these quantities in the
interior region. It is given by the region of space where
particles move freely.

Of course, in practice, we do not know the phase
shift at all energies, nor do we know it exactly at low
energies. However, at low energies (small values of k)
the high-energy part of the integrals, because of their
rapid convergence, gives a very small contribution of the
order of 1'%%u~. On the other hand, the uncertainties on
the values of 8 at low energies, for neutron-proton scat-
tering, give an error of the order of a few percent. One
may assume that the radius of interaction is given by
the point where the disagreement reaches 5—10%%. This
procedure has been applied to both singlet and triplet
n pinteractions i-n S wave at low energies. The details
of calculation will be reported in a forthcoming paper.
The interesting results one finds are as follows: First,
in both singlet and triplet cases, the agreement between
the two sides of (4) is excellent, and stays within 2 or 3%
down to values of r given by R,=2.4 F and R,=1.7 F,
respectively. However, making r smaller than these
values by 0.1 F, one suddenly gets a large disagreement,
of the order of 10%%uo, which increases very rapidly when

one makes r smaller and smaller. The second interesting
feature is that the above radii are very close to the
effective range values r0, =2.51 F and r0~=1.73 F.' Also
R, and R& are almost independent of energy in the
range 0—10 MeV. Therefore, we see that the concept of
interaction radius, as defined through (4), seems useful,
at least for nucleon-nucleon scattering at low energies,
and is well defined because of its sharpness. We are
therefore in a position to alarm that, at low energies,
the tz-p interaction in the S state is quite negligible, as
far as (4) and (7) are concerned, at distances of the
order of the triplet scattering length a, =5.4 F. This
point is very important in what follows, and leads to
a very good value for the binding energy of the deuteron.

B. Energy of Bound States

We may use (4) or (7) to calculate the energy of the
bound states if everything else is known and if r is
chosen large enough. In practice it is preferable to use

(7) because the binding energies do not appear in the

s R. Wilson, Ttze Nucleon Nucleon Interacts'cn -(Interscience
Publishers, Inc. , New York, 1963l.

integrand, and despite the presence of C(k,r), which we
shall study in the next section. As will be seen, the com-
plex zeros of pz(k, r) have many interesting properties
which relate them closely to the bound states. In fact,
it is this connection between the complex zeros of p~ and
the bound states which gives us the key for the use of
(7) to calculate X,.

C(k,r) =Q
Ik. I

s+ks —2k lk. f
cose„

(10)

Now, combining the Schrodinger equation (9) a t
E=k' with its complex conjugate, we find the well-
known relation

(pzyz'* pz'yz*) f,—=4i Rek Imk
I pz I

sdr. (11)

It follows that, for r&0, the zeros of icz(k, r) are purely
real or purely imaginary. p& being even in k, the zeros
are symmetrical with respect to the origin, so that we
have to sum only over the zeros in the upper half-plane,
and multiply by a factor of 2. If we denote these zeros

by k (r) = iy„(r), we have

V.(r)
C(k,r)=2P, ~„(r)&0.

n 7 s(r)+ks
(12)

We now have to look at the variations of y (r) with
respect to r. First of all, the asymptotic behavior of p&

in the k plane is given by

qz(k, r) —+ k ' 'sin(kr ——,'hr)
J7g f

~oo

+0(fkl ' 'exp(fImkfr)), (13)

uniformly in r. It follows that it z(iy, r) ~co as y ~co.
Consequently, for each fixed r(AO), there are no com-

plex (imaginary) zeros beyond some value il'(r). Also,
because of the analyticity of p& in k, their number is
finite. We have to show now that I'(r) remains bounded
when r —+~. We have the following upper bounds':

f q z
—k '—'uz

f (Cz exp( f
Imk

f
r)

)z+1 r

xf-
E1+ fk f.&

dr'f V(r')
f
—,(14)

1+ fk fr''

where uz(kr) is the free solution (spherical Bessel func-

tion), and Cz is a numerical constant. For S wave, this

IL COMPLEX ZEROS OF zzsz(k, r)

The regular solution zzcz(k, r) of (9) is an even entire
function of k. ' ' We are in fact looking at the zeros of
ioz(k'+k, r) in the k' plane, k (real positive) and r(&0)
being fixed. Let k„(r) be the zeros of &pz(k, r). We have
k„'(k,r) =k„(r) k,—and so C(k,r) can be written
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reads" (y& 0)

sinhyr exp(yr)
yp(iy, r) — (C D(y),

d" II (")I 1+yr'

(15)

(16)

This equation, when integrated, gives

r

y(r) =y(ri) exp C(r')dr',
~1

(By&i
4(r) = 2 y& (Piy(r), r')dr'

&By)

(21)

It follows that yp(iy, r) is strictly positive whenever
2CD(y)+exp( —2yr)(1. Now, according to the defini-
tion of D(y), and (la) and (1b), this inequality is
satisfied whenever r and y are large. Therefore, I'(r) is
bounded when r —+~. The argument goes the same way
for other waves if we use the asymptotic behavior
of Ni(z) for large values of z. As we shall see, the maxi-
mum value of I'(r) is reached for r~~, and cor-
responds to the largest binding energy (the ground
state) E„,= —I"(~). If the potential is absolutely
integrable at the origin, we get, from (15) and (16),
the upper bound

I'(~) &2Cl
I
V(r') I«', (17)

which is very similar to the Schwinger bound. "
Let us now study the motion of the zeros iy, (r) with

r. The wave function y~ being an entire function of k
for all finite values of r, and at least once continuously
differentiable with respect to r for all values of k, the
equation y~(iy, r) = 0 will lead in general to well-defined
and differentiable solutions y, (r) as long as By~/

BIy, , „,. &tAO. To simplify the writing, let us denote
by y(r) one of these solutions. We have

dv

dr (Byi/By) ., l.l

(18)

Now, combining (9) for two infinitesimally close
energies, we get the familiar formula

B yi = 2k yP(k, r')dr'.
Br Bk Br8k ()

(19)

dy 2y(r)

(Byi/By) I, t ) p

y (iy(isr), r')dr'. (20)

"In general, qI is real for real or purely imaginary values of k.
This is so because (9) is real for E real (&&0), and the boundary
condition dehning y~ is also real and in fact independent of k.
See Ref. i.

"J. Schwinger, Proc. Nat. Acad. Sci. (U. S.) 47, 122 (1961).

At this point we notice that, for k either real or purely
imaginary, the right side of (19) is different from zero
if both k and r are /0. ' Therefore, for r/0, y~ and
Byi/Bk cannot both vanish at the same time, except
at k=O. If we substitute now By,/Br from (19) into
(18), we get, remembering that yi ——0,

Now C(r) is real positive because y~(iy, r) and Byi/By
are both real for y real. It follows that:

(i) y(r) is defined on every interval (r&,rp) where
C(r) is integrable. The only singular points are those
where Byt/By vanishes in such a way as to make 4 non-
integrable. This is because y(r) stays bounded, as we
saw before, and so does the numerator of C. Therefore,
the only singula. r points are those at which y(r) =0
(k= iy).

(ii) Starting from a singular point r, and increasing r,
the function y(r) becomes continuous and differentiable,
keeps a constant sign, and increases monotonically
when r increases. It does not vanish any more, and so
we never meet a singular point again.

(iii) The trajectory y(r) reaches its maximum value
(finite) atr= po. At this point wehave y~(iy(~), op)=0,
i.e., y&(iy( po ),r) corresponds to a bound state of energy
E,= —y'(~). This means that to each bound state there
corresponds a zero trajectory y(r), the squared maxi-
mum of which gives the binding energy. The number of
complex zeros of p~ is therefore the same as that of the
bound states, at least when r is large enough. In
particular, p~ has no complex zeros if there are no bound
states.

(iv) For small values of r (r(r, ), the imaginary zeros
disappear: They go through the origin at r=r, (r,
different for each trajectory), become real for r(r„and
stay so. In fact, at r=r„we have two zeros +iy(r)
which meet at the origin. If iy(r) for r&r, goes to the
lower half-plane, —iy(r) goes then to the upper half-
plane, so that we would have a new imaginary zero
with dy/dr&0 This i. s impossible because of (20).
Where these (real) zeros go when r —+ 0 is of no impor-
tance. In general, they terminate at infinity on the real
axis because y&(k, r=O) vanishes independently of k.

The above considerations may be illustrated very
easily with the square-well potential. We consider an
attractive potential of radius R and depth —Vo= —ko',
and take for simplicity the 5 wave. The wave function
ls

yp(k, r) = (sinEr)/E, r&R
=A exp(ikr)+8 exp( —ikr), r) R

with E= (k'+kp')'" and

ik sinKR+E cosER
A = exp( —ikR)—

2ikE

ik sinER —E cosKR
8= exp(ikR)

2ikE
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On the imaginary axis k=iy, we have E= (ks' —p')'".
It is then easily seen that the total number of imaginary
zeros is X or iV+2, according to whether tanksR is)0 or (0, E being given by the greatest integer such
that As-&k,R. The complex trajectories y„(r) begin at
the (singular) points r„e, y„(r„s)=0, ran=1, , N,
r„a=as/ks, and the point rare=R —(1/ke) tanksR
whenever the last trajectory exists. Notice that, in this
case, r~+~ &R, whereas r„'&R for I=]. E. Then
one finds that, for r —+~, all the trajectories go upward
in a monotonic way until their limiting values, given by

cotE (~)R= —y„(~)/E„(~),
E-( )=Lko' —v-'( )1'"

Therefore, the (1V+1)th complex trajectory begins at
= ap and so one must have ap&R. For potentials

of finite radius R, it is obvious that there is at most one
trajectory beginning at rp&R, all the others having
r„p&R.

The total bound-state term in (7) can now be written

2X
S(k,r) = C(k, r) —g

n k2+y 2

n k2+~ 2(r) ks+~ 2((~ )
(23)

If the phase shift is known, one can calculate S(k,r),
using (7) and study its dependence on r (r& R) and k. In
practice, it would be suflicient to calculate S(k,r) from
(7), for a given value of r (r)R), at a finite number of
values of k in order to determine the parameters y, (r)
and y;(~). The trajectories of the zeros would then be
determined outside the interaction radius by varying r.
This in turn would enable us to make a best fit for y, ( oo )
by taking r large and using the fact that S(k, ~)=0.

III. BINDING ENERGY OF THE DEUTERON

The method developed in the previous sections has
been applied to calculate the deuteron binding energy
from the 'Sr e-p phase shift. We assume that the
interaction has a radius R less than or equal to the
triplet scattering length a& =5.4 F. This is a very natural
and plausible assumption in that both rpt, and R& are
close to 1.7 F. The phase shift we use is obtained as
follows. For E in the range 0—24 MeV (k =0—106 MeV/c)
we use an eGective-range expansion with four terms.
The first two coeKcients (the scattering length and the

The above equation is exactly that of bound states and
corresponds to 8=0. We 6nally note that, in the case
where an (iV+1)th trajectory exists (r&+is)R), the
scattering length ap must be greater than R. Indeed, the
wave function at zero energy is given by

q p(0,r) = C(r ap), —r&R

effective range) are those of Noyes. " The two other
coeS.cients are chosen in such a way as to make the
phase shift in the above energy range join as smoothly
as possible the phase shift in the energy region 24-400
MeV (k=106—433 MeV/c), taken from Amdt and
MacGregor. " In this last energy range, we use in fact
an interpolation formula that reproduces in a very
smooth way the experimental results. Finally, in order
to estimate the importance of the high-energy contribu-
tion, we use an a,symptotic tail, up to k=2000 MeV/c,
inspired from the p-p phase-shift analysis of Hama and
Hoshizaki. '4 It is found that this asymptotic tail gives a
very small contribution, of the order of at most 2%, to
the integrals. The major sources of errors are in fact
the computational errors (3%) and the experimental
uncertainties on the phase shift (6%). The net result is
Es=2.30(1+0.1) MeV, in good agreement with the ex-
perimental value 2.224 MeV. The calculations have
been performed for several values of r (r&a,). The
result, except for very small fluctuations, is independent
of r. This confirms once more that at distances greater
than a few fermis, the interaction is really quite
negligible.

In principle, one should obtain the best result
for k=0 in (7). However, this cannot be done very
easily. We have used several values of k in the range
0—20 MeV/c. The binding energy seems to depend
slightly on k, although a constant value is not excluded
in the above energy range. In fact, Ep oscillates around
the value given above, with a slight tendency to in-
crease when 0 increases. The extrapolation at 0=0 gives
Ee 2.28(1&0.1) Me——V.

The above example has to be considered as a test for
the practical usefulness and the reliability of the sum
rules in the case of interactions with a short range.
Among many applications of interest we niention the
two following: (i) In nuclear physics, the sum rules may
serve as a subsidiary condition for eliminating some sets
of experimental phase shifts in neutron-nucleus scatter-
ing if the target and the neutron can form a bound state
(isotope. )"The case of proton-nucleus scattering needs
some further work because of the Coulomb interaction.
(ii) In elementary-particle physics at low energies, one
may use the sum rules for the same purpose of removing
some of the ambiguities of the experimental phase
shifts. Here we do not very often have a bound state. "
However, we may use (4) or (7) to determine, as was
explained in Sec. I, the interaction radii corresponding
to di6erent phase shifts, hoping that some of these may
lead to interactions with an unreasonably large range.

"P.Noyes, Phys. Rev. 130, 2025 (1963)."R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
(1966)."Y.Hams and N. Hoshizaki, Progr. Theoret Phys. (Kyoto).
34, 584 (1965)."Many-channel sum rules are needed here in most of the cases.
Work in this direction is under progress and some results have
already been obtained. We hope to develop the generalized sum
rules in a forthcoming paper.


