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It is shown that a nonlinear Lagrangian model with chiral SU (2)QSU (2) symmetry for the 7V system
proposed earlier, when complemented with an exact partially conserved axial-vector current term, pro-
vides a systematic and unified treatment of various phenomenological Lagrangians that are found in the
recent literature. A detailed comparison is made for three special cases, showing agreement with current
algebra and experimental data for =~V and == scattering lengths.

1. INTRODUCTION

NE of the successful applications of current com-
mutation relations and the hypothesis of partially
conserved axial-vector current!'? (PCAC) deals with
the calculation of the pion-nucleon scattering lengths
and pion-pion scattering lengths at threshold energy.?
The same results can be reproduced in the perturbation
expansion from a phenomenological Lagrangian chosen
in such a way that the vector and axial-vector currenis
that follow from it satisfy the current commutation
relations and the PCAC assumption. Some specific
models have been studied by several authors®® and
the results are all in agreement with each other up to
the second-order expansion in the coupling constant.
Such a Lagrangian approach provides a simple calcu-
lational scheme for observable quantities in pion physics
even if Gell-Mann’s current-algebra method and the
PCAC assumption are regarded to be more fundamental
and primary.

The main purpose of this paper is to show that a
general, partially chiral-invariant nonlinear theory of
- interaction proposed some time ago®!! provides a
systematic and unified approach to the problem of
constructing effective Lagrangians for baryon-meson
systems. Three specific models (of which one is exten-
sively studied in a paper by Brown?’) are introduced as
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particular cases of the general model to show explicitly
the relation of the theory to the recent phenomenologi-
cal models.? In the renormalizable ¢ model? a 0 meson
is introduced in the Lagrangian to be later eliminated
after assuming a high mass for ¢.5 In the aforementioned
general model the Lagrangian is nonlinear to start with
and involves only baryons and 0~ mesons. The com-
parison is facilitated by using a canonical transformation
previously proposed.® Not surprisingly, one of the
models leads exactly to the phenomenological Lagran-
glan considered by Schwinger, and they all agree with
Weinberg’s effective Lagrangian up to the second order
in the pion-nucleon pseudovector coupling constant.
The slight discrepancies in the S-wave pion-pion scat-
tering are discussed in Secs. 4 and 5.

2. GENERAL NONLINEAR MODEL
WITH PCAC TERM

The charge-independent Lagrangian of the pion-
nucleon system with a Yukawa coupling reads

L= —P(y,0u+mpp—1 tr(9,29,2)

—%/J'z tr((p(p)_,_ceint) (2'1)

where ®=x- ¢ and ¢ is the Hermitian pion field. The
interaction Lagrangian may be nonderivative (renor-
malizable model)

£int=ig\z75<p‘l’; (22)
or, of a derivative coupling type
Lint= (f/”)¢7ﬂ75all®¢ . (2 3)

The isospin symmetry of the Lagrangian (2.1) is ex-
pressed by
¥— ‘V= G%ir'w‘p )

& — P =gliruP g tire,

Now if we consider the following chiral transformation
for nucleon fields:

Y P =ehinray, (2.4a)

the Lagrangian (2.1) is no longer invariant under such
chiral transformation due to the presence of not only
the pion-mass term, but also the nucleon-mass term
mp. Actually the perfect chiral SU(2) symmetry of
the Lagrangian of the pion-nucleon system_is not
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expected, because of the nonconservation of the axial-
vector current which is constructed from the chiral
SU(2) gauge transformation. Furthermore the PCAC
assumption tells us that the divergence of the axial-
vector current is proportional to the meson mass, and
hence, in the limit of the pion mass u going to zero, the
axial-vector current becomes conserved, leading to a
perfect chiral SU(2) symmetry in this limit.>1° In
order to keep chiral symmetry valid in this limit in the
presence of a nonvanishing nucleon mass term, the non-
linear model was proposed as a solution.®*!® In this
model, the nucleon mass term sy is simply replaced
by my Uy, U being an 8X8 matrix function!? of iys®
=1ys%- ¢. It is easily seen that

117(7,.8,.+mU)¢
is invariant under the isospin SU(2) transformation
defined as
Yoy =ebine,
U— U’=e%i‘r-wu e—}ir-w’

and the chiral transformation

¢ N ¢I= 6§i151-a¢ , (2.4:3.)
uU— UI= e-—%z"ys'r‘nu e—%i’ﬂi"'a , (24b)

which combine into a 6-parameter SU(2) X .SU(2) chiral
group (see Appendix B).

In conjunction with the replacement of the nucleon-
mass term myy by my Uy we can also write down the
kinetic-energy term of the mesons in the following
form?3:

1
——tr(6,Ua,UT).
162 (9,Ua,

Some specific models that will reduce to the ordinary
pion kinetic energy —39,¢- 9,0 as f goes to zero are

U = g2ifv57-0 s
1+ifyvse- o
U=—-——~

1—2fyse- go’
and

U=(1—4/20)142ifysz- 0.

Hence, the part of the Lagrangian, symmetrical with
respect to chiral SU(2)QSU(2) transformation, is

&'= = (yudutmU}—(1/16f2) tr(3,U8,U"). (2.5)

The total Lagrangian will contain an extra term which
will break the symmetry of chiral transformation, but
must still be invariant under the SU(2) group because of
the conservation of vector currents.tThe chiral sym-
metry-breaking term has to be constructed such that it

12y is a matrix regarded as a direct product of 2-dimensional
and 4-dimensional matrices.

13 It is understood that the trace is only performed in the SU(2)
part of the direct product matrix.
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fulfills the PCAC assumption. The explicit form of the
extra term in the Lagrangian is determined by the
specific models one uses. If one writes U in the general
form (see Appendix A)

U (ifys®)=o(f20?)+2ifysPp(f20?),

where
(oY) +4 e (oY) =1,

it will be shown in Appendix C that the chiral sym-
metry-breaking term can be expressed as

u ¢ ol (a) do(a)
Ls.p.=— —————da, ¢'(a)=

22 )y  [1—o(e) ]2 do

The total Lagrangian is therefore

(2.6)

- 1
L= £/+£S.B.= —xp('y,.a,,+mU)¢~1—6? tr(a,‘U G“UT)

2 ¢ a2 (a)
+— f ————da.
22Je [=o*(@) ]

The lower limit in the integration for £5 5. is chosen such
that when f goes to zero, i.e., in the absence of inter-
action, the Lagrangian will reduce to the sum of free-
fermion plus free-pion Lagrangians. The lower-limit
zero here is consistent with the three specific models we
considered previously.

2.7)

3. CANONICAL TRANSFORMATION

The Lagrangian which provides a simple way to
calculate the pion scattering lengths can be obtained by
the following canonical transformation!!;

£= Ty = Uy,
=W W=,

(3.1a)
(3.1b)

where W is a unitary operator, the detailed structure
of which depends upon the specific model. For example,
the W associated with the exponential model

U=¢2ifrre

is given by
W =expliffdx ¥ (x)yse- o(a)p(x)].
From (3.12) we have
P=ylyi= (U120 ys= £ (U12) y = Ey (U1 ty,.
It is shown in Appendix D that
(U 1/2)1 — U—1/2’ ,Y“Ui1/2= 8] U2y,
so that we have
J=EUr2,

and the Lagrangian in Eq. (2.7), after the canonical
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transformation, becomes

wWewt= ‘“E(’Yﬂan‘*'m)f
1
- é’)’,,(U 1/26#U_”2)£_"_”—‘ tr(auU auUT)
1612

u? 2n2 a”"’o”(a)
} ] da. (3.2)
210 )e [1—a%a)]e

The Lagrangian in Eq. (3.2) contains the classical form
of the free-nucleon Lagrangian — £(v,0,+m)¢, plus
the pion-nucleon interaction term — &y,(U29,U-1/2)¢
and the pion Lagrangian. The free-pion Lagrangian and
the pion-pion interaction Lagrangian are absorbed in
the last two terms on the right-hand side of Eq. (3.2).
The familiar form of the free-pion Lagrangian

—30m- 0 m—uimem

will appear in the lowest order in the expansion as a
power series in f.

Let us turn to consider the transformation properties
of the physical nucleon and pion field ¢ and =, respec-
tively, that appear in the transformed Lagrangian of
Eq. (3.2).

Denote

V =¢tivsra ,

then Egs. (2.4a) and (2.4b) read
v—yY'=Vy, (2.4a)
U—- U=7-1ur, (2.4b)

where V is unitary (VV=V'V=1). Let A be the trans-
formation matrix for the £ field; then

£ =AL.

By the canonical transformation (3.1a), (3.1b) and the
chiral transformation (2.4a), (2.4b), we have

£'=A£=AU”21//=AU I/ZV—-IV‘/J
=AU/ = U’/ .
Hence
Utz=AU12p-1, (3.3a)
and

A=U"12yyU-1e, (3.3b)

Tt is easily checked that A is also unitary:
AAT=(U2yy-12)(U/2y U-172)t=1,
Furthermore, we have (2.4b)
U’= U2y 2=y-1U -1
= V-‘IU l/ZU 1/2V—-1= V—IU 1/2A—-1AU 1/2V-—l s
hence

U= p-1Utea—1, (3.4a)
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and

A= Un2y-1yte,
By (3.3b), (3.4b), and making use of
v Utlz= U=y,

(3.4b)

VeV =V"ly,,
it is easily shown that A commutes with v,, i.e.,

[A;'Yﬂ]: 0,

and therefore it commutes with the 16 I' matrices.
This enables us, according to Schur’s lemma, to express
A in the general form

A= e'ir-b ,

where b depends upon the pion field =, a, and the cou-
pling constant f. For infinitesimal transformation, we
will show in Appendix F that

A(b)=eimdl+iz-b=1—1ifz (xXa).

Also in Appendix E, we see that (to the lowest order
in f)
a=—2fbx.
Hence, we have
A=1+4if (=X =),

which is just the infinitesimal transformation of the
nucleon field discussed by Schwinger.®

4. EXPLICIT FORMS FOR SPECIAL CASES

Let us now discuss in more detail the three specific
models of U mentioned at the beginning of this paper.
The interaction Lagrangian will be calculated ; the axial-
vector currents and symmetry-breaking term will also
be derived in each case.

A. Exponential Model

in(2fy/mr?
U=¢/vrr= cos(2fx/1r2)+2if'ysv-1c-s-%,
sin(2f/72?) sin(24/c)
()= :
2fr/7? 24/ a
o(fr?)=cos(2fn/7%) = cos(2¢/a),
where
a= fir2,

From Eq. (2.6) and Appendix D,

Lsp.=—Iulm-=,
& dum /sin(2f/7?) cos(2fr/7?)
J5M= — Eyuys—EH < >
2 2f 2f/m?

+f2w(a“7r2)/1 —Sm(2f\/7rz) COS(Zf\/Tz)) ) (41&)
2f27‘.2 \ 2f\/7r2
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Since

1/2 — p1, .
uv = gt/ 757 L

sin?fy/m?

™

U129, U1 2=4x- (=X I )

] {1:' Oy
—1s
e

+(‘v-7t)(qc~ a,m)f(l_

sin(fy/7?) cos(fv/7%)

2

in(fy/7%) cos(fr/7?)
vl

™
and

1 - )
——— tr(8,U8,U")=—39,= Gpﬂ(w>
1652 -

sin%(2f/ 7r2)>
4 forr? .

3 (70 8um) (e a,m)/l

2m? \ B

The interaction Lagrangians for this model are

ceint(s-ﬂ’)-: —g'y”(UU?a“U—llz)g

o, sin®(fa/7?)
=—-8Y,.{m-(7t>(6,m)———;—
| [7'% infy/a) cos(fy/)
— 15 sin ) cos 2
\/7?
(v =) (w- 9y) sin(fy/7?) cos(fv/7?)
(- ) e
(4.1b)
and

022
422

(m* Oyme) (me Q)
_ _<1

27?2

sin®(2fy/7?)
- e ) (4.1¢)

The expression of (4.1a)-(4.1c) in the power series of
f are

z 1
Js.= —Eyvstt+—3,m+0(f), 4.2
& 752£+2f +0(f) (4.2a)
and
eeint(g'ﬂ') = é’YM[if'YWV (Oym
—if2%- (=X d,m) JE+0(f2). (4.2b)

14 By adding the divergence 19,(%-%d, (7 %)) to the expansion
(4.2¢), and using the equation of motion, one finds
Lint(r-m) = {9, -7, (% - 7)) +3 2 (- 70) (3 9,7r)
—(z- 8um) (70 0m) ]+-O(f*) = f2((z - =) (3,70 9,w)
+u (- m)DHO(Y).

PION-NUCLEON LAGRANGIANS
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We also find!*
Ling(w-m) = [ () (de - Oye) +Fu*(m - ) 2]+ O(f4).
(4.2¢)
B. Second Model
1+¢f'yse = 1 fo? Lo
2if75 )
1—ifyse= 1—i-f2 2 14 fo?
1— f2r2 1
_1+f27l'2’ _1+f27l'2.
The symmetry-breaking term for this model is then
ut P oll%g!(q)
£8.8.5— ————da
2fJo  [1=a*o)]"
u? 7 da
= ———/ — ———1n(1+f21r2).
212 )y 14a  2f
The axial-vector current is (see Appendix D)
T Oy 1— f27l'2 (8,72
W= — byt — L fr————. (4.3)
2 2f (1+f271-2)2 (14222
Since
e ESEE
(1+f2.n.2)1/2

it is easily checked that

U"26”U‘1’2= (1+f27r2)"1
X[—ifyse- dumtifie- (wX a,m)],
and also

Uty o Iym- Oy

1
——tr(3,Ua, =
16 2 (14 222

Hence the Lagrangian in Eq. (2.7) is

L=— §(7#6M+m) £
+§7M{ ['if'yﬂ' Oym—ifix: ("“X 3“1:)](1+f27r2)—1}$

2

—1o,m- Ol ) In(1 4 fo)
2f?

One can recognize immediately that the Lagrangian
is the one proposed by Schwinger with the identification

f=fo/mx.

The two parts of the interaction Lagrangian are

Line(E-m) = Evi{ifyse: dum—ifie- (mX )}

XA+, (4.3b)
oeint(“"ﬂ') = —%6,,71: : a;ﬂ‘[(l +f2""2)—2'_ 1]
1 mem— (/) In(1+ f2)].  (4.30)
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The expansion of (4.3a)—(4.3c) becomes

T 1
J5u=— Evvst+—0,x4+0(f), (4.4a)
2 2f
Lin(§-m)= &y wlifyse-Oum
—ife (xX,m) JE+O(f), (4.4b)
Lin(m-m) = f (=) (9w 9,m)
+31p2(=-=)2]H0(fY. (440

C. Third Model
U=(1—427%)242ifyse =
This model has been studied by Brown extensively.”
Instead of expressing the Lagrangian in terms of meson
fields ¢ and the” corresponding canonical conjugate
field =, as in his paper, we still write the Lagrangian
in the general form given in Eq. (2.7). The results are

in agreement with Brown’s in the second-order expan-
sion. In this model we have
o(@)=01—42)"" pla)=1

hence,
2

I
£s,13,=*——[(1—4f27r2)1/2-— 1:' .
412
The axial-vector current is calculated to be
. T Oy
Jsu=— E’Yu’YsEE'I‘?(l —4 for2)li2

(au""z)
+ fr

————————(1 Ry . (4.52)

Since

1
Uﬂ:l/z_—___l 14 (1—4 o) 1/2]1re
7t S
2’if‘Ys‘v'1:
I[1+(1_4f21r2)1/z]1/2 ’

we have

UY29,U~12= — i fysn- d,m
1

7 . —_ 1 —(1— /2

+ifte (nxa‘,w)szm (1—4f22)1/7]

(z =) (- Oum)
T+ (4w

—4ifey
and also

—(1/16/%) tr(8,U9,U")=—19,x 9=
—2f%(m- yx) (- Oym) (1—4 f2n?).

P. CHANG AND F. GURSEY

164

Therefore the interaction Lagrangians are

Lint(E-m)=Ey, {ifyse: dum—ifie: (X dum)

1
_____1__ 1__.4 27{'2 1/2
X (=)

(s-%)x- )
[+ 4Pt (14t e
Linlr-m)= =2 3,7) (- 0) (1~ 41
(1—4fm2)12—1
212

The expansions of (4.5a)-(4.5c) are given in the
following:

— 4y, ]s, (4.5b)

-i—%,u,zl}r N ] (4.5¢)

Jsu=— 57»75f£+~1—3;m+0(f )s (4.62)
2 af
Lint(§m)=Ev, (i fyse 9w
—if?e (=X 8,m)}E+O(f%), (4.6b)
Line(m-m) = fH((7-7) (97 Oyi)
+3u(=-=))+0(fH). (4.60)

By taking the divergence of the axial-vector current
Js. in (4.2a) and making use of equation of motion, the
PCAC assumption will follow immediately as expected.
An important point to note is that we add the PCAC
term before the canonical transformation. This accounts
for the absence of -V cross terms in the expression of
the axial-vector current that appears in Schwinger’s
model.®

5. TRANSITION TO EFFECTIVE LAGRANGIANS

The effective Lagrangian, from which the pion scat-
tering lengths are calculated, can be obtained by replac-
ing the bare masses and coupling constants appearing
in the Lagrangian models we have, by the renormalized
masses and coupling constants, and by treating the
fields as renormalized operators if we regard our general
Lagrangian as the limit of a renormalizable theory like
the ¢ model when the o meson is eliminated. Because
the chiral SU(2) ®.SU(2) symmetry is broken, the axial-
vector coupling constant will differ from the vector
coupling constant. Further, the coupling constant
associated with the axial-vector current will be re-
normalized while the vector-current coupling constant
will not, since the isospin SU (2) symmetry is assumed to
be exact. Conventionally, we denote by g4 the axial-
vector renormalization constant. The bare coupling
constant f in the interaction Lagrangians will be then
changed into gaf for the axial-vector current part. We



164

also leave the vector-current part unchanged. Then, the
effective pion-nucleon interaction Lagrangian becomes

Lins©O (&) = E'Y#D'gzif T 0w
—if?e-(mX3ym) JE+O0(f)  (5.1)

for all three models. The effective pion-pion interaction
Lagrangians are

Lint D (r-m) = f (= -%) 0y O

+im2(zm-=)2]+O0(fY)  (5.22)
for the exponential model,
Lint D (r-m)= f (% %)I -

+imA(=-=)2]+0(f) (5.2b)
for the model U= (1+4ifyst-=)/(1—ifyse =), and
Lint O (r-m) = f (= %) Iy I

+imA(z-=)*]+0(f)  (5.2¢)

for the model U= (1—4 27212+ 2ifysx x.

If we compare the interaction with the one obtained
by Weinberg from the ¢ model, we can notice immedi-
ately that pion-nucleon interaction Lagrangians are all
equivalent to each other up to the second-order expan-
sion by the identification of f with —(G/2my)(gv/g4)-

The nonderivative pion-pion interaction Lagrangians
of the first (the exponential model) and the second
model differ from the third model which is equivalent
to Weinberg’s by factors of % and %, respectively. On
the other hand all three models have the same deriva-
tive pion-pion interaction term in agreement with
Weinberg’s model.

Let us consider the general pion-pion interaction for
the three models in the following form:
Lint O (r-m) =N (7 =) (- 0m) F A2 )2 (w=m.).

It can be shown that to first order in A\ and X/, the
transition matrix element 7" is

T(ab: cd)=16p 8,50ca(3(A\—N)+(¢/4u®)N')+ 8240 be
XGA=N)+(u/4u?)N)
+8ac06a(GFA—N)+ (s/4u2)N) ].
T is related to the S matrix by

Spi—87=12m)*6(ps— p) T 1s,

(5.3).

and
§=—= (ka+kc)2’
1=—(ka—ks)?,
u=—(k,—ka)?,

where &, is the momentum of the pion with isotopic
index a. The scattering lengths are then given by

ao=(u/4m)(SA+X"),
a2= (u/47)(2A—2)\").

(5.4a)
(5.4b)
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The ratio as/a, for the three models is found to have
the values —3%,—2, and — 2/7 for the exponential model,
second, and third models, respectively. The second
number agrees with Schwinger’s while the third is the
same as Weinberg’s.

The numerical value of g, is

8 12
ao=§ —u=0.154"" for the exponential model,
4

ao=1 Zu= 0.13u7! for the second model,

and
7
ao=5 Zy=0.20u‘1 for the third model.

The slight differences in the pion-pion scattering lengths
for the three cases do not invalidate the usefulness of
our unified Lagrangian model because the values quoted
are still compatible with the experimental results ob-
tained from K4 decay.?
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APPENDIX A

UGfys®) is a 2®4 direct product matrix with
argument v;P=1;t: ¢, where the 2-dimensional matrix
of the direct product shuffles the two different nucleon
fields among each other, while the 4-dimensional part
operates on the spinor components of each nucleon
field alone. The introduction of ¢ in the argument of
the functional matrix U (ifysP) makes f a real number,
namely the coupling constant. The matrix U (ifys®)
satisfies the following conditions:

(@)  U=U(Gfs2), U@O0)=1,
(b) UUt=U'U=1, unitarity condition
(© U'=U(—ify:d),

From these three conditions, U can be expressed
generally as

Ui fys®) =o(f20?)+2ifysp(f20D)®,

reality condition.

with
o(0)=1,
0,2(f2¢2)+4f2¢2p(f2(p2) = 1 .
The determinant of U is also unity, as a consequence

of the properties of the direct product and the diagonal-
ity of the matrix v; in the Weyl representation,

detU= (o244 2p%%)*=1.

(A1)
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APPENDIX B

Let yr=3(1+vs)¢ and ¢yr=%(1—vs)¥ be associated
with the irreducible representations of homogeneous
Lorentz group (3,0) and (0,3), respectively.!s The
transformations under the two commuting SU(2)
groups G, and G for the nucleon and the pion fields are
defined as

GL:
Vi pr =ehrngy,
Yr— ¥r'=Yr,
which can be combined into

¢ —_ 1//: e%i(H"Ys) (7/2)#1// ,

and for the pion field we have
U — U= b= (r/2-u 30+ (112)-u
G}z:
Yr—yr'=y1,
Yr— YR =e¥""Yr,
which can be written, in the compact form
v— .‘p': e¥i(1—vs) (7/2)~v¢ ,
and
U — U’ =ebilrm) )] g—ill—ys) (/2
The combined SU(2)®SU(2) transformation G* is then
G®:
¢__) e;i(1+'ys)(-r/2)~y+}i(1-7s)(1/2)-y¢,

U — ¥~ (7/2) - p+3i Ot 8) (r/2) 2
X g= ¥ (ys) (7/2) - w3 (—75) (r/2) -7 |

We are interested in particular cases
y=v=0 and up=-—v=a.

In the first case we have

(@)
Y ey,
U — etimey e——%ir'w,

which is the ordinary isospin transformation. In the
second case y=—v=a,

(b)
'p — ei’ys(r/Z)-l‘l, ,

U — e—wg(rﬂ)-au 8—175(7/2)'&’

which is the chiral transformation that is of special
interest to us in this paper.

16 They are in fact, the (3,0)4-(3,0) and (0,3)+(0,3) represen-
1tiat1ictlm because we consider the 8-component spinors of the nucleon
elds.
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APPENDIX C

Consider the infinitesimal chiral transformation
defined in Appendix B:

Yoy =y¢+&=(1+3dsc-a)y,
U — U’'=U+sU=U—4%i{yse-a,U},

(C.1)
(C.2)

where

& =73iyse-ay,

8U=—3%i{ysc-a,U}.
The construction of the axial-vector current from the
variation of the Lagrangian under the infinitesimal
transformation will be carried out by regarding the
components of a to be arbitrary functions of the space-
time coordinates. Therefore the variation of the
Lagrangian

= —KZ(’Y“ay‘i‘MU)l//— (1/16f2) tr(a,,UO,,UT)-]-ch,B,
gives
_ T 1
0L=—yYyyy5¥ pa——
2 162
Xtr[(8,U)(8,6U")+(0,6U)(3,U") ]+ 6Ls 5. .

Using (C.2), it is easily checked that

tr[(8,U)(0,8U")+(9,6U)(9,U")]
=2i tr{[(8,U) U+ U(8,U) Jys7/2} - 0,a.

Hence we have

T z %
5L=— <;/77"75—¢+— tr{ [(a,U)UT+ U*(auU)]vs—})
2 82 2
0,a+0Ls 8. =5, 04a+0Ls.8., (C.3)

where

==ty —— u| [GU)UMUG,U) e
2 8f2 2

is the axial-vector current.
Let us write (C.3) in the form

0L=J;,-9,a+0Ls5.=09,(J5,-2)

—(8uJs)-a+6Ls8.. (C4)

If the chiral symmetry-breaking term does not appear
in the Lagrangian, then 6Ls.5.=0 and §£=0 require
that 9,J5,=0, because a is completely arbitrary, and we
have a conserved axial-vector current. Now we intro-
duce £5.5. so as to agree with the PCAC assumption,

ul

6“15,‘=‘—¢ .
2f

Then (C.4) becomes
2

m
5£=6”(J5"'a)—5¢'a+5£s_3, s (C.4,)
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and the equations of motion require

2

0Ls.B.=—p"a. (C.5)
2f

Because of the conservation of the vector current, the
solution has to be invariant under isospin SU(2) trans-
formations, which allows us to assume £g.5. to be a
function of ¢- ¢ only.!8 Let a= f2¢?; then (C.5) reduces
to

dLs B. u?
2flp-dp=—¢ a
o 2f
or
dLsp. ' ¢-a
= . (C.6)
da 413 - 8¢

The solution can be obtained easily if we know the
relation between a and de.
Let us now write

U =0(a)+2ifysp(a)®.
(C.2) then can be expressed as

dU=—%i{yse-a,U}=—1iysor-a+2fpp-a. (C.7a)
On the other hand, we have
dU=21%"¢ -6+ 2ifys
X{pz-00+21%'(z- ¢)(e-d¢)}. (C.Th)

By equating (C.6) and (C.7) we obtain the following
relations:

pa= fo'dep, (C.8a)
ga=—2fpdo—4f% ¢(¢-3¢). (C.8b)
Combining (C.6) and (C.8a), we have
desp. K fo' u? 2(x)'%’' (@)
do  4fF ¢ 4p[l—c(@]/?’
u2 7 (@)% (o)
£s.B.=——/ ———da. (C.9
212)o =]
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The lower limit of the integration zero is chosen such
that the Lagrangian will reduce to the free Lagrangian
of nucleons and pions as the coupling constant f goes
to zero. The symmetry-breaking term £g.s. given by
(C.9) becomes the pion-mass term —ju’e- ¢ as f-> 0
for all three models.

APPENDIX D

This appendix is devoted to the construction of the
vector current J,, and the axial-vector current Js,.

A. Construction of J,

Consider the infinitesimal transformation of SU(2)
given in Appendix B:
Y= =y+&=(1+3iz-0)Y,
U—- U=U+sU=U+3i[r-0,U],
where
=1tir-wy, U=3%iz0,U].

Using the method in Appendix C, we can obtain easily
the vector current

Jom Py tr[(U*a,LU—{— Ua,‘U*)f].
2 8p 2

If we express U=0+42ify;p®, and make use of the
trace properties of = matrix

tr(z-A)=0,

trl:(‘c : A)§]= A,

we find

tr<U*3ng> =tr { (0—2ifp=- 40)[0'1’ 2(BueH)+2ifpr duot2if%'%- so(awz):E}

=2ifopd,e+2if 0(3,¢?) (0p’—pa’)+4if*p* @ X Oue.

tr<U auUT§> =tr { (o+2ifpr- so)[tr’f 2(8u0?) —2ifpr- Oue—2if'x qo(awpz):E}

=—2ifopduo—2if3¢(d,¢?) (op’—po’)+4ifp? X dpue.

Ty= =Py tr[(U*&MU+ Ua..U*)f]
2 8f? 2

e
= —"Z‘Yu;l/-i-pzso)( e,

16 Terms like 9,(¢-¢) and ¢-d,¢ are also invariant under isospin transformations. But we do not want £g.5. to depend upon them
because we require that £g. 5. does not contribute to Js, under the gauge transformation (C.1) and (C.2).
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and after the canonical transformation J, becomes
oz
Ji= = b tptnX .

B. Construction of J;,

In Appendix C, we have already derived
_ T z T
Joi= sy [OUUH U@ e |
It is easily verified that
tr[(a,.U) uﬂ: 2% fysopdue

+2i0(8,0%) (o'~ po’ )~ 4i*p* ¢+ dup,
and

%
trl: UT(G“U)E:I= 21:f750pa“¢
+2if2(0,0H) (0" —po’) —4if?p2eX due.
Hence,
T po )
sz= _Mn755¢+2—fay(’+%f?(an¢2) (G'P/-Pa' ) ’
and after canonical transformation

B T po
Joum— »:/msgs+27%+%f<aw> (op'—p0") -

If the specific models are considered, we have

(a)
U=¢2/rs77 ,
Yoy S SONT) o,
4foq
Jou=— évw;é—#ff(ﬁn(zf\/”z) cos(2/v/ 1r2)>
2 2f 2/\/m?

\ fﬂ(a;nr?)/l _Sin(Zf\/ﬂﬂ) COS(Zf\/’]r2)>

P\ v :
(b f f
yo e

1—- if’Yse ‘o

J=— éyugs+<1+ﬁ7r2>—2«>< o,

oz dm 1—pr f
Jou=— Bvavs-tt—— ————+ "m0, (x?) (1+ fr?)2.
2 2f (1422 2
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()
U= (1—4/22)1242 fysz-x,

.
J,,= —"{’Y,‘EE‘;“RX 6,;:: y

~ T Oy
Y= —Bravs-tt——(1—4 e
2 2f

w(Qur?)—.
1= )(1__4f27r2)1/2

To the lowest order in f, all three models have the same
expansion for J, and Js,:

Jﬁt: - é’)’#gg"i"”x (9”7!:+0(f2) ’

1
Tou= — Eyays-tt—0,m-+0(f).
2 2f

APPENDIX E

Since U is a function of the direct product of v; and
x, the solution for U'/2 can be generally expressed as
a linear function of the direct product {1,ys} X {1,s}, or
explicitly
U'2=a+bys+z-ctryse-d,

U=U2U12=g2+b2+c-c+d-d+2abys+2ax-c

+2a'y5‘c . d+ Zb"/;',‘! ‘C+ 2’)’50 . d.

Comparing the latter and U=0+2¢fvsc- ¢, we have
the following relations:

(a) b=c¢=0,
(b)  ad=ifpe,
(c) a*+d%=0,
from which we can obtain the solutions
o=+ (o4 f20) ] = W2 (1 H0) 5,
d=(i/a) foe="2ifpe/[2(1+0)]".

Therefore,
Ulz= %\/2‘{ (1+U)1/2+M} .
[2(1+0) ]
Similarly,
U“”‘L’:%\/Z_{ (1_‘_(,)1/2._@.?} .
(14-o0)12

Since {vu,v+} =204, {vsvs} =0 in the Weyl represen-
tation, it follows that

Uil'Yuz U;I'Yu;
S E2% = U:F”2'Yu-
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APPENDIX F
From (3.3b), we have
A=U"12yyU-172,
where
u'—-vurt,
V=¢irs(r/2)-a
Let us evaluate A for the exponential model
U = e2if'ysf-7r_

We have
U’= ¢ timra g2ifysrw g—4iver-a= [ cos(31/a? —sin(3+/a?) ] cos(2fr/7%)

O SR, o (SR

in(ia/a? 1, /a2 in(ia/a?)12 /sin(2 2
_[Sm(z\/a ) COS(z\/a):I cos(2) \/ﬂ)c.a—[sm(“/a )] (sm( VT ))fﬂ_at.a}. (F.1)
Va a 2f/@!
Hence,
i’y55
U'”2=%‘Q[(1+5)”2+ jl, (F.2)
(1)
where in(3y/a?) cos(3y/a?) Tsin(2/v/ )
n(} 1 sin
= [oos/a')—sin(h/a?)] cos(2 /) + 2fa | ~ va Tn =15 NV,,T ]
5= 2/ W[sin(Zf\/wz)]_ H:sin(%\/ a?) cos(3/ 02)] cos(2fv/r0)~ I:sin(%\/ a2)]2[sin(2 f\/ﬁ)]fﬂ. a} va,
273/ e war JL 2pvne
and
a i’Ysa
A=%\/2{(1+5)”2+ } hirer-e gmirmrs (F.3)
(1+p)"
The expansion of A as a power series of a and f will be  Hence (F.4) becomes
A +Lifr-(aXm)+0(f3, f2a, fata®).  (F4) A1 4-i fA(mX 8x) . (F.5)
Furthermore we have derived in Appendix C that gel'ig laliigmte51mal transformation for the ¢ field and =
fo' t— ¢=Ag=[1+if*r (=X8=)Jt,  (F.0a)
a=—ifx. x— n' =n+ox. (F.6b)
P

The other two models have the same expansion as the
To the lowest order in f, we have exponential model up to order f3. It is therefore easy
to convince oneself that (F.6a), (F.6b) will hold for

a~~—2 fox. the three models.



