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Unified Formulation of Effective Nonlinear Pion-Nucleon Lagrangians*
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It is shown that a nonlinear Lagrangian model with cbiral SU(2)QxSU(2) symmetry for the o.-X system
proposed earlier, when complemented with an exact partially conserved axial-vector current term, pro-
vides a systematic and united treatment of various phenomenological Lagrangians that are found in the
recent literature. A detailed comparison is made for three special cases, showing agreement with current
algebra and experimental data for m-N and m--x scattering lengths.

C. INTRODUCTION

~ NE of the successful applications of current com-
mutation relations and the hypothesis of partially

conserved axial-vector current" (PCAC) deals with
the calculation of the pion-nucleon scattering lengths
and pion-pion scattering lengths at threshoM energy. ~ 4

The same results can be reproduced in the perturbation
expansion from a phenomenological Lagrangian chosen
in such a way that the vector and axial-vector currenl-s
that follow from it satisfy the current commutation
relations and the PCAC assumption. Some specific
models have been studied by several authors' ' and
the results are all in agreement with each other up to
the second-order expansion in the coupling constant.
Such a Lagrangian approach provides a simple calcu-
lational scheme for observable quantities in pion physics
even if Gell-Mann's current-algebra method and the
PCAC assumption are regarded to be more fundamental
and primary.

The main purpose of this paper is to show that a
general, partially chiral-invariant nonlinear theory of
x-E interaction proposed some time ago' "provides a
systematic and unified approach to the problem of
constructing effective Lagrangians for baryon-meson
systems. Three specific models (of which one is exten-
sively studied in a paper by Brownr) are introduced as
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particular cases of the general model to show explicitly
the relation of the theory to the recent phenomenologi-
cal models. ' In the renormalizable 0- model' a 0+ meson
is introduced in the Lagrangian to be later eliminated
after assuming a high mass for o-.5 In the aforementioned
general model the Lagrangian is nonlinear to start with
and involves only baryons and 0 mesons. The corn-

parison is facilitated by using a canonical transformation
previously proposed. ' Not surprisingly, one of the
models leads exactly to the phenomenological Lagran-
gian considered by Schwinger, and they all agree with
Weinberg's eGective Lagrangian up to the second order
in the pion-nucleon pseudovector coupling constant.
The slight discrepancies in the 5-wave pion-pion scat-
tering are discussed in Secs. 4 and 5.

2. GE5ERAL NONLINEAR MODEL
WITH PCAC TERM

The charge-independent Lagrangian of the pion-
nucleon system with a Yukawa coupling reads

g(y„8„+m)g ,' —tr(8„C8„4)——
——,'I s tr(CC)+Z,.„(2.1)

where C = ~. y and q is the Hermitian pion field. The
interaction Lagrangian may be nonderivative (renor-
malizable model)

(2.2)g;~t, iykvs~, ——

or, of a derivative coupling type

P-'.~= (fit )~V.V.8.~4 (2 3)

The isospin symmetry of the Lagrangian (2.1) is ex-

pressed by
ii, ~ f~—efcr Np

~)f Te4g@ e a'4T OI

Now if we consider the following chiral transformation
for nucleon 6elds:

lf'=eh' 'V (2.4a)

the Lagrangian (2.1) is no longer invariant under such
chiral transformation due to the presence of not only
the pion-mass term, but also the nucleon-mass term
nt~. Actually the perfect chiral SU(2) symmetry of
the Lagrangian of the pion-nucleon system is not
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expected, because of the nonconservation of the axial-
vector current which is constructed from the chiral
SU(2) gauge transformation. Furthermore the PCAC
assumption tells us that the divergence of the axial-
vector current is proportional to the meson mass, and
hence, in the limit of the pion Inass p going to zero, the
axial-vector current becomes conserved, leading to a
perfect chiral SU(2) symmetry in this limit. '" In
order to keep chiral symmetry valid in this limit in the
presence of a nonvanishing nucleon mass term, the non-
linear model was proposed as a solution. " In this
model, the nucleon mass term 2/2A/ is simply replaced
by 222$UQ, U being an 8&&8 matrix function" of iysC
=F5~. q. It is easily seen that

g(y„B„+2NU)P

is invariant under the isospin SU(2) transformation
de6ned as

()
dn, o'(n) =

f1—os(n) j'/'
IJ, cE 0'

s. s.=
2f'

dn(a)
~ (2 6)

The total Lagrangian is therefore

z,= z'+ as.n. —— ip(y„—B„+2/2U)p —tr(B„U B„Ut)
16 '

fulfills the PCAC assumption. The explicit form of the
extra term in the Lagrangian is determined by the
specific models one uses. If one writes U in the general
form (see Appendix A)

U (ifvsC )= o (f'ip')+ 2ifysc p(f'ip'),
where

~2(f2~2)+4f2ysp2(fsy2)

it will be shown in Appendix C that the chiral sym-
metry-breaking term can be expressed as

and the chiral transformation

0~ 4"=e'"'V
e—ri»r aU e giyir a—

(2.4a)

(2.4b)

which combine into a 6-parameter SU(2))&SU(2) chiral
group (see Appendix 3).

In conjunction with the replacement of the nucleon-
mass term 2/2~ by 222it UQ we can also write down the
kinetic-energy term of the mesons in the following
form".

tr(B„UB„Ut) .
16 2

Some specific models that will reduce to the ordinary
pion kinetic energy —22B„q .B„ip as f goes to zero are

U = e»r»'2'

ps js&2 crt/2o. '(&)
dn. (2.7)

2f' s f1—o'(ir)1'/2

The lower limit in the integration for gs.p. is chosen such
that v/hen f goes to zero, i.e., in the absence of inter-
action, the Lagrangian will reduce to the sum of free-
fermion plus free-pion Lagrangians. The lower-limit
zero here is consistent with the three specific models we
considered previously.

$= WPWt= U'/2$

~= 8"qlVt= q,

(3.1a)

(3.1b)

3. CANONICAL TRANSFORMATIOÃ

The Lagrangian which provides a simple way to
calculate the pion scattering lengths can be obtained by
the following canonical transformation"

and

1+zfvs'2' ip

j.—z +5'0' p

U = (1 4f2~2)1/2+22f~ ~, /p

where S' is a unitary operator, the detailed structure
of which depends upon the speci6c model. For example,
the 8' associated with the exponential model

U —esirysr y

Hence, the part of the Lagrangian, symmetrical vrith
respect to chiral SU(2)QxSU(2) transformation, is

is given by

W= exp fifjdx g(2:)y, „(x)P(x)).
$(y„B„+2/2U)P —(1/16f') tr(B„UB—„Ut) . (2.5) Fmm (3.1a) we have

The total Lagrangian will contain an extra term which
will break the symmetry of chiral transformation, but
must still be invariant under the SU (2) group because of
the conservation of vector currents. ~~,The chiral sym-
metry-breaking term has to be constructed such that it

"U is a matrix regarded as a direct product of 2-dimensional
and 4-dimensional matrices."It is understood that the trace is only performed in the SV(2)
part of the direct product matrix.

e=S'v =(U '"r)tv = V(U "')-t~ = rv. (U "')-tv . -
It is shown in Appendix D that

(Ur/2)t = U 2/2 y U +2/2= U ~&/sy

so that we have
f—gU1/2

and the Lagrangian in Eq. (2.7), after the canonical
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transformation, becomes

wzwt = —j(~„a„+m)g

—Q„(U I/2&„U —'")(— tr(a„U a„Ut)
16 2

~2 f2cc2 ~1/2~2(~)
dn (.3.2)

2f2 L1 e2((2)71/2

and
A —U /I /2 V—IU I /2

By (3.3b), (3.4b), and making use of

lp 'r„U+I/2= U ~1/2

it is easily shown that A commutes with p„, i.e.,

LA,~„7=0,

(3.4b)

The Lagrangian in Eq. (3.2) contains the classical form
of the free-nucleon Lagrangian —$(y„8„+222)$, plus
the pion-nucleon interaction term —Q„(U'"B„U '")$
and the pion Lagrangian. The free-pion Lagrangian and
the pion-pion interaction Lagrangian are absorbed in
the last two terms on the right-hand side of Eq. (3.2).
The familiar form of the free-pion Lagrangian

and therefore it commutes with the 16 F matrices.
This enables us, according to Schur's lemma, to express
A in the general form

pic b

where b depends upon the pion field 22, a, and the cou-
pling constant f. For infinitesimal transformation, we
will show in Appendix I' that

A(b)=e*''b 1+i~ b=l —-12if~ (22xa).

U ~ U'=V-'UV —' (2.4b)

where V is unitary (VV"= VtV=1). Let A. be the trans-
formation matrix for the $ field; then

$ ~ $'=A).

By the canonical transformation (3.1a), (3.1b) and the
chiral transformation (2.4a), (2.4b), we have

will appear in the lowest order in the expansion as a
power series in f

Let us turn to consider the transformation properties
of the physical nucleon and pion field $ and 22, respec-
tively, that appear in the transformed Lagrangian of
Eq. (3.2).

Denote
gyiysr a

7

then Eqs. (2.4a,) and (2.4b) read

(2.4a)

Also in Appendix E, we see that (to the lowest order
in f)

a= 2f&. —
Hence, we have

A=1+if2~ (22X&22),

which is just the in6nitesimal transformation of the
nucleon field discussed by Schwinger. '

4. EXPLICIT FORMS FOR SPECIAL CASES

Let us now discuss in more detail the three specific
models of U mentioned at the beginning of this paper.
The interaction Lagrangian will be calculated; the axial-
vector currents and symmetry-breaking term will also
be derived in each case.

A. Exponential Model

Sin(2 f+2r2)
U =e2'»"~= cos(2f+Ir2)+2ify5s 22

2 +2r'

Hence

$'=h.g=h. UI"iP=AUI"V IVI/t

=OUI/2V If'= U "/Q'.

U 21/2 —A U I /2 V—I

Sin(2 f/2r2) Sin(2+n)
/(f'~') =

2fglr2 2+u

(3 3a) 0.(f22r2) = cos(2fglr2) =cos(2+n),

U21/2VU —I/2

lt is easily checked that A is also unitary:

(U / I /2 V' U—I /2) ( U 21 /2 V U—I /2) t —1

(3.3b)

From Eq. (2.6) and Appendix D,

gg.p. = —
&P Jt. ,

Furthermore, we have (2.4b)

U'= U""U""=V 'U V '
V—I U I /2 U I/2 V—I V-I U I/2A —IA U I/2V' —I

B„c/sic(2/+ ') ccc(2/+ 'j)J2~= —h~V2-5+
2f & 2fV'~2

hence

U 21/2 —V—I U I/22/ —I (3 «)
f222(8„2r2) ( sin(2 f/Ir2) cos(2f+Ir2)

(4.1a)
2f2~2
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Since

U1/2 eifypr m

sin
U'"8„U '"=i~.(22X8P2)

Ã2

4"' 8+5—ivs — sin(fgpr2) cos(f&prs)
7r2

Ke a1so ind'4

Zt„t(pr-pr) =f'f( 2222) (8„22 8„22)+xs/12(22 22) 2]+O(f') .
(4.2c)

S. Second Model

1+ifvse 22 1—f22rs

+22fys
1 if—use 22 1+f22rs 1+fsprs

( )( ~„) f sin(fV ') cos(fV ))'+ P1-
7r2 7r2

r P=
1+fsm-2 1+f21r2

The symmetry-breaking term for this model is then

1 /'sins(2 furs)
tr(8„U8„U') = —~28„22 8„22~

16 ' 4 4fsprs

(~ 8„~)(~ 8 ~)/ stn (2'~))
4f2~2

~2
S. B.

2f

fsss (xl/2~&((2)

dQ
L1—~'(~)]'"

dn p,

1n(1+fsprs) .
2f' p 1+(2 2f'

The interaction Lagrangians for this xnodel are

~'- (5 ~) = h.(U—'/28. U '/2) 3-
sins(fgpr2)

= —py„ ie (22X8 22)

O' BpJc—iq 2 sin(f+pr2) cos(f&2r2)
7r2

(e 22)(22 8 22) ( sin(f+pr2) cos(fgpr2)
+ fi1—

2 7r2

The axial-vector current is (see Appendix D)

'2 8@22 1 f 7r (8ppr )
Jpg 57p72 5+ +,'f22 -. (4.3a)

2 2f (1+f' p)r(1+f'2r )2

Since
1~1 p5'0 "R

U +1/2—

(1+f2~2) 1/2

it is easily checked that

U1/28 U —1/2 —(1+f2~2)—1

X t 1f"fse 8+2+if e ' (22X 8+2)],(4») and aiso

8+0 ' Bp'7l

tr(8„U8„U') = ——
16f2 2 (1+fspr2) 2

(sins(2 furs)
Z;.,(~-~)= —-', 8„22 8„~~

4f2~2 i
Hence the Lagrangian in Eq. (2.7) is

The expression of (4.1a)—(4.1c) in the power series of
are p2—18 ~ 8 ~(1+f2~2)-2— »(1+f2~2)

2 2
(4.2a)J.„=-b,~;~+—8.-+O(f),"2 2f"

One can recognize immediately that the Lagrangian
is the one proposed by Schwinger with the identification
f= fp/2/2. .

The two parts of the interaction Lagrangian are

and

~;..(~=)=h.L'fv" 8.-
ifse (22X8„22—)]$+O(fp) (4.2b).

(22 8 22)(22 8 22) /' stn (2fgpr ))
(4.1c) ~= -~(v.8.+ )~

+-gy„([ipse 8spp ifs~ (22X8—„22)](1+f'2r') '}$

14 By adding the divergence I8B„(22 22B„(22 2—2)) to the expansion
(4.2c), and using the equation of motion, one finds

2;„t(2 2) = ', B„(22 22B„(2-2 22))-+ ,'f I (22 22).(B„22 B-„22)
—(22 Bpp)(22 B22)g+O(f4) = /'((22 22)(B„22 B„22)

+,'/()'(22 22)')+-O(f4)

cC(st($ 7l )—$'r p (sf fPe ' 8@22 $f e ' (22 X8p'z) }
X(1+f22r2) '& (4 3b)

z, (2r-pr) = —-'8 22 8 22L(1+f27r2) '—1]
+-,'/(2L22. 22—(1/f') 1n(1+f )]2.2r2(4.3c)
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The expansion of (4.3a)—(4.3c) becomes Therefore the interaction Lagrangians are

J,„= &y—p 2 g+-8„—2r+O(f),
2 2f

(44a) @int($ 2I ) 8' 2f+2'2' Bp22 2f 2 ' (22X By22)

z;„,(1r-2r) = f2)(22 22)(a„22 a„22)

+-' '( )'3+ (f'). ( )

C. Third Model

U = (1 4f22r2)1—/2+2i fy2s 22.

This model has been studied by Brown extensively. ~

Instead of expressing the Lagrangian in terms of meson

6elds y and the corresponding canonical conjugate
field m„as in his paper, we still write the Lagrangian
in the general form given in Eq. (2.7). The results are

in agreement with Brown's in the second-order expan-
sion. In this model we have

hence,

~(~)=(1—4~)'", /(~)=1

p 2

Zs.s.= P(1—4f22r2)'/2 —1j.
2

The axial-vector current is ca)culated to be

8p'R

J2 ———& y2—$+— (1—4f22r2) '/2

Since

(8„2r2)
+f22 . (4.5a)

(1 4f2~2)1/2

U+1/2— L1+(1 4f2x2)1/2jl/2

we have

U'/28„U '/'= if—y2~ 8„22—

2ify2~ 22

L1+(1 4f2~2) 1/2jl/2

+if2~ (22X 8„22) t 1—(1—4f22r2)1/2j
"22%2

and also

(~ 22)(22 8„22)
4if2y2-

p+ (1 4f22r2) 1/2)(1 4f2~2) 1/2

—(1/16f2) tr(r/„U a„Ut) = —128„22.8„22
—2f2(22 8 22)(2r, 8 22)(1—4f22r2).

z; 1(f 2r) =-&y„[iF2~ rj„22.

—if' . ( Xa„)j&+O(f'), (4.4b)

(1—4f2~2) 1/2 —1-
+2/Ii 2r ' 2I+

2 2
(4.5c)

The expansions of (4.5a)-(4.5c) are given in the
following:

J2I = gy,ys $+— 8„22-+O(—f),
2 2f

Ziti($-2r) = Q„(2fy2~ 8„22

(4.6a)

if2~ (22—X 8 22)) $+O(f2), (4.6b)

Z; &(ir-2r) = f2((22 22)(8„22 8„22)

+-'/12(22 22))+O(f4) . (4.6c)

By taking the divergence of the axial-vector current
J2„ in (4.2a) and making use of equation of motion, the
PCAC assumption will follow immediately as expected.
An important point to note is that we add the PCAC
term before the canonical transformation. This accounts
for the absence of m--S cross terms in the expression of
the axial-vector current that appears in Schwinger's
model. '

S. TRANSITION TO EFFECTIVE LAGRANGIANS

The effective Lagrangian, from which the pion scat-
tering lengths are calculated, can be obtained by replac-
ing the bare masses and coupling constants appearing
in the Lagrangian models we have, by the renormalized
masses and coupling constants, and by treating the
6elds as renormalized operators if we regard our general
Lagrangian as the limit of a renormalizable theory like
the 0. model when the 0- meson is eliminated. Because
the chiral SV(2)SU(2) symmetry is broken, the axial-
vector coupling constant will diGer from the vector
coupling constant. Further, the coupling constant
associated with the axial-vector current will be re-
normalized while the vector-current coupling constant
will not, since the isospin SU(2) symmetry is assumed to
be exact. Conventionally, we denote by g& the axial-
vector renormalization constant. The bare coupling
constant f in the interaction Lagrangians will be then
changed into

graf

for the axial-vector current part. We

1
X L1—(1—4f22r2)1/2j

2f22r2

(~ 22)(22 r/„22)—4if2'; (, (4.5b)
P+(1 4f2~2)1/2j(1 4f2~2)1/2

z;„i(2r-2-) = 2f2(22—8 ~)(22 8 22)(1—4f22r2)
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also leave the vector-current part unchanged. Then, the
effective pion-nucleon interaction Lagrangian becomes

Z;„,'"&(& zr)-= gy„fig~ f~ r&„22

—if2~ (22X8„22)gg+O(f') (5.1)

for aH three models. The effective pion-pion interaction
Lagrangians are

z;„z&'"&(zr-zr) =f 2D 22. 22)c&„22 8„22

+-', z&z 2(22 22)2)+O(f') (5.2a)

for the exponential model,

z;„zt"'&(zr zr) = f-'((22 22) 8„22 8„22

+-'z&z 2(22 22)2j+O(f4) (5,2b)

for the model U= (1+ifyz~ m)/(1 ifyz~—22), and

'- ""( - ) =f'L( . ) .
+-2'z&z 2{22 22)'j+O(f') (5.2c)

fOr the mOdel U = (1—4fzzr2)'"+2ifyz~ 22.

If we compare the interaction with the one obtained
by Weinberg from the cr model, we can notice immedi-
ately that pion-nucleon interaction Lagrangians are all
equivalent to each other up to the second-order expan-
sion by the identification of f with —(G/22N&)(gv/gz).

The nonderivative pion-pion interaction Lagrangians
of the first (the exponential model) and the second
model differ from the third model which is equivalent
to Weinberg's by factors of 22 and 2, respectively. On
the other hand all three models have the same deriva-
tive pion-pion interaction term in agreement with
Weinberg's model.

Let us consider the general pion-pion interaction for
the three models in the following form:

g;„2&"'&(z zr)=)'(-22 22)(B 22. 8 22)+&&42(22 22)2 (tz=z&z.).

It can be shown that to first order in X and X', the
transition matrix element T is

T(ab: cd) = 16t42$8, &8.&(22 (X X')+ (—t/4&42) X')+ t'&.48&,.
X(-;(X—

& ')+ (I/4t )V)
+b.,bg4(2'(X —X')+(s/4tz')Z') j. (5.3).

T is related to the 5 matrix by

St, bt; z(2zr)—48(Pt——P;)Tt;, —

The ratio az/ao for the three models is found to have
the values —-'„—-'„and —2/7 for the exponential model,
second, and third models, respectively. The second
number agrees with Schwinger's while the third is the
same as Weinberg's.

The numerical value of ao is

2

go ————p, =0.15@, ' for the exponential model,
34
9

co=-—y=0.13@, ' for the second model,

7 f2
co=——p=0.20@, ' for the third model.

24

The slight differences in the pion-pion scattering lengths
for the three cases do not invalidate the usefulness of
our unified Lagrangian model because the values quoted
are still compatible with the experimental results ob-
tained from E,4 decay. '
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APPENDIX A

U(ifyzC) is a 284 direct product matrix with
argument y;4 =y~~ q, where the 2-dimensional matrix
of the direct product shufHes the two different nucleon
fields among each other, while the 4-dimensional part
operates on the spinor components of each nucleon
field alone. The introduction of i in the argument of
the functional matrix U (ifyzC) makes f a real number,
namely the coupling constant. The matrix U{ifyzC)
satisfies the following conditions:

U=U('fv. w, U(0)=1,
(b) UUt= UtU=1, unitarity condition

(c) Ut= U(—ifyzC), reality condition.

From these three conditions, U can be expressed
generally as

s= —(k,+k,)2,

t= —(k,—kz) 2

zt =—(u.—I4)2

with

U(f'.C)=.(f' ')+2 f (f' ')C,

o(0) =1,
'(f'v ')+4f'v 't (f'v ')=1

where k is the momentum of the pion with isotopic
index u. The scattering lengths are then given by

a, = (t /4~)(5&+& '), (5.4a)

az= (tz/4zr) (2X—2X') . (5.4b)

The determinant of U is also unity, as a consequence
of the properties of the direct product and the diagonal. —

ity of the matrix ps in the Weyl representation,

det V = (a2+4f2(pzp2)4=1.



P. CHANG AND F. GURSEY

APPENDIX 8
Let 1//r. = 2 (1+ps))// and f/5= 2 (1—y5)lt/ be associated

with the irreducible representations of homogeneous
Lorentz group (—'„0) and (0,2), respectively. " The
transforrnations under the two corrunuting SU(2)
groups G~ and Gg for the nucleon and the pion 6elds are
delned as

Gg.
1//r, ~ 1//r, =e&"Ql, ,

)/a ~ )//2'= 1//2,

which can be combined into

p ~ pr —equi(1+ra) (r/2)g

and for the pion field we have

U ~ u'=eh(1 —v5)(«2) au e-ki()+ra)( /2) r/v

Ga.
)/r, ~ 1//r.

'=
1/r,„,

P/2~ g/2'=e&""4/2,

which can be written, in the compact form

P ~ Pv —e)i(1—ra) (r /2) vP
7

i'(1+ )r(ar/2) vu e—ii(l—ra) (r/2) ~

The combined SU(2) SU(2) transformation G' is then

G (4) ~

~ qadi(l+yg) (r/2) P+)i(1—yg) (V /2) v2I,

U ~ equi(1
—ra) (r/2) +a, (1(+ )r(ar/2) vu

)(g
—gi(1+y6) (r/2) p-gi(1-yg) (r/2) v

We are interested in particular cases

p= v=u and p= —v= a.
In the erst case we have

U —+ e&""V e-&*'"

which is the ordinary isospin transformation. In the
second case p= —v=a,

(b)

P ~ eisa(r/2) ~ Q
U v e

—rra(r/2) aU e-rra (r/2) a

APPENDIX C

Z

2 Sf'
tr t (a„u)ut+ ut(I9„u)jy5—

2

where
&„a+&&s.s.= Js„a„a+boa.s. , (C 3)

J „= )//y„y )// — tr P(—c)„u)U—t+ Ut(c)„u)gy—
2 Sf' 2

is the axial-vector current.
Let us write (C.3) in the form

bZ= Js„a„a+bus n =&„(J5.,. a)
—(B„J5„)a+ bus. n . (C.4).

If the chiral symmetry-breaking term does not appear
in the Lag~.angian, then BZg p. =0 and 8 =0 require
that B„J»=0,because a is completely arbitrary, and we
have a conserved axial-vector current. Now we intro-
duce Zs.p. so as to agree with the PCAC assumption,

Consider the in6nitesimal chir al transformation
dined in Appendix 3:

1// +1//'—=1//+ b)//= (1+-'si)(5~ a)p, (C.1)

U ~ O'= U+bU = U 2i—{y-se a, U}, (C.2)

where

2iV-5~ ak,
bu= —-s'i{use a, U}.

The construction of the axial-vector current from the
variation of the Lagrangian under the in6nitesimal
transformation will be carried out by regarding the
components of a to be arbitrary functions of the space-
time coordinates. Therefore the variation of the
Lagrangian

1//(y—„()„+2/su)1// (1/—16f') tr(B„UB„ut)+gs n

gives

A' v
2 16f'

x tr/(B„U)(c)„but)+(B„bu)(B„ut)g+bzs. s. .

Using (C.2), it is easily checked that

trL(~au)(~a&u')+(~s~u)(~au') j
=2i tr{L(B„U)U'+U'(B„u)jysr/2} c)„a.

Hence we have

which is the chiral transformation that is of special
interest to us in this paper.

"They are in fact, the (LO)+($,0) and (0,$)+(0,$) represen-
tation because we consider the 8-component spinors of the nucleon
fields.

Then (C.4) becomes

(C.4')
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and the equations of motion require

p2
8Zgp. =—

q a.
2

(C.S)

disa. p y'. a
(C.6)

dn 4f' rp Bq

The solution can be obtained easily if we know the
relation between a and 8q.

Let us now write

U =~(~)+2ifvsp(~) C'

(C.2) then can be expressed as

hU= —-', i{y,w a, U) = icosa~ —a+2fprp a. (C.7a)

On the other hand, we have

8U=2f'o'rp hq+2ifys
X{p~ ~q+2f p'(~ q)(tp. ~q)) (C 7b)

By equating (C.6) and (C.7) we obtain the following
relations:

Because of the conservation of the vector current, the
solution has to be invariant under isospin SU(2) trans-
formations, which allows us to assume Zs.g to be a
function of q q only. "I.et rr= f'q', then (C.5) reduces
to

dZs. s. p'
2f'p 8q=.—q. a

do. 2f
Ol

The lower limit of the integration zero is chosen such

that the Lagrangian will reduce to the free Lagrangian
of nucleons and pions as the coupling constant f goes

to zero. The sylnmetry-breaking term 2&.&. given by
(C.9) becomes the pion-mass term ——.',p'p qr as f +t&—

for all three models.

APPENDIX D

This appendix is devoted to the construction of the
vector current J„, and the axial-vector current Js„.

A. Construction of J„
Consider the infinitesimal transformation of SU(2)

given in Appendix 8:
4~4'=4+8=(~+si~ ~)4

U —& U'= U+5U= U+ ,'if' to-, U5,

where

g = rsi ~ roP h U = r
sifts ro U 5.

Using the method in Appendix C, we can obtain easily

the vector current

Z 'C

J„=—Py„—y — tr (Utc)„U+Uci„U') — .
2 Sf' 2

pa= fa'8q,

2fB 4f —'
( 8—).

Combining (C.6) and (C.Sa), we have

(C.Sa)
If we express U=o+2ifigspC, and make use of the

trace properties of ~ matrix

d&s.n. p' f~' p' 2(~)'"~'(~)

4f3 ~ 4f2 L$ os(ct)51/2

p' ""' (~)"'~'(~)
Zg.B.= do! .

2fs p Ly —o's(cr)5tl
(C.9)

we 6nd

tr(~ A)=0,

tr (~ A)— =A,
2

tr~ UtB„U- ~=tr (o 2ifp~ q) o—'f'(8 q')+2ifp~ r)„rp+»f'p'& q(c)sq')—"
2r 2

= 2sf~p~. q+»f'q (~,q') (~p' p~')+4sf'p'q X—~.q .

tr 9„ t— =tr 0. 2i p~. q rr' ' D„y' —2i p~ B„y—2i 3p'~ q g„y2
2r 2

2sfop8„rp 2if'—q(r)„q )(op'—po')+4if p'pX—r)„q'.

J„= Q„f tr (U—tB„U-+—Ucj„Ut)—
Sfs

= —4v -4+p'qX~, q,"2

'e Terms like 8„(y q) and y B„y are also invariant under isospin transformations. But we do not want Za. z. to depend upon them
because we require that BZs, a. does not contribute to J» under the gauge transformation (C.t) and (C.2).
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and after the canonical transformation J„becomes

J„=—Q„-(+p 22X28„22"2

B. Construction of J5„

In Appendix C, we have already derived

(c)

U = (1—4f22r2)'/2+2i fy5~ 22

'C

J„= Q„—$+—25 X 8„25,"2

8~%
J„r,= —Qp 5-$+ (1—4f22r2)'""2 2f

J5~= —0V.V5-4—
2 Sf2

tr P(apU) Ut+ Ut(a„u) jy5—
~ +f25(8„2r2)

(1 4f22r2) 1/2

It is easily verified that

tr (B„U)U t- = 2ify5o PB„q
2

and
+»f'~(~. v ') (~p' p~') —4if p'—v+ ~.v»

and after canonical transformation

J „=—@„7-g+—8„.25+ -', f(8„2r2) (op' —po') .
2 2f

If the specific models are considered, we have

U —Pify5r w
7

Sin'(2 f+2r2)
Jp= —hp-5+ .~~)( Bp )"2 4f22r2

8„~/'Sin(2 f+2r2) COS(2f+2r2) )
J5,= —(V,V5-$+—!—

2 2f( 2f+ '

tr Ut(it„U) — =2ify5opB„/p
2~

+2if'q (~i V' ) (rrp P/r ) 4—if P y—X ~„q .
Hence,

Pg'

J5.= 4V.V5 4+—~.e+-2fe(~.V')(~p' P~')—
2 2f

To the lowest order in f, all three models have the same
expansion for J„and J5„.

J„=—(y„$+25X8„25+-O(f2),"2

J.= h.v ~+ —~. .+O(f)
2 2f

APPENDIX E

Since U is a function of the direct product of y~ and
~, the solution for U'" can be generally expressed as
a linear function of the direct product {1,y;}X {1,~},or
explicitly

U'/2=a+by5+~ +cy;~.d,
U= U'"U'"=a'+b'+c c+d d+2aby5+2a~ c

+2ay5~ d+2by5~ c+2p5c d

Comparing the latter and U=o+2ify5~ 52, we have
the following relations:

(a) b=c=0,
(b) ad=i fpqp,

(c) a'+d'=0,

from which we can obtain the solutions

1~/A++ (+2+4f2P2%2) 1/2j1/2 —1~2(1++) I/2

d= (iIa)fPP = »fpPIL2(1+~) j'".

(b)

f22(8„2r2) sin(2 f+2r2) cos(2f+2r') )1—
2f22r2 2f+2r2 )

1+ify5~. 25

T —z +54''R U —1/2 1~2 (1+~)1/2
22fp'r5'2 '

//2

(1+~)1/2

Therefore,
2zfpy5'2 ' rp

U'/2=-'W2 (1+0)'"+
i2(1+~)3"'

Similarly,

J„= Q„f+(1+f'7r—') '25—X 8„25,"2

Bpc 1—f22r2 f
J5~= —h ~v5-5+ +—228„(2r2)(1+f r )2'2.2

2 2f (1+f'2r2)2

Since {y„,y„}=2b„., {y5,y„}=0in the Weyl represen-
tation, ~t follows that

U +1+ U wl+

1/2 —U T 1/2
7p Vp'
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APPENDIX F

From (3.3b), we have

g —U/1/2yU —1/2

where

1761

Let us evaluate A for the exponential model

U' —VU Vt,

y &'~~(~/2) a

U —g2 f»'
We have

U'= e &'»" e'*»&'~ e
—&'»"= Leos(-', Qa') —sin(-', Qa') j cos(2f+7r')

sin( —ga') cos(-'Qa') (sin(2 fQ ')'l f»n(2fV' ')l
~fa ~+A: 2f~ ~l

~ Qa2 ( 2f+7r2 I 4 2f/7r2

Hence,

-sin(-;+a') cos(-', ga')-
1+a2

-sin(2+g')-' sin(2 f/''))
cos(2fgm')~ a— -- ~f~ ac a . (F.i)

xgg2 2fg~s )

where

U'1/2=-,'v2 (1+/)"'+
(1+0)"'

-sin(~~+g2) cos(~~Qg') sin(2 f/m )

(F.2)

p= (cos'(-', Qg') —sin(2'~'g')) cos(2'~')+2fa ~
1gg2 2f+7r'

and

b= 2f~.~
2f/'' 1Qg2

-sin(2 f+7r') i sin(~Qg') cos(~Qg')
cos(2f/'')+

-sin(-,'Qg') ' sin(2'~') f~a~a,
—',gg' 2f+7r'

&=&2 (1+P)'/'+
(1+P)'/'

e eqiy5r. a ~—ifysr ~ (F.3)

The expansion of p as a power series of a and f will be Hence (F.4) becomes

&~1+~~ifr (a&&m)+O(f f g fg', g~). (F.4) /i~1+if'(~X &). (F.S)

Furthermore we have derived in Appendix C that
The infinitesimal transformation for the $ field and ~
field are

a=
$~ $'=Ag=L1+if2r (m)&&)j$,

~ ~~'= m+ &z.

(F.6a)

(F.6b)

To the lowest order in f, we have

a~—2f8~.

The other two models have the same expansion as the
exponential model up to order f' It is theref. ore easy
to convince oneself that (F.6a), (F.6b) will hold for

the three models.


