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Generalized Langevin Equation of Mori and Kubo
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The generalized Langevin equation of Mori and Kubo is derived from the theory of stochastic processes.
This equation is valid for a very large and very diverse class of processes, including cases where the intuitive
"physical" interpretation of the equation is incorrect.

X(t) X—(0)= —dr I' {t—r)X(r)+P(t). (4)
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equilibrium defines a stationary stochastic pro-
cess as the state of the system changes with time. '
Mori' and Kubo' have shown that this process can be
derived from a generalized Langevin equation,

X{t)= — d .« )X{—)+nt),

where the "random force" f(t) is uncorrelated with
the initial value of X, (X(0)f(t)) =0.'

In fact, Kq. (I) holds for any differentiable stochastic
process; an appeal to mechanics is unnecessary.

The proof is not diKcult. Let X(t) be a stationary
process with mean zero, correlation function p(t)
=(X(0)X(t))=—p(—t). We assume that p(t) is continu-

ously differentiable for II/O and that

p(0+)—= »m p(t) = —p(o —)
t,~o+

exists. Then the Volterra equation

p&0', I'(t)+ dr p(t r)I'(r)= p—(t)—

P(t) ls uncorrclated wtth X(0) s111cc (X(0)P(t))=p(t)
—p(0)+ Jo' dr I'(t—r)p(r) =0.

To get from Kq. (4) to Kq. (I) we need the result
that if the process X(t) is differentiable (in the mean
square sense'), then p(t) exists and is continuous for
all t.r This implies that p(0+) =p(0—)=0, that I'(0+)
=I'(0—)=0, and that I'(t) and P(t) are differentiable
(in the ordinary and mean-square senses, respectively).

Differentiating (4), we get {I)with y(t) = I'(t), f(t) =P (t).
Notice that (1) imphes (4) but not vice versa:

Equation (4) is a valid representation even of processes
which are not differentiable and therefore do not satisfy
a I,angevin equation. The most famous example is the
velocity of a Brownian particle, for which, interestingly
enough, the original I,angevin equation was invented.

It is easy to verify from Kq. (4) that

linm (P(t')P(t))/t'= p{0)l'(t)—p(0+) .

has a unique solution I'(t) = —I'(—t), continuous every-

where with the possible exception of t=o, where

I'(0+)= —p(0+)/p(0). Integrating (2), we find that
I satisGes

When Kq. (1) is valid (5) becomes

(6a)

dr I'(t—r)p(r) =p(o) —p(t).
ol

(f(0)f(t))=p(0)v(t).
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' The sample space is the phase space of the system; probabili-

ties are determined according to the canonical distribution. If I'
is a phase point and Eg its image a time t later, the random
variable X(t) assigns to I' the value of X at I' t,. The stochastic
process ln question ls the sct of all X(t), —oo Ct 4+ oo. Rcadcl's
unfamiliar with the notions of probability theory, or uncon-
vinced of their relevance to physics, should consult the char-
acteristically lucid discussion by M. Kac, Ifobcb@lfy @st Re-
ltJted Topics je I'IIysjcgl Sciences (Interscience Publishers, Inc. ,
New York, 1959).' H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

3 R. Kubo in Tokyo Jectgres ie Theoretical I'hysjcs, edited by
R. Kubo (%'. A. Benjamin, Inc. , Neer York, 1966), Part I, p. 1.
See also R. Kubo, Rept. Progr. Phys. 29, 255 (1966).

' X is assumed to be "centered": (X)=0.

Mori and Kubo call Kq. (6b) the second fluctuation-

dissipation theorem, since it relates the "systematic
friction" y to the autocorrelation of the "random force"

AVe think the lesson of all this is that the appealing

' The existence of the stochastic integral in (4) follows from
thc contlnulty of p and I .

6 X(t) is mean square di8crentiahle if there is a random variable
A (t) such that

X(t+tI) —X(t)
(,
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' J. L. Doob, Stochostsc Processes (John Wiley 81 Sons, Inc. ,
&em York, 1953).' See cspcciaQy J. L. Boob, Ann. Math. 43, 351 (1942).
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GENERALIZED LANGEVIN EQUATION OF MORI AND KUBO

"physical" form of Eqs. (1) and (4) may on occasion
be dangerously misleading. Equations (1) and (4) are
very general; they hold not only for Brownian motion
and similar processes, but also for processes in which

the stochastic variable X(i) takes only values in a
discrete set. In the latter case the continuous change
with time of X(t) given by the "friction" term has no
real relation to the dynamics of the process.
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The analysis of a classical plasma in terms of dressed test particles is well known. In this paper, the theory
is extended to inhomogeneous quantum plasmas with Coulomb interactions between particles. The %'igner
one- and two-particle distribution functions are expressed in terms of a test-particle response function for
the plasma. These relations are derived from the operator form of the equations of motion for a quantum
plasma. The results for homogeneous systems and for classical systems are obtained as special cases of the
general result. A superposition theorem for fluctuations is also given.

I. INTRODUCTION
' 'T has been shown by Rostokerl 2 and others' ' that
& ~ a classical plasma can be treated as a collection of
noninteracting, dressed particles. The "dressing" or
shielding of a particle is obtained by considering the re-
sponse of the plasma to a single "test charge. " In this

paper, it is shown that quantum plasmas can also be
analyzed in terms of test particles. The connection be-
tween a quantum plasma and an appropriate test-
particle problem has been suggested in several recent
publications. ' ' If such a relationship exists, then it
should be possible to derive these results from the basic
equations describing the plasma. Dawson' has given
such a derivation for a classical plasma and a similar

approach is presented here. This treatment is also
closely related to that of Wyld and Fried. ' The result we

obtain is a relation between the signer two-particle
distribution function and the response of a quantum
plasma to a single test particle. We include only the
Coulomb interaction between particles and assume no
magnetic 6eld."A stationary external field, derivable
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from a scalar potential, is the source of the system
inhomogeneity.

In Sec. It, we derive the Heisenberg equation of mo™
tion for the quantum mechanical operator whose ex-
pectation value is the one-particle distribution function
for the system. We linearize this equation of motion with
respect to the electric potential in Sec. III and show
that the one-particle distribution is a superposition of
contributions from independent test particles. The rela-
tion between the two-particle correlation function and
the test-particle-response function for an inhomogene-
ous quantum plasma is derived in Sec. IV. It is also
shown that this relation reduces to more familiar results
for homogeneous and classical systems. A superposition
theorem for fluctuations is given in Sec. V.

II. BASIC EQUATIONS

Ke consider an inhomogeneous system of Ã electrons
moving in a potential U(x) which might represent the
lattice of positive ions in a metal or the nucleus in an
atom. It is assumed that the only interaction between
electrons is the Coulomb potential "U(x) =e'/~ x~. The
Hamiltonian for this system is

8=1 2=1i'
The microscopic one-particle distribution function for
the electrons ls

where x;(t) and y;(t) are the position and momentum of


