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Low-Energy Pion-Nucleon Scattering from Current Commutation
Relations and Partial Conservation of the Axial-Vector Current*
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Starting with current commutation relations and the hypothesis of partial conservation of the axial-
vector current, relations are obtained for the pion-nucleon scattering amplitude considered to the second
order jn the energy variable 7. The structure-dependent contributions to the second-order terms in the
matrix element involving the axial-vector currents are approximated by the direct and exchanged poles
and resonances, particularly the N* resonances with spins ~ and &. The contribution of the p meson to this
matrix e]ement is estimated to be small. Expressions are obtained for the P-wave scattering lengths and the
S-wave and P-wave phase shifts at low energies. Numerical estimates are made for these and are compared
with the available data; it is found that reasonable agreement with experiment can be obtained except for
the P-wave scattering length a& & & and the partial-wave amplitude f~ & &. Some questions relating to the
og-mass-shell extrapolation are discussed. We have also examined the validity of the assumption made,
in the usual derivation of the relations for the 5-wave scattering lengths, that the terms of higher order
in & may be neglected. We suggest that at least for the isospin-symmetric scattering length this is not a good
approxjmatjon, so that this scattering length cannot be obtained adequately by using only the current
commutation relations and the hypothesis of a partially conserved axial-vector current. The scalar term aris-
ing from the commutator L CP(z),P(y) $ is estimated; we suggest that the contribution of this term is impor-
tant and Cannot be Ignored.

I. INTRODUCTION

S TARTING with current commutation relations and
the hypothesis of partial conservation of the axial-

vector current (PCAC), results have been obtained for
pion-nucleon scattering which are in good agreement
with experiment. These are the Adler-Weisberger sum
rule' and the relations for the 5-wave mS scattering
lengths. 2 Some results have also been obtained for the
~g P-wave scattering lengths. ~" These require addi-
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"A. P. Balachandran, M. Gund&ik, and I". Nicodemi {to be
published) have given expressions for the P-wave scattering
lengths and S-wave eGective ranges which involve essentially only
the contribution of the nucleon Born term and are independent of
the commutator term. Our basic approximations, procedure, and
results are quite di8'erent from those of these authors.

tional dynamical assumptions about the matrix element
of the product of two axial-vector currents, and the low-
energy theorems obtained for the P-wave scattering
lengths are therefore approximate.

In this paper we examine in detail the relations ob-
tained for the low-energy xÃ scattering amplitude
considered to second order in the energy variable z,
starting with current commutation relations and the
PCAC hypothesis and speci6c assumptions about the
matrix element of the product of two axial-vector cur-
rents between single-nucleon states.

Our basic assumptions are the following: (i) the
existence of equal-time commutation relations (C.R.'s)
between certain components of the axial-vector current
densities, of the form

Le.'(x), (ts"(y))5(x,—y,)
=if p '() "(x)5(x y)—

+ a possible singular term; (1.1)
and (ii) the hypothesis of partial conservation of the
axial-vector current (PCAC):

d„e v(x)=C q (x). (1.2)
In (1.1) and (1.2), the subscripts n, P, y, ~ ~ ~ are SUs

octet indices, 'U" (x) is the vector current density, and
if s~ are the completely antisymmetric structure con-
stants of SU3.

The constant C in (1.2) can be related, for n=vr, to
the pion decay lifetime or to the coupling of the pion to
the baryons. Taking matrix elements of both sides of
(1.2), for cr=z., between single-nucleon states gives the
following expression for C:

~ =wrg~l '/LGxN %m. (O)$ (1.3)
Here, m and p are the nucleon and pion masses, g~ is

the Ã ~E axial-vector renormahzation constant, G~N
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is the 7'.V pseudo scalar coupling constant, and
&~~ (q') is the form factor at the nXÃ vertex, nor-
malized to unity at q'=p, '. We shall usually write
merely E(0) for E&sr „(0).

Because of the nonzero mass of the pion, one requires
not only (1.1) and (1.2), but also assumptions regarding
the relations between the mS scattering amplitude with
physical (massive) pions and the amplitude with pions
of zero external mass (q')"' (where q' is the square of the
four-momentum of an external pion). These assump-
tions will be discussed in the course of this paper.

In Sec. II we briefly derive and discuss the basic
equations. In Sec. III we examine the validity of the
assumption made, in the usual derivation of the results
for the S-wave scattering lengths, of neglecting the
higher-order terms in v, we suggest that at least for
e&+&, this is not a good approximation. We discuss the
scalar term occurring in the relation for a(+& and argue
that it may not be small, in contrast to what is sug-
gested by most earlier work. In Sec. IV we discuss our
approximation and method of extrapolation, In Sec. V
we brieQy discuss the various contributions to the
scattering lengths and the partial-wave amplitudes. In
Sec. VI we discuss the numerical results, and in Sec. VII
we summarize our conclusions.

In Appendix A we give some definitions and relations
used in the paper. In Appendix 8 we discuss an alter-
native method of extrapolating the amplitudes from
q'=0 to q'=p' and examine whether there is any
signi6cant difference between the diGerent methods of
extrapolation. In Appendix C we discuss the relation
obtained from current C.R.'s for the Oxw coupling and
its application to the O.-exchange contribution to the
relations we obtain for the xE amplitude. Equations in
the Appendix are numbered (A1), etc , and ar.e referred
to in the text as such.

While this work was being completed, it came to our
attention that work similar to ours has been done re-
cently by Schnitzer, "who has approximated the second-
order terms arising from the matrix element of the
product of the axial-vector currents by the (s, s) Ã&*

contribution, and has obtained results for the I'-wave
scattering lengths and S-wave eGective ranges. Our
scheme of approximation is more elaborate than
Schnitzer's, and our work and results are more detailed.
Where our work overlaps that of Schnitzer, they differ
in detail, partly because of the diGerences in the method
of extrapolation and in the evaluation of the E~* contri-
bution.

II. GENERAL DERIVATIO5'

Our starting point is the equation"

qr, qs.~~~""=(p,
'—qrs) '(pp' —qs') 'C CpM pp

sf pp qs,Fp."(yo)—
+dp-&='G-b )+q q &-p" (21)

~ H. Schnitzer, Phys. Rev. 158, 1471 (1967).
"For a more detailed discussion of (2.1), see Refs. 4 and 9.

v +&.~ ~p+&7,
0'1 Pi QS Pf

(2.4)

with momenta as indicated above, is de6ned as follows:

i(2x)'8(pf+qs p; q—t) Tp—p
' mm 1/2f

=12 de d'y
jv,.jvf

&«xpLi(qs y—
qr *)](p-'—qt')(pp' —qs')

x(&(pr) I &(~«(~)~p(y)) I &(p')& (2 5)

The function Fp." in (2.1) is related to the matrix
element of the vector current 'Up " by

=i st,m f/EQ f]'"u(pr)F ."p(spy;), (2.6)

and may be decomposed into the Dirac and Pauli form
factors Ft(t) and Fs(1) in the usual manner. The term
involving G, in (2.1) is obtained by evaluating
Lo!po(x), ip (y)]8(xs—ys) in a quark model, " and using
(C3), (CS), and the definition

(a(p ) Is-. (0) la(p, ))
=i'fm, mr/E&f]"u(pg)G .u(p;) (2.7).

The last term in (2.1), which arises from the singular
term" in the C.R. (1.1), does not contribute any terms
of order qs (see Refs. 4 and 9), but could contribute,
through terms of the second order in qo, to the low-
energy relations we shall be interested in. However, as
this term is unknown, we shall omit it in all subsequent
equations. "

'4 M. Gell-Mann, Phys. Letters 8, 214 (1964); Physics I, 63
(1964)."T.Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto) 14,
396 (1955); J. Schwinger, Phys. Rev. Letters 3, 296 (1959); K.
Johnson, Nucl. Phys. 25, 431 (1961};S. Okubo, Nuovo Cimento
44, 1015 (1966);J. Schwinger, Phys. Rev. 130, 406 (1963);L. S.
Brown, lb'. 150, 1338 (1966)."It has been suggested that quite generally, the contribution of
the singular term in a C.R. such as (1.1}to relations for amplitudes
is exactly cancelled by other contributions (from the "seagull"
terms). See, for instance, the paper by Adler and Dothan in Ref. 36
below.

Here, the time-ordered amplitude Mg~&" is deined as
follows:

&(2&) 8(pi+ql pf q2)2 AA

m m 1/2

=i' d4xd'y expLi(qs y—
qr x)]

&&(&(pr) I
&(@-"() 0'p" (y) ) I &(p*)); (2-2)

T~~""=u(py)Mg~""N(p, ) . (2.3)

In (2.2), 8 "(x) and Sp"(y) are axial-vector current
densities, and B(p;) and B(pf) are baryon states with
momenta p; and py. The baryons are kept on the mass
shell throughout.

The transition amplitude Tpp=g(pr)~ppts(p;) for
the meson-baryon scattering process
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m~v ——&+(V Q)»
M~~" =D+(7 Q)R;

f0~ ——fg(0) —2k'pfg'(0) —-', f2'(0)$+O(k'); (2.11a)

f~-=f2(0) —2k'Lf~'(0) —af~'(0)3+O(k') ' (211b)
(2.8)

We now consider zE scattering and restrict the indices for the partial-wave amplitudes may be projected out by
n, p, ~ to the isospin subgroup. We make the spin using the following equations (see Chew, Goldberger,
decomposition of the amplitudes M~v and qq„q2„g~~&" Low, and Nambu'~):
in the form

and the usual isospin decomposition
symmetric and isospin-antisymmetric
8'+&, D(+', and E(+). Here,
amplitude corresponding to M~~&". '

From (2.1) we obtain the following

into the isospin-
amplitudes A (+',
is the covariant

equations:

~"'(~,t) = (p' —q~') (p' —q2')

XC '(D&+'(s, t) —C H(t)); (2.9a)

A &-&(s,t) = (p' —qg') (p' —q2')

XC '(D& &(s,t)—~(s—e)F2 (t)) (2.9b)

8&+& (s t) = (p,
'—qg') (y' —q2')C 'R&+& (s t) (2.9c)

B&—) (g t) (~2 q12) (p2 q22)C
—2{R&—) (g t)

+-,'LF~v(t)+2mF2v(t)]) . (2.9d)

Here, H(t) is defined by

dp b 'G (t)-+Bs H(t),

when the indices n, P, . are restricted to be isospin
indices for the pion.

We may note that equating the residues at the
nucleon pole (in s, say) in (2.9c) or (2.9d) gives

I G ~~(q2)$2 —(~ 2 q2)2C —2~2' 2 (2 10)

which is just the relation obtained by taking the matrix
element of the PCAC relation (1.2) between one-nucleon

states. Similarly, comparing the residues at an E*pole
gives the relation obtained by taking the matrix element
of (1.2) between a nucleon and an 1V*."

At the poles in t, among which we may consider those
from a p meson and a possible 0 meson, one may obtain
a relation between the pxm. coupling and the couplings of
a p meson to two axial-vector currents, at pp esp',

qp= q22= 0, where p, is the 4-momentum of the p meson

and q&, q, are the 4-momenta of the pions (and a similar
relation for the couplings of the 0 meson). The more
interesting type of relation for the p couplings is, how-

ever, the one that does not involve the coupling of the

p to the axial-vector currents. This has been discussed

by various authors. '
From Eqs. (2.9) one may obtain relations for the f&

and fq amplitudes Lsee (A3)j. Corresponding relations

~7 Such equations may be used for obtaining information about
the couplings of baryon resonances; see R. H. Graham, S.Pakvasa,
and K. Raman, Phys. Rev. 163, 1774 (1967).

» K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966); ibid. 16, 348(E) (1966); Riazuddin and Fayyazuddin,
Phys. Rev. 147, 1071 (1966);and more recently, S. G. Brown and
G. B. West, Phys. Rev. Letters 19, 812 (1967); D. A. Gefjen,
ted 19, 770 (1967l. .

f~+= sk'f~'(0)+O(k')

fg ——O(k4); etc.

(2.11c)

(2.11d)

In (2.11), the argument zero in f~(0), etc., on the
right-hand side, denotes t= 0, and f~'(0) = $8f,(t)/Bt]~ 0,
etc.

Equations (2.9) and the equations for the partial-
wave amplitudes obtained from them are our basic
equations. In obtaining the simplest low-energy theo-
rems, one essentially compares the coeflicients of differ-
ent powers of v on the two sides of the Eqs. (2.9),
setting q~' ——q2'= 0, t= 0. However, since an extrapola-
tion in q' is necessary and some contributions to the
amplitudes vary rapidly with q', it appears to be better
to treat some parts of the amplitude separately. (This
will be discussed in Sec. IV.) By taking the t dependence
of Eqs. (2.9) into account through the projection into
partial-wave amplitudes, a wider class of low-energy
relations is obtained. A study of these is the object of
this paper.

We conclude this section with some remarks about
the zero-energy theorems obtained from (2.9).

The zero-energy theorems for 8( ~ and A(+), obtained
from (2.9) at v=0, qP=q22=0, t=0, may be extrapo-
lated to the physical threshold and re-expressed as
relations involving the P-wave scattering lengths, as
shown in Refs. 8 and 9.

An alternative way of expressing the zero-energy
theorems is to assume dispersion relations for 8(+) and
A(+), substitute them in the zero-energy theorems, and
use the relation analogous to (2.1) for the absorptive
parts of the amplitudes. For 8( ), for instance, this gives
a relation involving

@+p'/2m

dv' ImB& ~(v')/v'

and a term arising from the matrix element of the axial-
vector currents. Such relations were discussed by the
authors of Ref. 10.

III. 8-WAVE SCATTERING LENGTHS;
THE SCALAR TERM

In deriving the results for the 5-wave scattering
lengths, ' ~ one may start with the following relations for
the nonpole parts Tv(v, t) of the amplitudes in the limit

» G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).



q~=0, V=O, 1=0'
O'E'(0)

(gg
—'—1), (3.1a)

2&2

limT„&+~ =
O'E'(0) OK(0) 8

k, lim—Tv'+'= 0, (3.1b)
m mgg Bv

T &+& (p 0)= T &+& (0 0) . (3.2a)

where k= p'H(0). In order to obtain the 5-wave scat-
tering lengths using only the predictions (3.1) of PCAC
and the C.R.'s, the extrapolation in v to v=y was
performed assuming that

—T„& '(p, 0)= —0.0406p —0.0064p'+
4m

(3.5)

For comparison with the first term in (3.5), we note that
for qs=0, Eq. (3.1a) gives

T—' &&'&= —0.046''(0).
4m

(3.6)

We have evaluated the dispersion integrals in (3.3c)
and (3.3d) using the experimental values of the cross
sections up to 5 BeV as tabulated by Hohler, Kbel, and
Giesecke" and using above 5 BeV the following Gts" "

T„&—
& (p,0)=T,(—& (0,0)+p —T, —

& (v, 0) . (3.2b)
—v=O

2 (vs —p')
+ 0'

v' o&+&(v')dv', (3.3a)
kr,

' (v"—v')

2v " kr, 'o& &(v')
ReT„& &(v,0) =—(P dv'

v 2~ v2

which give

8
T (+)(~&= T (k&(v 0)

r=o

(3.3b)

kl,
'

dv' o&+&(v'), (3.3c)
(vI) n

2 " o &+& (v')
LTv(+&(p, 0)—Tv&+&(0,0)j=-&P dv', (3.3d)

7i p kg v

k& being the laboratory momentum of the incident pion,
we obtain (for (t'= p ) the following expressions from the
Taylor expansions about v= 0

—T„&+&(p,0)=—Tv&+' (0,0)+0.0884p'
4n- 4n-

+0.0152p4+0.0022p, '+ (3.4a)
1=—T„&+&(0,0)+0.11,

4x
(3.4b)

a& An integral similar to (33d), but with the kinematics for
g'=0, has been evaluated by K. Kawarabayashi and W. Wada

These will be a good approximation if the higher-order
terms in a Taylor expansion of T„&+~ in v about v=0
are negligibly small; we shall now examine whether
this is in fact true.

For this we Grst evaluate these higher-order terms
(in v) for qs=ps using dispersion relations and the
observed cross sections, and then estimate the effect of
extrapolating to q'=0. From the dispersion relations in
v for t= 0, namely,

ReT„(+&(v,0)= T„&+&(p,O)

o'+'= 1.125+3.54k ", o & '= 0.773k—", (3.7)

in the natural units A =c=p, = 1.The uncertainty in our
estimates arising from the uncertainty in the cross
sections of Hohler et al. and in the parameters in (3.7)
is expected to be within 10-15%.

Equation (3.5) shows that the term of order p' in
T„& &(p,O) is appreciably large (about 16% of the term
of order p); this suggests that unless there is a cancella-
tion among the higher-order terms in T„( ), these could
give rise to a significant correction to Eq. (3.2b).
Whether there is such a cancellation may be seen from
the experimental estimates for T& &(p,0). The work of
Samaranayake and Woolcock" gives (1/4&r)T&

—
&(p,O)

=0.093, (1/4&r)Tv& &(p,0)= —0.0323, while Hamilton
and Woolcock'4 and Roper, Wright, and Feld25 give
0.086 and —0.0405, respectively, for these quantities.
Comparing with (3.5), it is seen that if the results of
H% and RWF are correct, the higher-order terms in
Tv&-& largely cancel one another Lso that (3.2b) would
be a good approximationj, whereas if the estimates of
5% are the better ones, the higher-order terms would
give a correction of about 20% to (3.2b), for q'= p'. An
accurate determination of T' &(p,0) would enable a
more conclusive statement to be made.

For Tv(+&(p,0), Eqs. (3.4) show the magnitudes of the
higher-order terms. Adding the nucleon pole term gives
T&+& (p,O). Experimentally, there is an uncertainty in the
value of T&+& (p,0); however, all the estimates are small.
The estimates of SW, for instance, give (1/4&r)T&+&(p,0)

/Phys Rev. 146, .1209 (1966)$, who obtained a value of about
0.13. The quantity T„( &&~&/47r has been evaluated by Adler, who
obtained a value of —0.0414 (see Ref. l.).

»G. Hohler, G. Ebel, and J. Giesecke, Z. Physik 1SO, 430
(1964).

~2 Q. von Dardel, D. Dekkers, R. Mermod, M. Vivargent, G.
Weber, and K. Winter, Phys. Rev. Letters 8, 173 (1962).~ V. K. Samaranayake and W. S. Woolcock (to be published);
we shall refer to this as SW. These authors give a~ =0.177&0.005;
a~ ———0.102&0.004, which give a(+& =—0.009, a( & =0.093. We are
grateful. to Dr. Samaranayake for communicating to us the results
of this work. See also V. K. Samaranayake and W. S. Woolcock,
Phys. Rev. Letters 15, 936 (1965).

'4 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963); this will be referred to as HW.

2' L. D. Roper, R. M. Wright, and S.T. Feld, Phys. Rev. 138,
3190 (1965);we shall refer to this as RWF.



TAnLz I. Contribution of the low-energy resonances to O'T„&+&/Bv' at v =0.

Values of
q'and ~

q'=0 s =0
q'=p', v=0

2.29 E'(0)
1.89

Contribution of the N~ resonances to O'T„&+&/&&g'

0.099 If.'(0)
0.095

—0.066 Z'(0)—0.068

Sum of E*
contributions

Has~ to O'T„&+&/Bv'

0.0088 E'(0) 0.0233 Z'(0) 0.02 X'(0) 2.3'l E'(0)
0.0085 0.0227 0.0194 1.97

Value of
O'T &+&/&&v'

from dis-
persion
relation

~ ~ ~

2.22

=—0.01.2' Comparing with the sum of the higher-order
terms as given in (3.4b), one sees that these make an
important contribution to T&+'(p,0), and that it would
not be a good approximation to neglect them, as in
(3.2a)."

The results given above are for q'= p' and have to be
extrapolated to q'=0. For T~& &, comparing (3.1a) and
(3.6) with the f&rst term in (3.5) indicates that the
change in going to q'=0 may be expected to be within
15%.For T~&+&, we examine this in more detail, using a
model in which the higher-order terms are approximated
by the contributions of the E*resonances. In particular,
the second-order terms are approximated by the E*
resonances with spins ~ and ~; there appear to be six
such resonances, here denoted as S;*, i=1, 2, 6."
Among these, the contribution of the (-,', ss)E&* is found
to dominate.

In Table I are shown the contributions of the E;*,
i =1 . 6, to c&sT &+&/8»' for»=0, q'=0 and for r =0,
q'= p2. In obtaining the values for q'= 0 v= 0 we have
assumed that the factor giving the variation in the
BEE*couplings between q2= 0 and q'= p' is roughly the
same as the corresponding factor E(0) for the rr1&/1&/'
vertex, which is assumed to be close to unity. The main
part of the variation in q' of &&'T„&+&/&)»' would then
arise from the variation with q' of the kinematical
factors in T(+).

It is seen from Table I that the sum of the E*
contributions gives r)'T~&+&/&)& s at v =0, q'= p' correct to
about 13% as compared with the value deduced from
a dispersion relation using the experimental cross
sections t see (3.4a)); thus we may expect that the
qualitative conclusions from our model will be reliable.

"For comparison we note that HW's estimates give T&+& (p,0) /
421-= —0.0029, while the 0—100-MeV and 0-350-MeV solutions of
RWF give —0.0138 and 0.0264, respectively. The statements
about the higher-order terms continue to hold when these esti-
mates are used.

"Note that although the second term on the right of (3.4b) is
small compared to the first term, the latter is almost completely
cancelled upon adding the pole term and therefore the magnitude
of the second term is important in determining the value of
T&+&(p,0). That the higher-order terms in T&+& may be important
is implicit in the work of Kawarabayashi and Wada (Ref. 20).
However, their conclusions about the scalar term are diferent
from ours. We note also that 0&+) is always positive, in contrast to
a( ), and there can be no cancellation among the higher-order
terms in T~(+).' The resonances ¹*are the ones listed in Appendix A. For
their masses and widths, we have used the values quoted by A. H.
Rosenfeld et al. , Tables from UCRL 8030 (revised), 1966 (un-
published). The coupling constants are given in Appendix A.

(1/4~) T'+& (0,0,0 p') =0 (3.8b)

while (3.4b) together with SW's estimates for
T&+& (p, ,O,p,',p') gives

(1/4&r) T'+& (0 0 p' p') =—0.12. (3.8c)

(3.8b) and (3.8c) show that T&+& at v=O varies ap-
preciably with qP and qP )the scale being provided by
the experimental value of —0.01 for (1/kr)T&+&(p, O)$.

As the contributions of the low-lying E*resonances'
(especially the 1Vt*) to T&+& vary quite rapidly with qs

"S..L. Adler, Phys. Rev. 137, 81022 (1965}.

Further, the contribution of the resonances for v=0,
q'= 0 is seen to be about 20% larger than that for v= 0,
q'= p', if one ignores the factor E'(0). If E'(0) is less
than unity, the diGerence would be less than 20%.

If one assumes that the variation with q' of the higher
derivatives of T„&+& (which could presumably be ap-
proximated by including the contributions of resonances
with higher spin) is of the same order, then the above
results suggest that terms of order v' and higher in
T~&+& make an important contribution to T+&(p,O) at
q'= 0 also, and that the approximation (3.2a) (in which
such terms are neglected) is not adequate. Similarly, for
T„( &, the qualitative conclusions stated above about
the importance of the higher-order terms, for q'= p', are
expected to hold true for q'=0 also.

In summary, it appears that at least for the isospin-
symmetric S-wave xE scattering length, a good ap-
proximation cannot be obtained from the C.R.'s and
PCAC alone; higher-order corrections, which must be
evaluated from a model (or by using dispersion relations
and the observed total cross sections), must be taken
into account.

The approximation (3.2a) together with the assump-
tion that T„&+&(p,O,p p s)=sT„&+&(p,0,0,0)/E'(0), in the
notation T(v, t,qp, qss), would suggest that the scalar
term in (3.1b) may be ignored. However, it is necessary
to reexamine this, since higher-order terms have to be
added to (3.2a) to give a good approximation for T&+&,

and further since slow variation with q' seems to be a
valid assumption only for the nonresonant part of T~&+'.

Equation (3.1b) (for qP=qss=0) and Adler's con-
sistency condition (for qP=P', qss=O), " resPectively,
give

(1/4&r) T + (0,0,0,0)= —
t GE (0)/4&rmg~)h (3.8a)

and
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(note that it is only the term to the zeroth order in v in
the ¹*contribution that varies rapidly with qs), we
separate them from (3.8); we also separate the nucleon
pole contributions. For the nonpole, nonresonant parts
7.'„(+& of T&+~ at v=0, one then obtains the following
(omitting terms of order &us/toss):

a rough estimate of this term by comparing the pre-
dictions for c'+) with the experimental estimates. The
result Lnamely, h= —0.5E(0)j appears to support the
qualitative indication obtained from (3.9) that h is
negative and not too small.

—T„&+&(0,0,0,0)=-
Sr

GE(0)
Es(0), (3.9a)

4rmgg Arm

IV. APPROXIMATION FOR THE STRUC-
TURE-DEPENDENT TERMS AND THE

EXTRAPOLATION PROCEDURE

Q2

f,&+&(o,o,o,„s)=0.075+ E(0),
4~nz

(3.9b)

Q2—7'„&+&(0,0,ps y') =0.028+
4~m

(3.9c)

Note that the larger part of the right-hand sides of
(3.9), given by the second term, " is almost exactly
cancelled by the S-pole term in T(+'.

The first term on the right of (3.9a) may be taken to
correspond to the exchange of simple I=0 states in xS
scattering. A plausible assumption would be that in
(3.9b) and (3.9c) also, the major part of the first term on
the right arises from the exchange of these I=0 states. "
To obtain a very rough order-of-magnitude estimate of
h, we note that if the first terms on the right of Eq. (3.9)
varied approximately linearly with q&' and q2', this would

suggest that h is not too small and that it is negative

L
—GE(0)h/4s. r&sg~= 0.12, h= —0.89E—'(0)j

in contrast to some other estimates. "Further informa-
tion is needed for a reliable estimate of the scalar term.

Contrary to the statement sometimes made, the as-
sumption of the exact validity of PCAC, and hence of
Adler's consistency condition, does not necessarily
imply that this term is small. '4 In Sec. VI we shall make

'0The sum of the ¹~,¹*,and fag contributions to (3.8a),
(3.8b), and (3.8c) are found to be 0, —0.075, and —0.148. (Here
the S'2* contribution has been evaluated using a pseudovector
coupling. )

'~This term, which gives the larger part of T„(+& at v=0,
probably arises from the short-range forces; it is presumably what
necessitates the subtraction in the dispersion relation for T(+)."Note, however, that if o. exchange dominated all these terms,
then (3.9) would suggest a substantial variation of g, with qP
and qP. This is perhaps an indication that o. dominance is not an
adequate approximation for these terms, and in particular for the
scalar term h.

»ote that if one assumed that (3.8c) differed from (3.8a)
essentially only by a factor E'(0), as was assumed by Kawara-
bayashi and Wads (Ref. 20), one would obtain a positive value of
h: h=0.7. (The quantity 3II,ii in Ref. 20 is equal to y sh.) However,
as noted in Ref. 20, the analogous assumption does not describe
correctly the relation of (3.8b) to (3.8a) and (3.8c). We have
suggested that this is so because (3.8) includes contributions such
as those from the X*resonances which do not vary slowly with q'.

'4 The argument sometimes offered that the presence of a term
(in the scattering amplitude) varying rapidly with q' would con-
tradict the spirit of PCAC seems to be too restrictive an inter-
pretation of PCAC. We believe that what the presence of such
terms in the amplitude requires is that the assumption of gentle
extrapolation, used in conjunction with PCAC should be applied
only after separating out the part varying rapidly with q», as
we suggest in Sec. IV. That such terms can be present is seen when

In electrodynamics it was shown by Low, by Gell-
Mann and Goldberger, and by others that for a process
involving photons, one may obtain, for terms of the
lowest few orders in the photon energy, exact relations
which are independent of the detailed structure of the
matrix element and depend only on quantities like the
charge and the magnetic moment. "Analogous results
hold true for matrix elements involving axial-vector
currents, " when the pions (defined in terms of the
divergence of the axial-vector current) have zero ex-
ternal mass q'. Examples of such (exact) results are the
relations (3.1) for the rrlV scattering amplitude with
q'= 0.

The extrapolation from pions with q'=0 to physical
pions with q'=p' needs additional assumptions. From
the preceding section it appears that even in considering
the 5-wave scattering lengths, it is inadequate to keep
only the terms of the zeroth and first orders in v (which
are the terms that can be obtained exactly from the
current algebra and PCAC), at least for the isospin-
symmetric amplitude. Detailed assumptions must be
made about the dynamics in order to evaluate the
higher-order structure-dependent contributions to the
amplitude.

In this paper we are interested in determining the xS
scattering amplitude to terms of the second order in v,'
we shall obtain expressions for the 8-wave scattering
lengths and the 5 and E phase shifts at low energies. %e
now need to know the second-order terms in the ampli-
tude q»qs„M&zv" on the left-hand side of (2.1). These
depend on the detailed structure of the amplitude
3f~~&"; as the latter can be evaluated only approxi-
mately, our results will be approximate.

Our basic assumption will be that the terms to the
second order in v in q~„q2„M~~&' are given to a good
approximation by the contributions of the direct and
exchanged poles and resonances to the amplitude
31~~1"".This will give expressions for the amplitudes
D&+& and R&+& Lsee Eqs. (2.9)).In order to evaluate the
right-hand sides of Eq. (2.11),we shall need to know the

one compares Eq. (3.8b) (derived by assuming PCAC to be
exact) with (3.8c) (derived from experiment). We further re-
mark that even in a o model, the scalar term would be small only
if p yg ~g ~~ is small, for which there is no estimate."F.E. Low, Phys. Rev. 96, 1428 (1954); Phys. Rev. 110, 974
(1958); M. Geii-Mann and M. L. Goldberger, sbfd 96, 1433.
(1954); E. Kazes, Nuovo Cimento 13, 1226 (1959).

36The extension of the resul. ts of low (Ref. 35) to matrix
elements involving axial-vector currents has been discussed byS. L. Adler and Y. Dothan LPhys. Rev. 151, 1267 (1966)g.
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parameters describing the contributions of the reso-
nances and the values of the form factors Ftv(t) and
Fs"(t) and their derivatives Ftv'(t) and Fsv'(/) at t=0.

Contributions to Kg~I'" that are of the second order
in v are obtained from Ã* resonances with spins —', and +2

(in the s and I channels) and the p meson and a possible
0. meson in the t channel. At q'=0, X*resonances with
spins higher than ~3 do not contribute to terms of second
order in v in the amplitude. Among the low-lying E*
resonances, the most significant contributions are ex-
pected to be those of the (-'„-',+) 1Vt*, the (-'„-,'+) Roper
resonance 1Vs*, and the (sr, —,

s ) Xs* (see Ref. 28 and
Appendix A). The contributions of the X4*, Xs*, and
X6~ are ignored, for simplicity; we expect that these are
small and that neglecting them will not introduce much
error. 37

Our procedure for obtaining expressions for the
partial-wave amplitudes, starting with Eqs. (2.9) (which
hold for qrs= qss=0) will be as follows.

We first subtract from each side of each of the Kqs.
(2.9) the contribution of the nucleon poles (in the sense
of dispersion theory) in s and e. We then separate out
the contribution of each E*resonance to the amplitudes
A&+& and 8&+& on the left-hand sides of Eqs. (2.9) and
subtract these from each side of these equations, using
the Goldberger-Treiman relation relating the xEE*
coupling to the E*~E axial-vector renormalization
constants.

The contributions to q»q2, M~~&" from p and 0.

mesons in the t channel at q&' ——0, q2'=0 may be similarly
separated out. These vanish at t=0,38 and the contri-
butions from such states to the partial-wave amplitudes
arise only through their contributions to f,'(0) and
fs'(0) (and the higher derivatives). (see Eq. (2.11).g

The relation for the Oxg coupling that enters here is
discussed in Appendix C.

The equations obtained after subtracting the E poles
and the X*,p and 0. terms involve the nonpole, nonreso-
nant parts of A(+&, etc., which we denote by A. (+)„
8&+&, Dt+&, and R'+&. We assume that to a good approxi-
mation, the amplitudes 8'+) and 8(+) for q'=p, ', may
be obtained from the amplitudes for q'=0 by dividing
the latter by E'(0):

A(+& (s,t,y' p') =A. &+& (s,t,0,0)/K'(0), etc., (4.1)

"In connection with this we note that when one tries to saturate
the Adler-Weisberger sum rule with the contributions of the S*
resonances, one Gnds that keeping just the ¹*,¹*,and ZAP
gives a good approximation. The author is indebted to Dr. H.
Harari for information regarding his results on this.

3 This may be shown by writing the coupling of two axial-
vector currents to the 0 meson in the form (C17) and the corre-
sponding coupling of the p meson in the form

kf»."" =f~(r)e"Q +fs(&) (Q"e +Q"x" )
+(f8($)g2 pl~+f4 ($)ql ql )Q +f5 ($)g g2

+fs(t)t'"e "+f (t)e" (Q k"+Q"k )
+f, (r)ps~(Q~k~+Q~k~)+f, (r) e»»Q, P~.~Q,k.

and taking the limit qy =0 qg'=0, t=0. The couplings Mgg~l'"
and Ngg, &" given here are free of kinematical singularities in
8', ps', and p,' (or p,').

where we have used the notation A'+&(s, t,qP, qs'). We
now' add to A&+& and 8'+& at q'=p~ the exact pole or
resonant contributions of the E, E*,p, and r, and use
the resulting amplitudes A(+& and 8&+) to construct the
partial-wave amplitudes.

In the above procedure for obtaining relations for
Q (+~ and P(+& at qy = g2 =p we are applying the current
C.R.'s and the PCAC hypothesis to the nonpole, non-
resonant parts of the amplitudes rather than the total
amplitudes.

This is important, firstly, in connection with the
extrapolation in q'. Thus the contributions of the
spin-2 X* resonances to the xE scattering amplitude,
particularly to the isospin-symmetric part of the ampli-
tude, are found to vary rapidly with q'. (This is true of
the terms of zeroth order in v in these contributions. )
For instance, at the threshold s= (rN+p)' and at very
low energies, even the sign of the (ss,xs+) I&'f* contribution
is di6'erent for g'=0 and g'=p'. Thus when these
resonances make significant contributions, simple as-
sumptions such as (4.1) will not be adequate to take
into account the variation of the whole amplitude be-
tween q'=0 and q'=p'. They may, however, be ex-
pected to be better approximations for the nonresonant
parts of the amplitudes.

Secondly, the procedure of adding the exact contribu-
tion of the resonances to the extrapolated nonresonant
amplitude gives a method of obtaining an amplitude
with a nonzero imaginary part (if the widths of the
resonances are taken into account); this approximation
for the imaginary part would be a good approximation
if the resonances dominate the imaginary part.

The procedure outlined above is not unique; an
alternative method, based on the same assumptions,
would be to construct the partial-wave amplitudes for
q'=0 and extrapolate them, taking care to ensure the
correct threshold behavior. The differences between this
extrapolation and the one we have outlined above are
discussed in Appendix B.

at &+& (E)=2ut &+& (E)=—2at+(+& (g)

Gs ( ~)—s

12m'(m+ p) E 2r&s)

(N) (5.1 )

(5.1b)

V. EVALUATION OF THE VARIOUS
CONTRIBUTIONS

The contributions to the partial-wave amplitudes
fs+&+& and fr~&+& from the nucleon Born term in D&+& and
Ri+& and the terms involving the form factors Ft,sv(i)
may be evaluated by starting with (2.9) at qrs= qss =0,
extrapolating as discussed in Sec. IV, finding the con-
tributions to ft and fs Lsee (A3)), and substituting in
(2.11).We give below the contributions to the P-wave
scattering lengths from the nucleon and C.R. terms:
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gr & &(C.R.)=-
16s.g~'m'(m+ p)

where

y(k) =g'(8+m)(8'+M)(24rW) '. (5.S)

X I 1+ I{Frv(0)+2mFsy(0)}
2m)

—(', m -p)F—sv (0)+,'mIzF-tv' (0), (5.1c)

gr~& '(C.R.)=
&rgg'm'(m+Iz)

&&{lF '(0)—l F '(o)} (51d)

)In (5.1a) and (5.1b) we have neglected terms of higher
order in p/m. ) The contributions of the scalar term
H(f) are obtained in a similar manner.

To evaluate the contribution of the (s,s+) Et*, we
assume the following form for the matrix element of the
axial-vector current between a nucleon and a ~+ E*:

9*(p ) I "(o) I &(p')&

|t,(p~) B~(q')g"'

Here me have chosen a complex propagator in order to
take into account the finite width of the resonance. The
function y(k) has been determined by the requirement
that the contribution of the ~3+ X* to its own partial
wave (i.e., the Ps~s partial wave) be unitary and have
the correct threshold behavior. 40 It is found that re-
placing y(k) in (5.4) by its (constant) value at the
resonance 8'= Sf does not make much diGerence at low
energies. However, including a finite width for the X~
does have an appreciable eBect. For a spin-~3 E* in the
e channel, we take a real propagator, obtained by
omitting the imaginary part of the denominator in (S.4).

Ke may now evaluate the E~* contributions to the
partial-wave amplitudes and scattering lengths in terms
of the s XXre coupling constant gr Lsee (A7)), following
the procedure outlined in Sec. IV, and using the relation
gg(0)=C~p, 'grE(0). The Et* contributions to the
I'-wave scattering lengths are found to be the following:

gr~(+) —zLgr~(~)+gr~(~)g gr~(
—) —&I gr~(~)+gr~(&)1

(5.6a)
where

+@~(q')r~q~+SC&(q')P"q~

pqsq~
+&~(v')l — —g"') ~(P ) (5 2)

4 q'

Here, m and M are the masses of the nucleon and the
F~, and we have defined

gx
g, & &= L(m+p)' —M'P'

48s.m(m+ p)

&({(M+m) (2m+y)' —2M''

—4mpSI '(m+ p)' —4m'(M+m+ p)

+CPM '(m+p M)E3P (m+—p)')}, (5.—6b)

P= z (p'+pI) q= (pr —p~)

P'=P (P q)q/q', rs=e—s""q„P,q.vs,
(53), (.)= LM' —(m —p)'|-'

24s (m+ p)

In choosing the form (5.2), our assumption is that
the model defined by the coupling (5.2) (and the propa-
gator given below) gives a good description of the oB-
shell contribution of the E* (see Ref. 9).For the propa-
gator of the spin-&+ E~ in the s channel, we assume
the following form":

t' 2m') 2p
2I 1+ I(M+m) (m+Iz)+—(m,'—p')

3Ms) 3f
p2

+ (M+3m+ g) LM' —(m —p)'1
m3P

(—')&&- 3g""—
3

2I'~I'" 2m Sm'p
+ (M+m —3p)+ (m p,), (5.—6c)

3 3M'

(y P+M)
X , (5.4)

P' M'+iy (k)k'—
(e)— gx

(M—m —p) ',
12' (m+N)

(5.6d)

"%ith a covariant propagator, the oB-shell {nonpole} part of
the Eq* contribution (in the s channel) contributes to partial
waves other than the P3~2 also. A di6'erent model would be one in
which only the mass-shell part of the E&* contribution {which is
pure P3/~) is kept. The S* resonance in the u channel, of course,
contributes to all partial waves in the s channel: this is more easily
evaluated in terms of a covariant propagator. The form (5.4) of the
propagator corresponds to the projection operator as given, for
instance, by Y. Takahashi and H. Umezawa, Progr. Theoret.
Phys. (Kyoto) 9, 14 (1953); see also H. Umezawa, Qgatggrs
2'keory (North-Holland Publishing Company, Amsterdam, 1956).

gy 5$
gl+t" =

I
Ms —(m p)' j ' -—(M+m —3p)

18s.(m+ p)

p ( 2m)+—
I 1+ l(m+~) (5.6e)

ME M)
's Note that Reft+= (sin2sr~)/2k k", Imfr~ = (sinsS ~~)/k k4&+'

as k —+ 0, if we assume that b~+ k"+' as k —+ 0.
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TABLE II. Contributions to S-wave scattering lengths and real parts of S-wave amplitudes at low energies. '

Energy
{in

MeV)

0
0

20
20
58
58
98
98

Ampli-
tude

g0 (+)

g0 (-)
Refold&+&
Ref0 (-)
Re/0+&+&

Reg, (-)
Reg,

' (+)

Rey, (-)

—0.0105
0.0008—0.0057—0.0054
0.0046—0.021
0.0186—0.04

0
0.099

0
0.101

0
0.1

0
0.092

Nucleon
Born C.R.
term term

—0.06
0.0012—0.08
0.002—0.146
0.035—0.103
0.007

—0.0086
0—0.001—6X10 '

—0.001—4X10 4

—0.0008—0.0009

0.0037—0.0009
0.0041—0.001
0.0056—0.0022
0.0068—0.0033

Total
of E,
C.R.,

and E*
terms

—0.067
0.1—0.083
0.096—0.136
0.112—0.078
0.055

Scalar
term

+0.058
0

0.054
0

0.046
0

0.037
0

Total {in-
cluding
scalar
term)

—0.009
0.1—0.029
0.096—0.09
0.112—0.041
0.055

0.023
0.086—0.0016
0.082—0.02
0.08—0.034
0.08

—0.009
0.093—0.034
0.088—0.052
0.087—0.066
0.087

Experimental
estimates

Esti- Cor-
mates rected

of esti-
RWF mates

a The corrected experimental estimates for ao+(~»nd fo+(+) have been obtained in the manner discussed in Sec. Vg.

For the D3~2E3*, we proceed similarly, replacing
y(k)ks in (5.4) by p(k)k', where

p(k) =gss(g +M)(E+tn) '(24s.W) '. (5.7)

The results for the E-wave scattering lengths may be
obtained by replacing Mr ~ —Ms, gt~ gs in (5.6).

A procedure similar to the treatment of the nucleon
Born term gives the contribution of the ~+ E2*, we use
the relation

ggs(0) = (2/v3)gsp 'C E (0) (M+t&s)
—', (5.8)

where &&~s is def&ned by (A6). In evaluating the E*
contributions above, we have assumed g;(0)/g, (p')
=E(0), i=1, 2, 3.

Finally, we may write down the contributions of a
p-meson pole and a possible 0--meson pole in 3f~~i""&+&

(or equivalently, D&+& and E&+&). An important feature
of these is that the contributions to the S-wave scat-
tering lengths (i.e., to us+& & from the p meson and to
as+&+& from the o- meson) are zero. Further, the contri-
butions to the E'-wave scattering lengths and the 5- and
P-wave amplitudes are proportional to f, '(0) and
g, '(0) )where f, ,'(0)= c&f, (t)/R at t=0, etc.j.
These latter quantities are not known; however, a
rough estimate of f, '(0) suggests that it is small.

VI. NUMERICAL RESULTS

We have evaluated the various contributions to the
scattering lengths and to the partial-wave amplitudes
fs+&+&, ft &+& and fr+&+& at values of the pion laboratory
kinetic energy of 20, 58, and 98 MeV. Our low-energy
approximations are not expected to be good approxi-
mations at energies much higher than 50 MeV; however,
the values of the amplitudes at higher values of the
energy would indicate at what energy an appreciable
discrepancy sets in.

In making the numerical estimates, we have used the
values of the ~EX*coupling constants as obtained from
the observed widths, and the values of Ft,sv(0) and
Ft, sv'(0) as obtained from the results for the nucleon

form factors given by Chan e1 al. ,"which give Ftv'(0)
=0.147, 2mF, ~'(0)=0.12. As the terms in the C.R.
contribution involving Ft sv'(0) are small compared to
those involving Ft, sv(0), the uncertainty in the experi-
mental values of Ft, sv'(0) does not seriously affect the
results.

For the experimental values of the xE' phase shifts,
we have taken the 0-350-MeV solution of RWF.25 This
solution of RWF was obtained by an over-all fit to the
data between 0 and 350 MeV and is therefore not ex-
pected to give accurate values of the phase shifts at all
energies in this range. As noted in Ref. 4, the 5-wave
scattering length co+(+~ given by this solution, ao+(+'
=0,023, differs considerably from that obtained, for
instance, by SW,23 whose estimates for the 5-wave
scattering lengths we believe to be more reliable. This
suggests that the amplitudes fs+&+& at low energies,
obtained from the phase shifts of RWF, are not reliable.
To obtain more reliable estimates of these amplitudes at
low energies, we suggest correcting the phase shifts of
RWF by replacing the scattering-length parameter in
their eBective-range formula for the 5-wave phase shifts
by more reliable values; we have used the values of
SW.23~ We believe that at low energies, the values of
the 5-wave phase shifts so corrected are more reliable. 4'

We have given both the uncorrected and the corrected
experimental values of f&&+&"&; they diA'er roughly by a
constant, as only the 5-wave scattering-length parame-
ter has been altered.

Among the I'-wave scattering lengths, for a~+(+) and
a~+~ ), the estimates of RWF agree well with those of
other workers. For c~ + and a~, the estimates of

4i L H. Chan, K. W. Chen, J. R. Dunning, Jr., N. F. Ramsey,J. K. Walker, and R. Wilson, Phys. Rev. 141, 1298 {1966}.
42For comparison, we note that the 0—100-MeV solution of

RWF gives go (+)=—0.012, ao ( ) =0.084.
4' We note that in the effective-range parametrization used byRWF {Ref.25), the form assumed for tanb~~ includes both even

and odd powers of the 3-momentum k. On the other hand, in an
effective-range approximation derived from a relativistic theory,
one would obtain an expression for tanb&+ with only odd powers of
k (or equivalently, of f&+ with only even powers of kl: tanb~

k"+'Po+brk'=+bnk'+ .j. This introduces some uncertainty
into an assessment of the results of RWF.
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TABLE III. Contributions to P-wave scattering lengths. '

g~ (+)

g~ (—)

g~ (+)

g (-)

Nucleon
Born
term

—0.108—0.055
0.055—0.055

C.R.
term

0
0.041

0
0.0006

0.038
0.02
0.074—0.028

0.003
0.004
0.0012—0.0012

—0.002
0.0023—0.0021
0.0006

Total of E,
C.R., and N*

terms

—0.069
0.0123
0.128—0.083

Scalar
term

0.0047
0

0.005
0

Total

—0.064
0.0123
0.133—0.083

Experimental
estimates

SW HW RWF
—0.055 —0.059 —0.069—0.013 —0.021 —0.016

0.136 0.134 0.137—0.081 —0.081 —0.08

a Among their estimates, RWF (Ref. 28) do not directly quote a value for the ($,$) P-wave scattering length ass. We have taken as' =0.217 in obtaining
the value of ai+(*) quoted in the last column. (We note that different workers agree closely in their estimate for a83.)

diferent workers diGer appreciably; however, it is not
clear whether any one set of estimates is preferable. We
have taken the I'-wave phase shifts as quoted by RKF
(in their 0—350-MeV solution).

We 6rst examine how the S-wave scattering lengths
and low-energy phase shifts given by the sum of the
various contributions discussed in the last section com-
pare with the experimental estimates.

In Table II we have listed the various contributions
to the amplitudes f0+&+& at 0-, 20-, 58-, and 98-MeV pion
laboratory kinetic energy, as well as the experimental
estimates for these.

Looking at the calculated values of the diBerent
contributions to f0+&+&, we see from Table II that at
threshold, for the isospin-antisyrrunetric amplitude
f0~& &, contributions from the E* terms are very small,
whereas for the isospin-symmetric amplitude at thresh-
old these contributions are important.

The contributions of the resonances, when added to
those of the nucleon Born term and the vector com-
mutator, give a totaI. contribution of —0.067 to the
scattering length co+(+), which may be compared with
the experimental estimate of —0.009 given by Sama-
ranayake and Woolcock. ~3 The discrepancy is con-
siderable; thus the nucleon Born term and the E~
resonances do not give a good approximation for ao+(+',
or more generally for the amplitude f0+&+&

However, we have seen in Sec. III that the contribu-
tions of the lowest few spin--,' and spin--', resonances give
the second-order terms (in &) in T„&+& correct to about
13%. (One may expect that the higher-order terms may
be similarly approximated by higher-spin resonances. )
It therefore seems to be reasonable to assume that the
discrepancy between the resonant approximation to
fo+&+& and the full partial-wave amplitude f0+&+& at low
energies arises mainly from the term of zeroth order in
v in T(+). If this assumption is correct, then in order to
correct the discrepancy in ao+H', one would require a
term in the amplitude that would give an appreciable
contribution to ao+&+& (and f0+&+& at low energies) but
considerably smaller contributions to a&+&+& (and f&+&+&).

Such a contribution to T(+) may be obtained from the
scalar term H t see Eq. (2.9a)].~ LNote that a o.-ex-

44 The scalar term on the right of (2.9a) would presumably help
to reproduce correctly the I=0 exchange part of A(+) on the left
of {2.9a). H an I=0 scalar meson (0-) exists, it may be expected to
contribute to the scalar term and to the corresponding part of

H'(0) =—0.064. (6 2)

Comparing the (corrected) experimental values of
f0+& & with the theoretical values, we see that there is
good agreement at 0 and 20 MeV and a discrepancy of
about 25%%uo at 58 MeV. At 98 MeV, the energy is
probably too high for simple low-energy approximations
to hold; we see that the calculated value becomes
considerably smaller than the experimental value.

For f0+&+&, the amplitude at threshold was 6tted to
the experimental value; at 20 MeV there is reasonable
agreement, while at 58 MeV, there is an appreciable
discrepancy. However, the inclusion of the scalar term
has made the discrepancy smaller.

We now turn to the I' waves. In Tables III and IV are
shown the diferent contributions to the E-wave scat-
tering lengths aq+&+& and amplitudes fq+&+&.

We first note that the diGerent experimental esti-
mates for u~+(+) and a~+( ) agree better with one another
than those for u~ (+) and a~ ( ).

For a&+& & and f&+& &, the calculated values, which are
dominated by the E and X&* contributions, agree well
with the experimental values. The choice of the parame-

A(+). The existence of an I=O exchange contribution was also
suggested by Schnitzer (Ref. 12) from a study of the S-wave
eftective ranges. However, he did not examine the nature of this
contribution. We note that a exchange in Mg~» does not seem to
be adequate, as it does not contribute to the term of zeroth order
in v in T(+); our analysis suggests that such a contribution is
required. (We further suggest that an important part of it is
provided by the scalar term. )

change term in M&z&" would not be adequate, as it does
not contribute to ap+&+& (see Sec. V).)

The contributions of the scalar term are described by
two parameters, H(0) and H'(0). We estimate H(0) by
requiring that the scalar term should correct the dis-
crepancy in uo+(+). This gives

h=—p 'H(0) =—0.5K (0), Gh—/47rmggK(0) =0 064.
(6.1)

Looking at Eqs. (3.9), a contribution of the order of
0.06 arising from the scalar term appears to be not
unreasonable. LNote that the estimate of h given in
(6.1) is again opposite in sign to the estimate suggested
by Kawarabayashi and Wada. ' "$

The parameter H'(0) is expected to be smaller in
magnitude than H(0); we have chosen a value that
gives a reasonable 6t to u~+(+):
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TAsx,E IV. Contributions to the real parts of the low-energy E-wave amplitudes.

Nucleon
Born
term

C.R.
term

Total of S,
C.R., and E'* Scalar

terms term Total

Experi-
mental
values
(a.wF~

(i) 20 MeV
Ref, (+)

Ref, (-)
Ref„(+)
Ref1+(-)

(ii) 58 MeV
Ref, (+)

Ref, (—)

Ref„( )

Ref~+( )

(iii) 98 MeV
Ref (+)

Ref~ (—)

Reft (+)

Reft ( )

—0.02—0.01
0.01—0.01

—0.061—0.024
0.023—0.023

—0.091
0.052
0.032—0.032

0
0.0086

0
0.0004

0
0.029

0
0.0023

0
0.048

0
0.008

0.008
0.004
0.017—0.007

0.02
0.015
0.068—0.029

0.039
0.023
0.156—0.069

0.0007
0.001
0.0003—0.0003

0.0026
0.0036
0.0008—0.0008

0.005
0.007
0.0013—0.0013

—0.0005
0.0006—0.0005—0.0001

—0.0014
0.002—0.0014—0.0004

—0.0024
0.0034—0.0025—0.0007

—0.012
0.0042
0.027—0.017

—0.039
0.026
0.091—0.051

—0.049
0.133
0.186—0.095

0.001
0

0.011
0

0.0031
0

0.0334
0

0.0057
0

0.058
0

—0.011
0.0042
0.038;—0.017 j

—0.036
0.026
0.124—0.051

—0.043
0.133
0.244—0.095

—0.0127—0.0036
0.036—0.019

—0.026—0.0033
0.106—0.052

—0.035—0.003
0.195—0.105

ter H'(0) in the scalar term was made so as to give a
reasonable fit to at+&+&. For ft+&+& at 20 MeV, there is
good agreement; at the higher values of the energy,
there is still agreement to about 20%.

For a~ (+), the experimental estimates of diferent
workers differ appreciably; the theoretical estimate lies
about halfway between the estimates of RWF and HW
and divers from these by 7—10%. (Note that the contri-
bution of the scalar term decreases the magnitude of
at &+&.) For f~ &+& at 20 MeV, again the agreement is
reasonable; at higher values of the energy, the calcu-
lated values are larger in magnitude than the experi-
mental estimates.

For at & & and ft & &, there is a discrepancy between
the theoretical and experimental estimates. The reason
for this disagreement is not clear. To correct it, one
would look for a contribution to T~ & that gives a nega-
tive contribution to at & & and ft & & but does not alter
f&&+& & appreciably.

Such a contribution could arise from the p-meson pole
in 3f~~"".However, a rough estimate of this contribu-
tion to at & & and ft & &, suggests that it is too small.

The discrepancy in at & & and ft & & would suggest
that there is a significant contribution to 2 & & that is not
taken into account by the simple contributions con-
sidered here.

We have also evaluated the contribution to the
imaginary parts of the amplitudes arising from the S*
resonances in the direct (or s) channel, using a complex
propagator for the resonances as discussed in Sec. IV.
Only the (s,s) cVte makes a significant contribution to
the imaginary part at low energies. However, it is found
that this simple picture does not describe the imaginary
parts of the amplitudes adequately. As the problem does
not involve the current algebra or PCAC, we do not
discuss it further here.

We anally brieQy compare the results in this paper
with the approximate low-energy theorems for the E-
wave scattering lengths given by us in earlier work. "

The low-energy theorems given there were for the
combinations (at '+&—at+&+&) and (at & &—at+& ') of the
P-wave scattering lengths. 4' Expressions were obtained
for these in terms of the contributions of the nucleon
Born term, the commutator term, the structure-de-
pendent terms as approximated by the low-lying E*
resonances, and the quantities DA(+) and 68„~—) defined
by

DA &+& =A &+& (tt,O,tt', tt') —A &+' (0,0,tt', tt')

and a similar expression for AB„( ).
The approximations and extrapolation used in this

paper are somewhat diferent from those used in Ref. 9.
There, one first wrote down relations for A(+) and 8~+)
at v=0, t=0, q~' ——q '=0, evaluated the 37* contribu-
tions (to the terms of order v') at this point, extrapolated
the amplitudes to q'= p,', and used dispersion relations
to obtain QA(+) and AB„( ), and thence A &+) and 8~ ~, at
the physical threshold. The main difference is in the last
step. As 53&+) and 68~( ) were evaluated in terms of
dispersion integrals, using experimental values of the
phase shifts, they took into account all possible contri-
butions to the di8erence between the xE scattering
amplitudes at v =0, q'= p,

' and v =p, , q'= p,', and not only
those which may be well approximated by the contribu-
tions of the E* resonances, the p meson and a possible
o meson.

For comparison, we have given in Table V the various
contributions to (at &+&—at+&+&) as given by the results
of this paper, and in Table UI the various contributions
as evaluated in Ref. 9.

Comparing Tables V and VI, we drst note that the
contributions of the nucleon Born term and the com-
mutator term are the same in both, as they should be.

"Note that the combination (or —el+) of the E-wave scat-
tering lengths involves only the fz amplitudes and not 8f&/Bt or
Bfm/Bt; because of this, the sum rules given in Refs. 8 and 9
involved the form factors Frv(t) and Psv(t) at t=0 but not their
derivatives. Also, the p-meson pole in 3Eggt'" does not contribute to
the second-order terms in these sum rules.
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TABLE V. Contributions to (aq &+&—ay+&+&).'

(a~ &+& —a,+&+&)

Nucleon
term

—0.163

term

—0.036

Np*
term

0.0018

term Total

—0.197

Experimental estimates
SW HW RWF

—0.191 -0.192 —0.206
(—0.17)

(ai &
—

& —ai &
—)) 0.04 0.048 0.0052 0.002 0.095 0.068 0,066 0.064

(0.081)

a The contribution of the scalar term to (a1 (+) —a1+(+)) is found to be negligibly small.
b The numbers given in parentheses in the last column are obtained from the 0-100-Mev solution of RWF, while the other numbers in this column are

obtained from their 0-350-MeV solution. It is not clear which of these are the better estimates.

(Note that in Table VI, the total contribution of the
nucleon Born term is the sum of the exact nucleon pole
term and the PCAC term, the latter term being the non-
pole part of the nucleon Born term in qx„qs,M~~&".)

The sum of the S*contributions in the Grst row of
Table V gives —0.034, while the AA(+) term in the 6rst
row of Table VI gives —0.0395; the two are roughly the
same, which shows that the change in A (+) in going from
v=0, g =g to v= p, g =p2 ls taken into account to a
good approximation (to about 15%) by the E* contri-
butions. For (&xx &+& —ax+&+&), the results of both Table V
and Table VI agree well with the experimental estimates
of HW and SW and the 0—350-MeV solution of RWF.

For (ax & & —&xx+& &), the sum of the E*contributions
(at the physical threshold) in Table V is a little larger
than the sum of the E* contributions in Table VI
Lwhich are evaluated at v=0, q'=0 and divided by
E'(0)j. One may expect that the N* contribution in
AB„( ) in Table VI when added to the explicit E* con-
tributions will give about the same number as in Table
V, assuming that the E*contributions are well described
by our model. However, the sum. of AB„( ) and the S*
terms in the second row of Table VI is 0.041, as com-
pared to 0.055 for the sum of the S*terms in the second
row of Table V. This indicates that there is a signihcant
contribution to the isospin-antisymmetric amplitude
ggpg2yM»& "( ) in addition to that arising from the S
terms, and that taking it into account gives a better
agreexnent with experiment for (ax & & —&xx~& &) (as the
result of Table VI for this quantity agrees better with
the experimental estimates than the result of Table V).

This may be taken to suggest that the basic procedure
and assumptions about extrapolation used in this paper
are essentially correct, and that the discrepancy in u& ( )

and fx & & arises because there is a contribution to the
amplitude q~„q2„Mg~&"& ) which cannot be well ap-
proximated by the simplest poles and resonances in the
various channels.

VII. CONCLUSIONS

In this paper we have examined the results that may
be obtained for the m.X P-wave scattering lengths and
low-energy 5-wave and P-wave phase shifts by starting
with the current commutation relations and the PCAC
hypothesis. We have analyzed the basic relation (2.1)
for the nonpole, nonresonant parts of the amplitudes
M~~&" and M~~ to terms of the second order in v,
making a suitable dynamical approximation for the
structure-dependent part of Mg~&". The relations thus
obtained for the xE scattering amplitude were ex-
trapolated to q~' ——q2'=p, '. Adding the exact pole and
resonant contributions, results were obtained for the
physical zS partial-wave amplitudes.

Ke have erst examined the validity of the assurnp-
tions usually made in obtaining the S-wave scattering
lengths using only the current C.R.'s and PCAC.
Estimating the higher-order terms (in &) in 2'&+& from
dispersion relations and the experimental cross sections
(for q'=&I,'), and using a model to extrapolate to q'=0,
we 6nd that at least for T(+' these cannot be neglected.
Consequently it appears that the C.R.'s and PCAC are
not sufhcient to give the scattering length u(+) to a good
approximation; one needs detailed dynamical assurnp-
tions in order to evaluate the higher-order corrections
which should be taken into account in writing a relation
for u(+'. For u( ', it is possible that the higher-order
terms (though individually not negligible) largely cancel
one another. Whether in fact they do so may be decided
when an accurate experimental value for u& ) becomes
available.

We have further examined the magnitude of the
scalar term in the relation for u~+', which arises from
equal-time commutator (&x',&&'(x), rp (y)j; we have sug-
gested that the reasons given in earlier work for ignoring
this term are not valid, and that it makes an important
contribution.

TAsxE VI. Contributions to the sum rules for (a~ &+&—aj+&+&).' b

(ai&+& —ar &+&)

(g1(-)—g~+(-))

Nucleon
pole

~ ~ ~

0.012

PCAC
term

—0.162—0.0117

C.R.
term

~ ~ ~

0.04

S-wave
scatt.
length
term

—0.001—0.0005

aA(+)
or

aB,(-)
—0.0395—0.0083

Structure-
dependent

terms
Np* ¹~

~ ~ ~ ~ ~ ~ ~ ~ ~

0.04 0.005 0.0047
—0.202

0.081

a Here, the PCAC term is the contribution of the nonpole part of the nucleon Born term in q1fsqg„M&z&". b See Refs. 8 and 9.
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We have then evaluated and discussed the magni-
tudes of the various contributions to the partial-wave
amplitudes. Some uncertainty arises in these estimates
because of the uncertainty in the parameters describing
the S* contributions. However, the most important
part of these contributions is that arising from the
(2,2+)¹*;the parameters for this resonance seem to be
fairly well established.

Ke have suggested that in extrapolating the ampli-
tudes from g =0 to q'= p', it is better to extrapolate the
nonresonant, nonpole parts of the amplitudes rather
than the whole amplitudes and add the exact pole and
resonance contributions after extrapolation (see Sec.
IV). We have also suggested that it is preferable to
extrapolate the invariant amplitudes rather than the
partial-wave amplitudes, as the latter require an addi-
tional correction for the threshold behavior and further,
they sometimes have purely kinematic factors which are
sensitive to a variation in q'.

The results for the isospin-antisymmetric S-wave
scattering length and low-energy phase shifts do not
seem to depend significantly on the structure-dependent
contributions and agree well with the experimental
estimates. For the isospin-symmetric S-wave amplitude
and scattering length, the sum of the nucleon and X*
contributions does not agree well with the experimental
estimates. Adding the contribution of the scalar term
(with parameters chosen to fit ao+&+& and aq+&+&) im-

proves the agreement with experiment of the predicted
values of fo~&+& at low energies. If it is correct to assume
that the scalar term H(t) resolves most of the dis-
crepancy in ao+&+& and fo+&+& at low energies, then this
term is appreciably large. Our estimate of H(0) Lsee
(6.1)j has the opposite sign to an estimate suggested by
Kawarabayashi and %ada."

In comparing the theoretical values of fo+&+& with the
experimental estimates, we have noted that the values
of fo+&+& at low energies obtained from the phase shifts
in the 0-350-MeV solution of RWF (which seem to be
the best available estimates) do not seem to be reliable,
as they give a scattering length co+(+) differing in sign
and magnitude from the (presumably more reliable)
estimates of SW and HW. We have suggested correcting
the estimates of fo+&+& (as well as fo+& &) at low energies
obtained from the phase shifts of RWF by assuming
that the error in these phase shifts arises mainly from
the value of the scattering length in the eGective-range
parametrization of RWF, and that more reliable
estimates for the phase shifts at low energies are ob-
tained by replacing this scattering length parameter by
the estimate of SW. A more accurate solution for the
phase shifts between 0 and 50 MeV would enable more
definite statements to be made.

Among the E-wave scattering lengths and amplitudes,
for a&+&+& and fq~&+& there is good agreement with the
experimental estimates, while for a& &+& and f&

&+& at
low energies the agreement is reasonable.

On the other hand, for a& & & and f& & & there is a
discrepancy between the theoretical and experimental
estimates. Examining the di8erent contributions to
f& & & and also comparing our resultsfor (a~ & & —aq &+&)

with the (approximate) sum rules for the P-wave scat-
tering lengths obtained in earlier work" suggests the
existence of an additional contribution to 3I~~I""' ) that
is not taken into account by the simplest pole and
resonance terms (like the p-pole and the N* terms).

We conclude by stressing that more accurate experi-
mental estimates of the partial-wave amplitudes, espe-
cially fo+&+& and f~ '+', at low energies (up to about 50
MeV) are required before any conclusive statements can
be made about the validity of our theoretical estimates
for these. An over-all view of the results would suggest
that our basic assumptions, namely the use of the cur-
rent commutation relations and PCAC and a specific
extrapolation procedure, are correct, and that the main
limitation of our work probably arises from the simple
model used for approximating the structure of the matrix
element of the product of two axial-vector currents
(between nucleons).

A study is being made of photoproduction amplitudes
and of inelastic and production processes using similar
methods, and will be discussed in subsequent papers.

APPENDIX A

In this Appendix we collect together some definitions
and relations used in this paper.

The amplitudes T, M, A, and B for the process (2.4)
are dined in terms of the S matrix, S, by the following:

S= I+i (2~)'b(p, +q~ pq q2)— —
4E@&Goyc02

T, (A1)

T=u(pr)iVu(p;), M=A+(y Q)B. (A2)

Here, Q= —,(q&+q2). We use the metric defined by
a b=a„b„gv"=aobo a hThe y ma—tric.es are such that
yo is Hermitian and the y; for i=1, 2, 3 are anti-
Hermitian; we have fy",p") = 2gv". The Dirac equation
for the spinors reads (y p —m)N(p)=0. The variables
v, vzaredefinedby v=q& (p,+py)/2m„v» ———

q& q&/2m;
and s, t, I are the usual variables.

The amplitudes f& and f2 are related to A and B as
follows:

f& P(E+m)/SvrTF)PA+——(W m)B), —
f,=L(E—m)/S~W)L —A+ (W+m)Bj.

(A3)
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The isospin decomposition of the various amplitudes T, with mass M and spin parity ~~+ or ~3+ is given by the
~, T»~", Jf»I"",2, 8, etc. , is given by following:

g(+) = lim T&+& (1,t) .
"=/' 42r (»+/4)

(A5)

The znatrix element of the axial-vector current CL&(2:)

between two spin--', particles (either two nucleons or a
nucleon and a spin-12 /V*) is written in the form

(pr I
e"(o) I p'&

m,mal'@
~(pr)

&P-=&P-&"'+2l: P -)&' '

etc. 0(+& are de6ned by the optical theorem ImT(+'
=kL,O-&+&. The S-wave scattering lengths are related to
T+' by

g' p(&+»), g' p'(&~»)
r(-', +)=— —, r(-;+)=—,(A8)

4x 3f 4x 3M

f 2 (» 2 4/ 2)3/2

I'(p~ 22r) =
4X 12m''

(A9)

where E and p are the energy and 3-momentum of the
decay nucleon in the rest frame of the Ã*.

Many of the widths quoted above and some of the
masses are subject to uncertainty (for instance, see the
values quoted in a more recent compilation4'). However,
this is not expected to cause any qualitative changes in
our results.

The relation between I'(p —&22r) and f, is the
following:

Finally, we have de6ned the crux coupling constant
)&I g~(q2)iy&y'+X~(q2)q/'y')24(p~), (A6) g, in terms of the decay width for rr -+ 22r as follows:

q=pr —p;. For the matrix element between
nucleons, we have assumed g~ ——g~(0) = 1.18.

The 2rXE* coupling for a spin-22+ /V* Ldescribed by a
Rarita-Schwinger spinor p, (p)) is written as follows:

m.m 'I'
g(q')0" (ps)q'~(p*). (A7)

E;Ef

J (x) is the pion source operator. For a 2 /V*, there is
an additional factor ys between the spinors.

We give below the values of the masses M, widths F,
and coupling constants g of the resonances that we have
used in this paper (see Ref. 28). The numbers in
parentheses indicate (I,J~), where I is the isospin. of the
resonance and J~ gives its angular monMntum and
parity.

(1) &1'(2 2+):
m, =12S6 Mev,

(-) /V '(l -'+):
M2= 1400 MeV,

(110 &3'(2,2 ):
M3= 1518MeV,

(1v) /V4*(2, 2 ):
M4= 1570 MeV,

(v) X *(-'-'-).
M, =1700 MeV,

(vi) /V3*(3 -' ):
M6 ——1670 Mev,

FR=120 MeV, g12/42r =0.38;

F2=120 MeV, g22/42r =6.73;

F3=40 MeV, g32/42r =0.37

I'4=39 MeV, g42/42r =0.063;

F5=216 MeV, g32/42r =0.31;

I',=79 MeV, g3/4&=0. 116.

We have also assumed G N/12/42r=14. 6.
The coupling constants g; here are deined such that

the width I' for the decay mode 1V*~ N+2r for an /V*

g 23(» 2 4p 2)1/2

I'(0 ~ 22r) =
4m-

APPENDIX 3
In this paper, in order to extrapolate the nonresonant,

nonpole parts of the amplitudes from q2= 0, s= (»+/4)2
to q2=/42, s= (»+/4)2, the procedure adopted was to
write down the nonresonant, nonpole parts of the
amplitudes A(~& and 8&~', assume that the extrapolation
of these to the physical threshold couM be eGected
without introducing much error by dividing by E'(0),
and construct the partial-wave amplitudes from these
extrapolated amplitudes.

An alternative procedure would be to construct the
partial-wave amplitudes at q'=0, s= (»+/4)2 from the
amplitudes A and 8 and then extrapolate these partial-
wave amplitudes f1~. In this case, besides dividing by
K2(0), one must also ensure that the amplitudes f/+ for
q'= p,

' have the correct threshold behavior. A simple
model which would take this into account would be one
in which the partial-wave amplitudes for q =0 a,re
multiplied by the factor

ll (p')
I

"
il (0) )

in addition to the factor K '(0):here, the argument of ir
in (B1) denotes the value of q'. (This procedure was
used by Adler in Ref. 1 as one of his models. )

We here examine whether there is any signi6cant
difference between the two methods of extrapolation
mentioned above. In each case we assume that the
extrapolation is carried out at 6xed values of s and ).e
take 5=0 for simplicity.

4' A. H. Rosenfeld et a/. , Rev. Mod. Phys. 3'9, 1 (1967).



k'(0)LE(0)+mj Lk'(E+m) j—' (83)

k'(0)LE(0)—m)Lk'(E —m)j ' (84)

respectively. Here k(0) and E(0) are the 3-momentum
and the nucleon energy in the c.m. frame for q'=0,
while k and E are these quantities for q'= p,'.

For the P-wave amplitudes, the factor (81) is just
k'/k'(0). The term f2(0) on the right of (2.11b) as
obtained by extrapolating the partial-wave amplitudes
divers from that obtained by extrapolating the A and 8
amplitudes by the factor

(E+m)LE(0)+mj '= ji—
Jti,'(W+m) 1, (85)

while the terms involving f2'(0) and f~'(0) in (2.11b)
diBer by the factors

and
IE(0)—mj(E —m) '=/1 —p'(W —m) 'j ' (86)

I E(0)+mg(E+m) ', (87)

respectively. For the right-hand side of (2.11c), the
factor is the same as in (87).

We now note that the factors (82), (85), and (87)
are close to unity, while the factors (83), (84), and

(86) are quite different from unity at low energies and
could give rise to a considerable difference in the
corresponding terms.

To examine the quantitative effect of this, we con-
sider the various contributions to the relations for the
nonresonant, nonpole parts of the amplitudes, which are
the nonpole parts of the nucleon Born term and of Born
terms corresponding to spin--', 1q* resonances (e.g., the
1Vq*), the conunutator term, and the scalar term.

The nonpole parts of the Born terms corresponding to
the nucleon and spin-~ E*resonances do not contribute
to 8f~/Bt or 8fn/Bt and are therefore not sensitive to the
Inethod of extrapolation. The extent to which the values
of the corrunutator term and the scalar term depend on
the method of extrapolation is determined by the
magnitudes of the derivatives (with respect to t) of the
vector and scalar form factors relative to the magni-
tudes of these form factors at t=O.

We have evaluated the contributions of the commu-
tator term using the alternative method of extrapolating
the partial-wa, ve amplitudes. For the contribution to
Ref0+& &, the difference is of the order of 3-4%. For the
contribution to Reft & &, it is larger, being of the order

Consider the expressions (2.11) for the partial-wave
amplitudes. For the 5-wave amplitudes, the factor
(81) is unity. With the alternative method of extrapo-
lating the partial-wave amplitudes, the term f~(0) on
the right of (2.11a) would differ from that obtained by
extrapolating the A and 8 amplitudes by a factor

LE(0)+mg(E+m) —'=
I 1—p'(W+m) '] ' (82)

while the terms involving f&'(0) and f2'(0) would differ

by the factors

d4xd'yd's expI i( qg x+—q2 y. ps) j(—m.' p')—
X(0i &(~. (*)~& (y), (s)) I0&. («)

We begin by regarding all the operators as U3 nonets;
we shall later specialize to the isospin subgroup and
write the results for the f7' coupling.

We shall assume the equal-time C.R.'s

fn.'(x),Sp(y) jb(xo y0)= id s„—E„—(C2)

L&-0(x) 1's(y)3(xo—y.)=id-s,S„
I:U-'(x),St (y)3~(xo-yo) =if-~P' (C4)

Here, Ss(y) and I'&(y) are scalar and pseudoscalar
operators deGned in the quark modeP4 (for instance, as
quark-antiquark composite Geld operators). We shall
assume that the Geld operators p(x) and 0 (x) for the
pion and the o. meson are proportional to P(x) and S(x),

of 10% (and is of a sign that would decrease Ref~ & ~).
However, this is not large enough to aGect any quali-
tative features of our results.

For the scalar term, with the alternative method of
extrapolation discussed here, the value of H'(0) required
to Gt aq+&+& is about the same, while the value of H(0)
required to Gt co+&+& is about 10% smaller in magnitude.
The values of Ref 0+'+& at low energies are appreciably
difI'erent from those obtained by extrapolating the
invariant amplitudes; for instance, at 20 MeV, the value
of Refo+&+& is about 30% smaller in magnitude. The
values of f~+&+& are about the same.

In the method of extrapolating the partial-wave
amplitudes discussed here, the variation with q, when
signihcant, arises mainly from the change in some purely
kinematic factors (which relate f~~ to 3 and 8) which
are sensitive to a change in g'. Because of this, and be-
cause it is not clear how adequately a factor such as
(81) would take into account the change arising from
the difference in the kinematics when one varies q' from
0 to p', we believe that extrapolating the invariant
amplitudes, which was the method adopted in obtaining
the results of this paper, is the more satisfactory
procedure.

APPENDIX C

In this Appendix we brieQy derive the relations
analogous to (4.1) and (4.4) for the o7rncoupling. W. ith
a view to applying the results to the contribution of 0.

exchange to the relations (2.1), we have chosen the
signs of the 4-momenta so that they correspond to the
process ~+a. -+ ~. By replacing q& ~ —

q& in the follow-

ing, we may obtain the equations involving the ampli-
tude for the decay cr -+ 2x.

Consider the amplitude M», &" defined by

(2m)'b(qg+ p q2)Mgg. i'—"(npy)

=Fax~""(&Pv)
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respectively: We note also the following relations:

(~(p) IS(0) Io) =L2ppl '"&. (Cii)

(~(q) le(0) lo&=L2qpj b . (c12)

From (CS), noting the symmetry in n and P of the
amplitudes involved, we obtain the following:

S (x)=u o.(x), P (x)=b.o (x). (cs)
In Kqs. (C2) and (C3), the coeKcients d 22 are

symmetric coefficients in U3 rather than SU3, they are
defined as follows:

(X,XP}= 2d t42X2= 2d P~X~+ 435 P1,

where y=0, 1, -.8, and )0=1, and d p~ are the
metric coeKcients in SU3 as defined by Gell-Man

We note that in contrast to the C.R. (1.1), w ic
seems to be valid at least when integrated over all space,
as judged by the results derived from it, there is as yet
no adequate check of the validity of the C.R.'s
(C2)—(C4).

One may write the generalized Ward-Takahashi
identity' 4 for the amplitude defined in (Ci), using the
PCAC relation (1.2) and the C.R.'s (1.1) and (C2)-
(C4)

where we have defined

X,(pp, qlp, q22)

2lb
—

1(223 2 p2)L(~ 2
q 2)—1+(~ 2

q 2)
—lj

+-,'(ol «(0) I o&. (C14)

When (C13) is applied to the o-exchange contribution
to xÃ scattering, the last term in X will not contribute
to the relation for the connected part of the amplitudes
and will therefore be omitted. We also note that when
the 0 meson is on the mass shell the second term on the
right of (C14) will not contribute if 223,&t3 . In general,
however, one is interested in the 0--exchange contribu-
tion to the amplitudes MAA)'" and M32 I in (2.1)j for
values of t other than t= m ', so that the second term on
the right of (C14) would. contribute. In particular, for

p.'=0, qP=q2' ——0, (C13) gives

ql q2 MAA (42)8'r)

=(t -' ql') '(t o—' q2') 'C-C—oT(v-+~. ~ pt)
+d t) {(223

2 p2)o,
—

ll b c (9 2 q12)
—1

+b,co(t 2 q, ) j~—,b. -'C.}-
—,' r..d-, .d. .(ol S.(0) I

0&. (C7)

If one assumes that the vacuum is invariant under
SU3, then the last term on the right of (C7) becomes

ql„q2„MAA, ""=t4 'C 2T(lr+o -+ )r)—X,(0,0,0) ) (C15)—d„„(ol,(o) lo&,

(G6)
qual q2v~~~ ~""

2 q12)
—

1(t4 2 q22)
—lC 2T(2r+)r ~ o)

—X (p' ql')q2') (C13)

where o p(0) is the unitary singlet component (if any) of
the scalar operator o (x). Specializing n, P, y to isospin
indices, we now obtain from (C7) the relation

with
2C' m, '

~.(0,0,0) =~.— — +23(ol «(0) I o). (c16)
Xtr P2r

ql, q2.MAA. ""(42P)

(p 2 q2) —l(~ 2 q2)—1C 2T(~ +~~~ )
—

8)2 (X,—C 2X, '(223,2—p')
&&5(t. —q, )-+(t.2—q, )-l+-,'(ol, (o)lo)}. (Cs)

(Here, it is assumed. that the o meson has zero isospin. )
The amplitude T(q) +o7-+ ys) in (C7) is defined

as follows:

2(2~)'b(ql+q2 P)T(v -+~7~—
p p)

33Lgq oq opo)1/2 d4xd4yd42

If we write the coupling of a cr meson to two axial-
vector currents in the form"

MAA~ =g gl(t)+q2"ql g2(t)+ql q2 g3(t)

+q,~q, "g4(t)+q2~q2 "gp(t), (Ci/)

then for q12= q22=0, (C13) gives the following:

—-'tLgl(t) —2tg2(t)1
= t4~C 'g, (t,o,o)—R,(t,o,o) . (C18)

For t=0, this gives the relation'

g. (0,0,0) =t4 'C 2X,(0,0,0). (C19)

is defined. by
X,=C a.ib .

+q'& P ~( ~ P )(" q') We note that in the above derivation we considered

q,2)(ol T(& (x)& (&)~ (2))lo& (C9) the matrix element (Ci) with all the Particles con-
tracted, because we are interested in the relations
obtained when some or all of the momenta ql, q2, p are

(Cio) off the mass shell. (For a discussion of this, see Ref. 4.)


