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ing and Conspiracy of Singularities in the Complex
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We analyze the experimental data on the reactions pn ~ np and pp ~ nn near the forward direction for
evidence of "conspiracy". From a comparison between the forward differential cross section of pn ~ np
and the total cross sections for pp and pn, we conclude that conspiracy exists, and proceed to investigate
the nature of the conspiracy. Using experimental data, we can rule out all Regge-pole conspiracy schemes
involving the pion and at most one other conspiring family, under the assumption of constant residue func-
tions. An extremely simple semiphenomenological formula that agrees with experiments is then proposed.
The formula is consistent with a model which includes 7f- exchange and conspiracies of branch cuts in the
angular momentum plane. We suggest that the relevant branch cuts are those arising from p-I' and A2-I'
exchange, where I" is the vacuum trajectory.

I. INTRODUCTION AND SUMMARY
OF RESULTS

HEN two nucleons scatter in the forward direc-
tion the component of total angular momentum

along the direction of relative motion is conserved.
Therefore, the helicity amplitudes for which the total
helicity is different in the initial and final states must
vanish in the forward direction. By crossing symmetry,
each helicity amplitude is a linear combination of helicity
amplitudes in the crossed channel. Therefore, certain
linear combinations of crossed-channel helicity ampli-
tudes must vanish at zero total energy of the crossed
channel. To satisfy this requirement, the relevant
helicity amplitudes may vanish individually, or they
may be finite individually but cancel each other. These
alternatives are referred to as "evasion" and "con-
spiracy, " respectively. The linear relation among he-
hcity amplitudes referred to above will be called a
"conspiracy condition. "

It is always possible (though not necessarily fruitful)
to describe the scattering process in terms of the singu-
larities of partial-wave amplitudes in the complex
angular momentum plane. In such a language, the con-
spiracy condition becomes a condition on these singu-
larities. If w'e consider, for example, exchange of Regge
poles, then for "evasion" the residues of the Regge
poles in the relevant amplitudes must vanish at zero
crossed-channel energy. For "conspiracy, " they remain
finite there but must fulfill specific conditions, which
relate residues and trajectories of Regge poles of dif-
ferent quantum numbers. The latter raises an intriguing
theoretical possibility. The purpose of this paper is to
investigate whether nature makes use of it, and if so in
what form.

A promising reaction to analyze is forward proton-
neutron charge-exchange scattering, hereafter desig-
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where m and p, are, respectively, the nucleon and pion
mass, and

g'/4n- = 15,
(4nt') '(g'/4sr)'= 25.6 mb/sr (3)

rr (y)=0.02(1+y).
The quantity u (y) is the pion Regge trajectory, taken
to be linear with slope 1(BeV/c)'. At y =0, the quantity
enclosed in brackets in Eq. (2) is 4r of what we would
obtain for the forward differential cross section from a
conspiring sr trajectory (without the contribution of its

' 8 BeV/c: G. Manning, A. G. Parham, J. D. Jafar, H. B.van
der Roay, D. H. Reading, D. G. Ryan, B.D. Jones, J. Malos, and
N. H. Lipman, Nuovo Cimento 41, 167 (1966); 2.83 and 3.67
BeV/c: H. Palevsky, J. A. Moore, R. L. Stearns, H. R. Muether,
R. J. Sutter, R. E. Chrien, A. P. Jain, and K. Otnes, Phys. Rev.
Letters 9, 509 (1962).

~For phenomenological models using x exchange, see G. A.
Ringland and R. J. N. Phillips, Phys. Letters 12, 62 (1964);E. M.
Henley and I. J. Muzinich, Phys. Rev. 136, 31783 (1964);
L. Durand III and Y. T. Chiu, ibid. 13?, B1530 (1964);N. Byers,
ibid 156, 1703 (1967)..
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nated by ptt~rtp, which is synonymous with back-
ward proton-neutron elastic scattering. The data' show
an unusually sharp forward peak, whose width in the
squared 4-momentum transfer —t is of the order of a
squared pion mass, or about five times smaller than
normal diffraction peak widths. The magnitude of the
forward peak is

(da'/dQ) t=p = 1.01&0.09 mb/sl

(at pleh= 8 BeV/c), (1)

and it falls off with energy roughly like s ', where s is
the squared total center-of-mass (c.rn. ) energy. These
facts suggest that x exchange is important. ' To exhibit
this we define a reduced differential cross section
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co-conspirators). The energy dependence of I(0) is
shown in Fig. 1. The data for pcs-+ Np are consistent
with I(0)=1. In Fig. 2 we show I(y) for 0(y(7.
Although existing data are not suAicient to establish
definitely the energy dependence of I(y), they suggest
that the dependence is weak, if it exists.

A reaction closely related to pcs —+ np is the annihi-
lation of proton-antiproton into neutron-antineutron,
designated by pp-+ mn. The crossed-channel reactions
for these processes are, respectively, pn~np and
np-+ np, which differ only in their initial states, which
are images of each other under G conjugation. An ex-
changed object gives the same contribution to both
processes if it has odd G parity. It gives contributions
equal in magnitude but opposite in sign if it has even
G parity. In Figs. 1 and 2, datas for pp —+ nn are shown
on the same plot as for pn, —+ep. As we can see, the
energy dependence of I(y) is again weak, if present at
all. The sum total of the data in Fig. 2 provides a strin-
gent test for specific theories.

The data for pm —+ ep indicate that we have a case of
conspiracy, rather than evasion. As we detail later, the
contribution of those crossed-channel amplitudes not
involved in the conspiracy condition can be estimated
by relating it to the difference of total cross sections for
pp and pn reactions, through use of the optical theorem.
We find that it amounts only to 20% of Eq. (1), and
therefore conclude that conspiracy, and not evasion,
occurs in pcs-+ np

A natural question is: "Who are the conspirators'"
The pion is an obvious suspect. But, as we show in more
detail later, m conspiracy alone fails, because it leads to
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Fxe. 1. Energy dependence of the reduced differential cross
section in the forward direction. The pe-+ep data are from
Ref. 1, and the pp-+en data are from Ref. 3. For pp-+eA, no
data are available at y=. 0. Extrapolation to y=0 is dangerous
because of possible rapid variations there.

P. Astbury, G. 8rautti, G. Finocchiaro, A. Michelini,
D. Websdale, Q. H. West, E. Polgar, W. Beusch, W. E. Fischer,
B. Gobbi, and M. Pepin, Phys. Letters 23, 160 (1966).
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the prediction I(0)= 2 for both pn—+ esp ,and pp —+ ysn

This is definitely ruled out by experiments. Thus we
have to find other conspirators coupled to the same
amplitude as the pion.

We consider then a general class of conspiracy
schemes involving only Regge poles. The class includes
all schemes involving the pion and at most one other
conspiring family of trajectories. Vnder the assumption
that the residue functions of all conspiring trajectories
can be taken as constants in a neighborhood of 1=0, the
size of a few squared pion masses, we show that all these
schemes are in disagreement vrith experiments, no
matter how we vary the available free parameters. The
main reason for the failure lies in the stringent require-
ments imposed on Regge poles by the energy independ-
ence of I(0), and the definite connection between
pe ~ m p and pp —+ tin.

Kith the failure mentioned above, there remain many
possibilities. For example, the residue functions of the
conspirators may vary rapidly. This has recently been
investigated and found not entirely satisfactory. 4 The
possibilities also remain that the conspiracy may in-
volve a larger number of Regge poles or other types of
singularities, such as branch cuts. Because of the same

R. J. N. Phillips (to be published); F. Arbab and J. W. Dash,
Phys. Rev. 163, 1603 (1966).
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FIG. 2. Reduced differential cross section. For significance of
I(y) see introduction. Sources of data are the same as Fig. 1.The
data for pl ~ Np at 2.83 and 3.67 BeV/c have been reduced by an
assumed systematic error of 30% relative to the 8-BeV/c data. The
solid curves are from the semiphenomenological fit, Eq. (40), at
8 BeV/c, which can be interpreted in terms of s exchange and con-
spiracies involving branch cuts.
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difhculties we mentioned, the possibility that more
Regge poles might turn the trick is unlikely, unless they
are very numerous with closely spaced trajectories. In
the latter case they are indistinguishable from a branch
cut.

We proceed by adopting a more phenomenological
approach. The lessons learned in the earlier failure
enable us to write down a successful and extremely
simple semiphenomenological formula. The interpreta-
tion of the formula is not unique, but we suggest a
simple model for it. The model consists of a x trajec-
tory, which either evades or conspires, and two self-

conspiring branch cuts. It is consistent with present
knowledge to identify them as the cuts arising from
p-I' and Ag-I' exchange, where I' denotes the vacuum
trajectory.

Since at present little is known about the properties
of cuts, it is not possible to make the model more de6-
nite. The contributions of p and A2 to the helicity-0ip
amplitude are not important for y(3, as we shall show

explicitly.
Our conclusions, then, are as follows:

(1) Nature makes use of "conspiracy. "
(2) In pe~np and pp-+en, simple conspiracy

schemes involving only Regge poles are ruled out by
experiments.

(3) The experiments can be explained by a model in-

volving m exchange and conspiracies of branch cuts in

the Jplane, but the imperfect state of the theory of cuts
prevents us from making unequivocal claims.

II. KI5'EMATICS

The reactions pe —+np and pp-+ en are kinemati-

cally identical when the neutron-proton mass difference

is neglected. The developments of this section then

apply to both reactions. Ke define, as usual,

s=4(k'+m')
t= —2k'(1 —s,)

where k is the c.m. momentum, s, = costI, (8, being the
c.m. scattering angle), and m is the nucleon mass. The
helicity amplitudes in the direct channel {the s channel)
are denoted by f,z, &'(s, t), where c,d are final helicities,
and u, b are initial helicities, which may take on the
values +,—.The partial-wave decompositions

f q, ,~'(s, t) =P (2J+1){cdI
Jis(s)

I
ah)d~„~(s,),

J
'

(4)
X=8—b, JM, =c—d,

defmes the partial-wave amplitudes (cd
I
Ii s (s) I ab),

where J is the total angular momentum. The sum in

(4) extends over all integer values J&max(IXI, ItiI).
The differential cross section, averaged over initial
helicities and summed over final helicities, is

do/dQ= (16s's.) ' Q I f,g,,b'( t)sI'. (5)
a, b, c, d

~ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 1, 404 (1959).

and it is related to f,q, ,i,' by the crossing relation'

f.a,.~'(s, t) = Z dg, Ji'(x)dpi, '@(s—x)

where

c', A', D', 5'

~ "'( —) ""()f" '( )

cosX= Lst/(s —4m') (t—4m') ]'I' (8)

cos (X/2) —sin (X/2)
dg„'~'(x) = (9)

sin(X/2) cos(X/2)

Because of the orthogonality of d),„'t', the differential

cross section (5) can also be written as

do/dQ= (16s s) ' P I f,z, z»'(s, t) I'. (10)
c,A, D, b

There are 16 helicity amplitudes, of which only 5 are

independent„by invariance under reQection and time

reversal, and conservation of total spin. ~ %e choose

them to be

++a++1 ++& J + e+ ) + ~ +) ++t+ 7

either in the s or t channel. All others are equal to one

of the above, and (10) can be reduced to

d~/d&= (8~") '(I f++,++'I'+ I f++. 'I'+
I f+—,+-

+ I f+ . +'I'+4I f-+ -.,+ 'I')--
This equation, of course, holds also if all superscripts t

are replaced by s.
To discuss the contribution of Regge poles to the

partial-wave amplitudes (cA I
Gs (t) I Db), it is convenient

to decompose each of them into amplitudes for transi-

tions between states of definite parity. A nucleon-

antinucleon helicity state of total angular momentum

J, denoted by I J,c,A), transforms under spatial re-

Qection according to I'I J,c,A)=(—)~I J,—c,—A). We

define parity eigenstates by

with
I J,c,A)g=2 '~'(I J,c,A)a I J, —c, —A)), (13)

J'I J,C,A) =& (—) I
J,C,A). (14)

For each J, there are four such states, which have defi-

nite total spin S, 6 parity, and, of course, parity. They

T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964). Ke use the phase conventions of L. C. Wang, Phys. Rev.
142, 1187 (1966).

7 M. L. Goldberger, M. J. Grisaru, S. W. McDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960);I.J. Muzinich, ibid. 130, 1571
(1963).

In the crossed channel (the t channel), the helicity
amplitudes are denoted by f,~, rii'(s, t), where a capital
subscript denotes the helicity of a crossed particle. It
admits an analogous partial-wave expansion

f,+,Di, '(s, t) =P (2J+1)(cA IGs(t) I Db)dg„~(sg),

(6)
p, =c A~

s,=1—
I 2s/(4m' —t)j,
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TABLE I. Parity-helicity states of EN system.

I++&-= Io—)

I+—)-= I1—)

I++&+=—Io+&

I+—&+—= I1+&

I=1
G trajectories

+ B (1+)

+ &(2)
A1

+ p
Ag

+ p
Ag

are listed in Table I together with the possible I=1
Regge trajectories coupled to them. In the second
column of Table I they are relabeled by the difference
of helicities (the total angular momentum along the
direction of relative motion). The only possible transi-
tion occurs between IO+) and I1+), all other transi-
tions being forbidden either by conservation of I' or S.
Thus we deine five new partial-wave amplitudes
Goo, G~~, Goo +, G~~ +, G~o +, where G),„+denotes
the amplitude leading from ltt&) to l&1a). Using (13),
we easily work out the relation between Gq„J+ and
&ca IG&IDf):

(++ I G'I++) = s (Goo'++Goo' )
&++ IG'I ——)=-:(Goo'+—G«' )
&+—

I
G'I+ —)= 10 (G»'++G11'-),

&+- IG'I —+)=l(G-"—G "-),
&++IG'I+-) =-:G."

(15)

Since G),„J+ are the amplitudes to which Regge poles
are coupled, it is convenient to define the following
combination of helicity amplitudes:

Moo+(t, zt) =P (2J+1)Goo~+(t)doo~(zt),
J

M11+(t,z,) =p (2J+1)G11~+(t)d11~(zt),

M, ,+(t,z,)=g (2J+1)G ~+(t)d, ~(z,),J
M10+(t,zf) =p (2J+1)G10 +(t)d10 (zf).

J
Note that M ~,~+ are not independent, but are deter-
rnined by M11+, respectively. By (15) and (16), the cross
section can be expressed directly in terms of these
amplitudes as

do/dQ= (161r's) 'I
I
Moo+I'+ IM'oo

+llM11++M11 I'+-'IM 1, +
—M 1,1

—I'+ IM10lsg, (17)

where the arguments of Mq„+ are t, s&.

The contribution of a single Regge pole to Mz„+ may
be obtained by carrying out the Watson-Sommerfeld
transform on (16) in a standard manner, ' assuming the

These are related to the amplitudes dered in Ref. 7 by
Goo =fo, G11 =f1, Goo +=f11, GII +=f2', GIO +=f12 ~' M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F, Zacharissen, Phys. Rev. 133, 8145 (1964), Appendices,

III. "CONSPIRACY"

The functions d1„~(z) appearing in the partial-wave
expansion (4) are polynomials of z, multiplied by
(1+z)~"+s~"(1—z)~" s~" Thus it follows from (4) that

f+, +'(s,0)=0,
f+, '(s,0) =0,

(22)

which merely express angular momentum conservation.
By (7), these requirements are converted into require-
ments on f,~, n(sst, )0. The crossing angle X in (7) is
equal to or/2 at t =0. It is a simple matter to verify that
in the t channel the second requirement of (22) is identi-
cally satis6ed, by virtue of conservation of parity and
total spin, and the 6rst requirement is translated into

f++. ++'+f+ . +' f++. '
f—+ —.+—'=0——

(at t=0). (23)

In terms of the amplitudes defined in (16), it takes the
form

Moo +s(M--l, 1 Mll ) 2(M—1, 1 +M1, 1 )
(at t=0). (24)

"p(t) and P(t) are dined by
h1ng „(g1(LJ—u(t)]Gyp+(t) }=p(t).

Mandelstam symmetry G1„~+=G1„& ~ '&+ for J=half-
integer, which enables us to push the "background
integral" far enough to the left for it to bc negligible.
The contribution to M),„+ from a Regge pole of tra-
jectory n(t), residue function P(t), and signature 1t, is
given below, "where it should be understood that the
set {n(t),P(t),1t) is not meant to be the same for all
amplitudes:

Moo+= —
I 1cP(n+-', )/sinorn]LE00 (—z,)+1)E00 (z,)g,

M, „+= LsP (n+-'s)/sin1rn j (1—z,)
XLE,, ,-(—.,)—~E„-(z,)1, (1g)

M10+= LorP(n+ —)/sin1cn)(1 —zts)'t'

XLE10 (—Z,)+gEM (Z)).
For the contribution of each Regge pole, we have

M 1, 1+(t,st) =—11M11+(t, —z,). (19)

The functions E~, are defined and discussed in Ref. 9.
Their explicit forms are given in the Appendix.

When s ~00, —2z, ~ s/m'. We then have the
asymptotic forms

Moo+= —[PE(n)/sinn. n](1+1)e ' ) (s/m'),
M11+=—Ln/(1+n)$+E(n)/sin~n] (20)

&t', (1+tte—t~a) (g/mo)a
where

E( )=or't'I'(n+-,')/I'(n+1) . (21)

Again we emphasize that (20) merely illustrates the
contribution of a single Regge pole in each amplitude
Mt, „+.The set (n(t),p(t),1)) is not meant to be the same
for all amplitudes.
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TABLE II. Volkov-Gribov conspiring triplets.

Amplitude Trajectory I'

JI/Ipp I
~11 2

Signature
(r) =+1)

Solution 1
P(o)

P
L(1+a)/alP
(2a+1) (a—1)

p
(2a —1)a

Solution 2
Is(0)

p
La/(a+1) )P

(2a+1) (a+2)
p

(2a+3) (a+1)

Expanding M),„+ according to (16), we obtain, after
certain manipulations using the properties of d),„,the
condition

2/+1
Gss(&—r)— G (J+r)— / J-

J(1+1)
J—1 1+2"++ Gr). ' +"+ P '(s )=0 (25)

5+1
where s,=1—(s/2nss), and the argument of the G's is
t=0. For ~so~ (1,which corresponds to the unphysical
region

~ s~ (2ms, the partial-wave expansion converges,
and the functions Pq'(s, ) are linearly independent. Thus
the summand of (25) must vanish. This condition was
first noted in Ref. 7. An alternative form of (25) valid
beyond the region of convergence of the pa, rtial-wave
series may be obtained by applying the Watson-Sommer-
feld tranform to (25). This is done in the Appendix.

Without further assumptions, however, (25) is not
very restrictive and therefore not very interesting.
Volkov and Gribov" first noted that when Regge poles
are assumed, (25) requires that the residues of relevant
Regge poles either vanish or cancel each other in a
specific way, at t= 0. In the first instance we have a case
of "evasion, " and in the second instance a case of
"conspiracy. "

Volkov and Gribov gave two particularly simple
solutions to (25), with one Regge pole each in the
amplitudes Mpp, 3f~~+, and M~~ . The ones in
and M»+ have degenerate trajectories at t=0, and the
third trajectory lies either one unit above or below.
These solutions are displayed in Table II.

Actually the Volkov-Gribov solutions are special
cases. As shown in the Appendix, the most general
solution involves infinite families of trajectories. " A
family characterized by given quantum numbers con-
sists of a leading parent trajectory, with daughter tra-
jectories spaced successively two units below. The
residues of trajectories in the same family as well asin
diferent families are related by recursion relations. The
Volkov-Gribov solutions correspond to cases in which

"D. V. Volkov and V. N. Gribov, Zh. Kksperim. i Teor. Fiz
44, 1068 (1963) LEnglish transL: Soviet Phys. —JETP, 17 720
(1963)g; Interest in this subject has been revived by M. Gell-
Mann and K. Leader, and W. Frazer and R. Phillips, in I'roceed-
ings of the Thirteenth Annual International Conference on High-
Energy Physics, Berkeley, California, 1966 (University of Cali-
fornia Press, Berkeley, California, 1967).

"See also D. Z. Freedman and J. M. Wang, Phys. Rev. Letters
18, 863 (196/); Phys. Rev. 160, 1560 (1967).

the recursion relation terminates without daughters.
In solution 1 of Table II, the relation between residues
of trajectories 1 and 2 is the same whether or not there
are daughters. Solution 2, however, will be changed if
there are daughters.

In our later work, it turns out that solution 2 of
Volkov and Gribov can be ruled out fairly easily. When
we turn to solution 1, the distinction between finite and
infinite families becomes lost at high energies, because
daughter trajectories do not contribute to the cross
section, and the residues of the parents are independent
of the daughters. An exception occurs when the parents
have trajectory near o.=0, in which case the residues of
the daughters diverge like n '. This will be taken into
consideration later.

If other singularities in the complex J plane are im-

portant, such as branch cuts, they could of course con-

spire, but only with singularities of the same type. For
branch cuts the conspiracy condition imposes relations
among their discontinuities in the various amplitudes,
similar to the case of poles. The essential diQ'erence lies
in the fact that the same branch can contribute to all
amplitudes, so that a branch cut can "conspire with
itself, "so to speak. Our analysis later suggests that cuts
may be important.

It should be noted that, should the Mandelstam
symmetry turn out to be invalid for relativistic scat-
tering, then the "background integral" could become
important, and dominate the poles with n& ——,'. In
that event, the conspiracy condition does not lead to
definite restrictions, unless we know something about
the detailed nature of the "background integral. "

Ke now give experimental evidence for the case of
conspiracy, rather than evasion, in pn-+ Np

In the cross section (1'I), two amplitudes are not in-
volved in the conspiracy condition (24), namely Ms,+

and Mrs+. Of these Mrs+= f++, + ' vanishes at 1=0 by
virtue of a kinematic factor t'".' The amplitude Mpp+

is coupled to the p and A2 trajectories. Taking the
intercepts of these trajectories at t=0 to be ~, we find

that their separate contributions have equal real and
imaginary parts. The imaginary part of Mpp+ can be
found through the optical theorem:

a(s)=k 's '" Im $f~+ ++'(s,0)+f~, + '(s,0))
26

=P—'s '" Im Mes+(1=0),

where the last step is obtained through use of the cross-

ing relation (7) and the de6nition (16).For pm charge-
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exchange scattering the relevant total cross section in
(26) is, by isotopic spin conservation, (r=n» —(r„„A.t
p),b=8 BeV/c, experiments indicate (r=1.5 mb, "
which gives Im 3fpp+=60. This corresponds to a con-
tribution to the forward diBerential cross section of 0.j.2
mb/sr. Assuming that ReMpp+ gives a comparable con-
tribution, "we obtain the estimate

(16m's) '~Mpp+~'=0. 2 mb/sr (at pi,b=8 BeV/c), (2'7)

which should hold in a neighborhood of /=0, the size of
a few squared pion masses. The same estimate holds for
pp-+ en, for this process is obtainable from pm~ Np

by G-conjugating the initial state in the t channel. Since
experimentally (do/dQ)&=p=1 mb/sr for pn~ riP at 8
BeV/c, we see that at t=0 either M'pp —

WO, or Mii+NO,
or both. Therefore, we have a case of conspiracy rather
than evasion.

The only question now is whether the conspiracy in-
volves solely Regge poles, or other types of singularities.
In the next section we show that all Regge-pole con-
spiracy schemes involving the pion and at most one
other conspiracy family are in disagreement with ex-
periments. Ke prove the contention under the assump-
tion that residue functions of conspiring Regge poles
are constant in a neighborhood of t=0, the size of a few
squared pion masses.

IV. FAILURE OF SIMPLE REGGE-POLE
CONSPIRACIES

It is instructive to calculate first the Feynman dia-
gram for one-pion exchange. The amplitude is real and
gives the same contribution to pN —+ mp, and pp ~ r(n:

(d /d~l)- ~ ~ = (1/ ) (g'/4 )'t:~/(~ —')7 (28)

where p is the pion mass, and g'/4s = 15. We note that
the cross section vanishes at t=0, but rises verysharply'
with half-width the order of p2, to a plateau of
s '(g'/4s. )'. The last expression happens to be 5 mb/sr
at pi,b=8 BeV/c, or about five times the experimental
value of (do/dQ) g p for pn, -+ Np. This indicates that the
magnitude of the observed cross section might be char-
acterized by the pion-nucleon coupling constant. It
suggests that a forward peak of the right magnitude and
sharpness can result from x conspiracy, or interference
between x and a conspiring object, or both.

We confine our attention to the region 0&~ y&3, or

0&~ —t(0.06 (BeU/c)' (29)

and neglect the amplitudes M~p+ and Happ+, which do
not enter into the conspiracy condition. The former is
neglected because it vanishes at t=0, as pointed out
earlier. The latter is neglected because, as estimated
earlier, it contributes only about 20%%u0 to the cross

section, an amount that lies within the systematic
errors in the experimental absolute cross sections.

The basic assumptions in this section are as follows:

(1) The only singularities in the J' plane are Regge
poles.

(2) Residue functions of conspiring Regge poles can
be taken as roughly constant in the region (29).

(3) The residue function of the m. trajectory, con-
spiring or not, can be completely determined by ex-
trapolation to the physical pion pole at t=p2.

We investigate three general cases: (a) ~ conspiracy
only; (b) both m. conspiracy and B conspiracy; (c) 8
conspiracy only. Here 8 denotes a trajectory (other
than s) that couples to Mpp, and hence interferes with
m. It need not be a known trajectory. Both signatures
will be considered for 8, whose G parity is then deter-
mined according to Table II. The Volkov-Gribov con-
spiracy schemes will be considered first. Later we con-
sider the possibility of daughter trajectories, and show
that they do not alter our conclusions. The possible
conspiring triplets will be given the following names:

Mpp, m, j3,
3E + '13'

/1 ply

The general procedure is as follows:

(1) Calculate I(0) for p)s~ np, and. require I(0)= 1,
independent of energy, as Fig. 1 indicates.

(2) Require that I(y) for pm-+ rip has a forward peak
with half-width at y=-'„as Fig. 2 indicates.

(3) Go over to pp-+en by G conjugation in the
t channel, and require agreement with the available data
in Fig. 2.

A. ~ Conspiracy On1y

Solution 2 of Table II, in which m" lies one unit above
m, can be immediately ruled out, for it would predict
that I(0) grows linearly with s. Thus only solution 1 of
Table II need be considered, in which m" lies one unit
below x, and may be ignored in the cross section.

The relevant trajectories and residues are as follows:

a = —a(1+y), p= ag', (30)

P= —g', (31)

where y= —t/Ii', g'/4r=15, and a=0.02. The s. residue
is taken to be that at t=y', obtained through a straight-
forward calculation. The m' residue is taken from
Table II, using the approximation a&&1. The slope of
the m' trajectory is neglected, because it must be small
in order not to give rise to a physical scalar boson almost
degenerate with the pion. From (20), we obtain, after
some reductions using the approximation a«1,"D. V. Bugg, D. C. Salter, G. H. StaGord, R. F. George, K. F.

Riley, arid R. J.Tapper, Phys. Rev. 146, 980 (1966).
~4 This assumption is consistent with p, Ag couplings in other

processes.

gs(1+y)—rcswa(1+@)/s&-a(1+v)

~& + ~2&&.a/2g a11 —g

(32)

(33)
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where x=s/m'. The reduced differential cross section
defined in (2) is, both for pe ~ ep and pp-+ Nn, ,

I(y) =4I:1+(1+&)'j, (34)

in which the approximation x &=1 has been made. This
predicts I(0)=8, in disagreement with experiments.
Therefore, we rule out this case.

B. Both m Conspiracy and B Conspiracy

As we have seen, m conspiracy alone yields too high
a forward cross section in pe-+ np We. may hope to
remedy this by introducing a conspiring 8 to cancel
part of the x contribution. The contribution of 8 to
M oo is essentially a t-independent complex number,
depending on its trajectory, residue, and signature. For
Pe ~ ep, we must arrange the real part of this number
so as to reduce the x contribution by 2 @', independent
of energy. This is possible only if 8 is degenerate with

m, and has even signature. But then the 13 triplet trans-
forms under G conjugation like the x triplet, and
we would predict that do/dQ is identical for pn-+ Np
and pp -+ ne, in disagreement with the data in Fig. 2.
Therefore this case is ruled out.

C. B Conspiracy Only

For the same reason as given in the previous case, the
signature of 8 must be odd, for otherwise we would
predict identical da/dQ for pe ~ Np and pp -+ Nn. Thus
8 has even 6 parity, and its residue is equal in magni-
tude but opposite in sign for pn —+ ep and pp —+ Nn.

Since in the present case x does not conspire, its
residue must vanish at I,=O. However, a sharp forward
peak can result from interference between m and B. If
we arrange this to happen in pl +ep, as -we must, then
we predict a sharp forward dip in pp ~ Nn. Such a dip
is not ruled out by experiments. Let us consider sepa-
rately the two solutions of Table II.

Solution 2 of Table II, with 8"one unit above 8, can
be ruled out as follows. For I(0) to be energy-independ-
ent, 8" cannot lie higher than x. Thus, 8 lies at least
one unit below x, but must have a sufhcient large
coupling to be able to interfere with m to produce the
forward peak in pe~ ep. Consequently, 8 must con-
tribute appreciably to the energy dependence of I(0).
The total contributions of 8, 8', 8" always lead to a
wrong energy dependence, whatever the choice of the
8 tra3ectory. The argument is independent of whether
or not there are daughters. Thus we rule out this case.

For solution 1 of Table II, 8" lies one unit below 8,
and may be ignored. For I(0) to be energy-independent,
B should be approximately degenerate with x. The
interference term between x and 8 then vanishes, owing
to the odd signature of 8. Thus there would be no
forward peak in pe -+ Np, and this case is also ruled out.

D. Daughter Trajectories

It is shown in the Appendix that there are solutions
to the conspiracy condition in which the Gribov-Volkov

leading triplet are supplemented by in6nite families of
daughter trajectories. They lie at least two units below
the leading member of the family, and are normally ex-
pected to be negligible in the cross section. To examine
the effect of the daughters more closely, it su&Bees to
consider the special case in which there are no con-
spiring trajectories in M» (i.e., 8 and its possible
daughters are all absent). In this case, 8' must be fol-
lowed by an in6nite family of daughters, with trajec-
tories spaced successively two units below each other.
Their residues are determined by that of 8', which is in
turn determined by that of B.The residue of the daugh-
ters may be arbitrarily large compared to that of 8' if
the trajectory of 8' is arbitrarily close to 0. Denoting
the residue of 8' and that of the mth daughter of J3' by
Po and P2„, respectively, and denoting by u the trajec-
tory of 8', we have from (A28)

1/ 2& 1X3X5X .X(2n —1) '
Po,

~n(2n —1 2X4X6X X2n

(n=1, 2, 3, ). (35)

The daughters may in fact make an appreciable con-
tribution to the cross section at a given energy. But
since their contributions are proportional to x '", they
vary rapidly with energy, and in all cases produce wrong
energy dependences of I(0).

The inclusion of daughters, therefore, does not alter
the conclusion reached in this section, namely, under the
basic assumptions stated earlier, all Regge-pole con-
spiracy schemes involving the pion and at most one
other conspiring family are in disagreement with
experiments.

V. MODEL

In the last section we have seen that simple Regge-
pole conspiracies do not lead to a simultaneous under-
standing of both Pm~up and pp-+attn. The main
difhculty was that Regge poles generally give strong
energy dependences (i.e., s ), and that their contribu-
tions to pe —+ np and pp~ mn are strictly correlated.
For these reasons it is unlikely that adding a few more
Regge poles will lead to a good fit. If a large number of
Regge poles with closely spaced trajectories are intro-
duced, their contribution can hardly be distinguished
from that of a branch cut. Accordingly, we try a semi-
phenomenological approach.

In the last section we have completely ignored the
contributions of the p and A2 trajectories, which may
interfere with the conspirators in 31»+. This was justi-
fiable because they evade instead of conspire, hence in
the neighborhood of t=0 they are unimportant. At
larger —t, however, they could be important, for it is
known that p and A& have very large helicity-Qip coup-
lings, from simultaneous analysis of m p-+mom and
~ p -+ ge, and ~p and Kp elastic scattering. '5 We shall

"R. J. ¹ Phillips and W. Rarita, Phys. Rev. 139, 81336
(1965).
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M»+= g' exp( ',i7rn. )—x -e '"() i y(ti/m—)'&p

XexpL ——',is (n,—n.)]x ~- .—y(ti/tN)'&a,

&&exp(——',is-(ng, —n.)j~ "~"), (37)

where c and X are constants, and 0., and e~, are, respec-
tively, the p and A& trajectory, and p, and», are con-
stants characterizing their couplings. We may look upon
(36) and (37) as results of the exchange of an evading s-,

plus some other conspiracy that gives the constant X.
We show later that X is consistent with the contribution
from self-conspiring cuts.

The factor e '& represents the t dependence of residue
functions and cut discontinuities, taken here to be the
same for all poles and cuts. It corresponds to a choice of
the energy scale ss in the factor (s/sp)

We now take up the p and A2 contributions. Choosing
their trajectories to be degenerate, with

+I =+&~= 2 ~3')

where @=0.02, we obtain

3Iii+= g' exp( ——,'i7rn. )x e-'&

XL) —y(t /~)'(*/2)"'(v —'v') j, (»)
where y=y, +y~„y' =y,—y~2. The term iy' will be
neglected because it is small and does not interfere with
the conspirators. The final formula for the reduced cross
section defined in (2) is extremely simple:

I(y) =4s ""(L)—y/(1+y) 7
+I ) —y(t /~)'(~/2)"'7 j) (4o)

The constant c should be the same for pe~ ep and
pp —+ nn, but 'A and y may be different for the two proc-
esses. An illustrative 6t to the data consists of taking

c=0.1,
X= 0.35, (pw -+ ep)

0.55, (pp ~ Nn)

(41)

(42)

1, (pm np)
= —0.75, (pp -+ Nn) . (43)

The fits for p~,b ——8 BeV/c are shown as the solid curves
in Fig. 2. The values of p appear reasonable when com-

include their effects in our phenomenological formula,
mainly for the purpose of ascertaining that they do not
have much influence in the interesting region 0&~y&3.
We shall continue to neglect the contributions of p and
A2 to M&0+, because in this amplitude they cannot
interfere with any conspirator, and because their resi-
dues there are linear instead of quadratic in the helicity-
flip coupling constant, and hence small.

To write down a semiphenomenological formula that
works, all we have to do is to add to (32) and (33) an
energy-independent interference term that may be dif-
ferent for pe~ rip and pp-+ nn. With the contribu-
tions of p and A ~ included, we write

ass =g' ex—p(—-', is.n.)x -e 'sL —(y/(1+y))+)il, (36)

pared with the p and As helicity-Rip couplings in other
processes. "However, the 6t here is very insensitive to
7, and our values should be regarded as illustrative
rather than deinitive.

It is clear that ) cannot be the contribution of only
a few Regge poles, for that would give ) a strong energy
dependence. Furthermore, it cannot be the contribution
of a single cut, for that would require X to have equal
magnitude for pn —+ np and pp ~ mn.

The simplest model consistent with (40) consists of
taking ) to be the contribution from two branch cuts,
namely, those arising from p —P and A&—P exchange,
where P is the vacuum trajectory. "These cuts conspire
separately with themselves, each contributing equally
to &00—and M~~+. Since these cuts have even and odd
G parity, respectively, a relatively small contribution
from each, constructively interfering in ptt-+ esp, and
destructively interfering in pp-+ tsn, would reproduce
the )t required by (42). The magnitude of the cut con-
tributions are in rough agreement with cut contribu-
tions in other processes. '7

The trajectories of the two branch cuts are the same
by virtue of (38). They are given by

n, (t) =maxLnp(tt)+n, (ts) —1j,
Q tt+g ts Q t. ——

In the region we are interested in we can take

We do not know the phase and energy dependence of
the cuts too well. If we assume an energy dependence
of the form ) ~x~'/in', then (45) leads to ) ~ x'I'/in',
which is very slowly varying, changing only by 10% in
the interval 10(x(20 (3(p~,b(8 BeV/c). The data
are not suf6ciently accurate for a comparison.

The above is merely a model for (40), and. by no
means a unique interpretation. In fact, (40) by itself
does not even imply x evasion. To see this, note that
the s. contribution in (36) may be rewritten in the form
(1+y) '—1=—y/(1+y). The constant —1 can be in-
corporated into X, and the remaining term (1+y) ' is
precisely the contribution of a conspiring s.. Thus the
case of x conspiracy cannot be distinguished from that
of m evasion, except by the numerical value of X, on
which we have no independent information.

We conclude with a few remarks:

(1) Regardless of the model that leads to the semi-
phenomenological 6t, the basic feature remains the

One expects that Regge trajectories coupled to pp and mw,
such as P, p, and A2, evade rather than conspire, by virtue of the
factorization property of residue functions and the 6niteness of the
total mr cross section. The cuts arising from p —P and A g

—P ex-
change, however, may conspire. A model example of a conspiring
cut arising from an iteration of the vacuum trajectory is given by
D. Branson, S. Nussinov, S. B. Treiman, and W. I. Weissberger,
Phys. Letters 2SB, 141 (1967).

~7 K. Huang, C. E. Jones, and V. L. Teplitz, Phys. Rev. Letters
IS, 146 (1967);M. de Laiiy, D J. Gross, I.J..Muzinich, and V. L.
Teplitz, ibtd IS, 14S (1967.).
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same, namely, that the sharp forward peak in prs-+ esp

is governed by the pion mass and the pion-nucleon
coupling constant.

(2) Our choice of parameters, which is subject to some
uncertainty, predicts a sharp forward peak in pp ~ Nn,

as shown in Fig. 2, with the same shape but twice the
magnitude as that in pe~ rsp. It would be helpful to
have experimental data in this region for comparison.

(3) The data shown in Fig. 2 seem to show some weak
energy dependence. For both pl~ Np and pp-+In, it
seems that the diffraction peaks erst expand and then
shrink, as pt,b increases from 3—8 BeV/c. If this should
turn out to be a real effect, it might be accommodated
in our model by a suitable choice of the energy scale in
the cut contribution, making it x"'/(lnx+C) instead
of x"'/lnx.

(4) We can make a rough projection of the features
of do/dQ for pn —+Np at very high energies, say
P&,b=200 BeV/c (x=400). In the forward direction,
the conspiring m contribution, which falls like s, would
become negligible, and the main contributions comes
from the amplitude Happ+. The dominant contribution
to this amplitude is the p trajectory, and should be
roughly energy-independent. It should yield do/dII=0. 2

mb/sr, as estimated in (27). As t increases there should
be an extremely sharp rise to a maximum and then a
fallo8, edith a shape similar to that observed in
z. p~ rrpn, 's and for the same reason, i.e., the large p
helicity-Qip coupling. At these extremely high energies,
the effect of x exchange is almost completely masked.

(5) Conspiracy can be shown to occur also in other
processes, such as pp~ rr+n. Analysis of this reaction
in terms of x and cut conspiracies also seem to 6t the
data, while pure Regge-pole conspiracies seem to fail."

APPENDIX: GENERAL SOLUTION OF THE
CONSPIRACY CONDITION FOR

REGGE POLES

TABLE III. Assignment of conspiring trajectories.

Ampli-
tude Trajectories

o.—I (a =0, 1, 2, . ~ .)
a—e (I=0, 1, 2, )
n —I (a=0, 1, 2, ~ )

Signature
of m=0

Reduced residue P member

—A„
(n I) (—o. I+—I)B
(a—e) (a—g+1)C„

their own conspiring families. Hence it sufBces to con-
sider trajectories in all three amplitudes diGering from
one another by integer units. Assume that among all
these trajectories there is a leading trajectory, denoted
by n. %e need consider only trajectories of the form
a N(e=0—, 1, 2, ~ ). There is no loss in generality to
assume that A. ,B,C each contains one and only one tra-
jectory n —n, for, if the trajectory were absent, we
would set its residue equal to zero, and if there were
more than one trajectories at rr —n, we would regard p
as the sum of their residues. It suffices, therefore, to
consider the set of trajectories listed in Table III.

We define a reduced residue p for the trajectory n to
be

P =zP (2n+1)/sins n, (A3)

which is further redefined in Table III. To put (18) in
more explicit form, we need the following formulas,
which may be obtained from Ref. 9:

Epp (s) = (P (s), (A4)

()=I: (+1)3 'L(P-'()+( —1)(P-"(H, (A5)

(s)=I (+1)3-'l.(P«'(s)+(s+1)(P-"(s)j, (A6)

where

(P (s) =—(tanrre/s. )Q t(s)
= I:(2s) I'(~+l)/~"'I'(~+1) j

XF(—-'n -'(1—rr) -' —n 1/s') (A7)

2 =3fpp,
8=-', (M r, t+—Mtr+),
C=-', (M t, t +Mtt+),

(A1)

all evaluated at fixed s and t=0. The conspiracy con-
dition then reads

A+8 C= 0. —

(P (z) =e-'~~(P (-s)
Some useful relations are

(1—s')(P " 2s(P.'+—~(&+1)(P.=0,
(ss—1)(P.'=o(s(P.—(P. ,),

(P = (2m+1)—'((P +t' —(P t') .

(AS)

(A9)

(A10)

(A11)

Assume that Mpp, Myy+, and M» are each super-
positions of an arbitrary number of Regge poles, with
individual contributions given by (18). Since the con-
tribution of a Regge pole of trajectory 0, is asymptoti-
cally proportional to s, two trajectories can conspire
with each other only if their trajectories differ at most
by an integer. Otherwise, they must separately found

'&A, V. Sterling, P. Sonderegger, J. Kirz, P. Falk-Variant,
O. Guisan, C. Bruneton, P. Borgeand, M. Yvert, J. P. Guillard,
C. Caberzasio, and B.Amblard, Phys. Rev. Letters 14, 765 (1965).

'9 D. Gordon and J. Frgyland (private communication).

Using (19) and (A4)—(A6), we find

~=-,' Z I 1+r)(—)"e—'-Q„(P „(—z) (A12)

C $ Q I 1+pe"(—)"e ' jC„(P „'(—z), (A14)
n=p

&=l 2 I:I+a'(—)"e '-3~-IR= (—«), (A13)
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where s= 1—(s/2Jn2), and

JR (z) =n(n+1)6' (z)—s(P '(z) (A15)
= (2n+1) 'I n'6'+i (z)—(1+n)'& i (z)).

By using (A11) and (A15), we find that the conspiracy
condition can be expressed in the form

A„, B„,C zero except Ap, Bp, Ci. Thus,

80= —n 'Ao,

Cg=e—'A p.

(A23)

Solution 2 consists of choosing g'=1, g"=—i, and all
A„, B„,C„zero except Ay, By Cp. Thus,

E [f 6' —.+ '()—
g 6'=.- '()—h 6'---'())=0,

(A16)

Sg= —o, 'Ag,

Co=a 'Ag.

(A24)

where

f.=-;[1+&(—).e-'-)[Z./(2a —2n+1))
+1[1+~4'&( )ae iaa)-

X[(n—n)'B /(2a —2n+1)), (A1/)

g„=—',[1+q (—)"e-'" )[A „/(2n —2n+1))
y-'[1gag'( —)"e-'-)

X[(1+a—n)2B„/(2a —2n+1)), (A18)

When A„, 8, C„are translated into residue functions
by Table III, ere obtain the results in Table II.

An interesting special case is obtained by taking
g'=1, 4J"=—1, and setting A„=O (all n)0), C„=O
(all n) 0). Then there must be an infinite number of
daughters in the amplitude 8, with all residues deter-
mined by Ao'.

Bp
—(1/a')A ——p,

1[]+~~&i( )ae—i@a)C (A19)

The coef5cients of 6' '(—s) have different asymptotic
behavior for diferent a, i.e., (P '(—s) -+ (—2s)~'.
Therefore, the conspiracy conditions are

2a—2n —1(a+2
8~1=

2n —2n+3 Ea—n —1&

(n=1, 3, 5, ~ ).

(A25)

p=o,

fi /Jp,
——

f~i—g„ i—h =0, (n=1, 2, 3, . ).
The general solution is

A p+n'Bp=0,
A i+ (1—n)'Bi ——(2n —1)Cp,

(2a—2n —1) '[A~i+(n —n —1)'B~i)
= (2a—2n+3) '

X[A„ i+ (a+2—n)'B„ i)+C„,
(n=1, 2, 3, ),

(n+1) (n 3~ n 1—$—
p4=1 !! ! I pp,

& n I (n-4i a 2/- (A27)

Let the residue corresponding to B„be denoted by p„.
(A20) Then from Table III we can translate (A25) into

(n —n) (n—n+2)
n+1 P„ i, (n=1 3 5, . ),

(n —n —1)(n—n+1)
(A26)

or

—1
1

1

None
A„=O (n=0, 1, 2, ~ )
B„=O (n=0, 1, 2, )
C„=O (n=0, 1, 2 )

(A22)

The two Volkov-Gribov solutions are special cases.
Solution 1 consists of choosing q'=1, q"= —j., and all

with additional requirements depending on the relative
signatures g' and g", as speci6ed below:

Additional requirement

(n+1 (n —5 (n 3)(n —1)-'—
ps=I

I pp,
k n En —6 (a—4)(a—2)

Thus, when n-+0, !P2„/Pp! diverges like n ' for all
s&0

1( 2n 5 1X3X5X X(2n —1) '
pm ~-l p„(A28)~ n(2n —1/ 2X4X6X ~ X2n

(n=1, 2, 3, ).


