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Application of a Higher-Order WEB Approximation to Radial Problems
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The radial generalization of Dunham's one-dimensional WKB quantization condition, including second-
and third-order corrections is derived using the Langer transformation. It is found that, although the 6rst-
order integral can be obtained from Dunham's results by substituting (/+q)' for l(l+1) in the effective po-
tential, there is no choice of e6ective potential that leads to the correct second- and third-order integrals.
It is suggested that all previous eigenvalue calculations using higher-order WKB approximations for the
radial case should be reinvestigated. It is shown that the second- and third-order integrates identically vanish
for the hydrogen atom and the three-dimensional harmonic oscillator, as expected.

I. INTRODUCTION

~~~NE of the earliest and simplest methods of ob-
taining approximate eigenvalues of the one-

dimensional Schrodinger equation was originally pro-
posed by Wentzel, ' Kramers, ' and Brillouin. ' The
method was further developed by Dunham, 4 who ob-
tained the higher-order correction terms to the WEB
quantization condition. The evaluation of these correc-
tion terms is very useful in improving the precision of
the WXB calculated eigenvalues. ' '

When the Schrodinger equation is separated for a
spherically symmetric potential the radial equation can
be written in a form which is identical to the one-
dimensional problem, with an effective potential given
by the sum of the centrifugal potential and the original
potential. This similarity to the one-dimensional
problem led Dunham' to use the one-dimensional
quantization condition on the effective potential to
determine the eigenenergies of the rotating vibrator.
This, however, cannot be a valid quantization rule
because it is well known that, in order for the 6rst-order
WEB integral to give the exact eigenvalues for the
hydrogen atom and the three-dimensional harmonic
oscillator, the quantity /(/+1) must be replaced by
(/+-, )' in the quantization condition. It was observed

by Langer' that the reason for this modification arose
from the fact that the quantization condition for the
one-dimensional problem was derived. under the
assumption that the wave function approached zero
for x —+ &~, whereas the radial part of the solution
approached zero for r + 0 and r —+ ~. He then intro-
duced a transformation that mapped the point r=0
into x= —~ and r= ~ into x= ~, and as a result ob-
tained an equation whose solutions satisfied Dunham's

original boundary conditions. An immediate conse-
quence was that the correct first-order quantization
condition had /(/+1) replaced by (/+-', )', the so-called
Langer correction.

More recently, ' an attempt has been made to obtain
the higher-order corrections to the WEB quantization
condition for spherically symmetric potentials. These
workers have assumed that the Dunham' one-
dimensional correction terms are applicable here
provided one uses the appropriate effective potential.
They find that, although the replacement of /(/+1) by
(/+2)' is valid if only the first-order integral is con-
sidered, this replacement is no longer valid when the
second-order integral is included, and instead they
conclude that /(/+1) should be replaced by E, with E
satisfying X+1/64E=/(/+1). '

The purpose of this note is to derive the second- and
third-order correction terms for the radial problem. We
shall show that these terms are not given by the usual
Dunham expression no matter how we choose the
effective potential. We shall furthermore demonstrate
that these higher-order correction terms are zero for
the Coulomb potential and the harmonic oscillator.

II. WEB APPROXIMATION FOR ONE-
DIMENSIONAL SYSTEMS

In this section we review Dunham's4 method of ob-
taining the higher-order %KB integral corrections.
Dunham takes the solution of the Schrodinger equation

1/(x)+ U(x)P(x) = EP(x)
2m dx'

to be of the form

1/(x) =—A exp — y(x', E)dx'
Pz
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where A is an arbitrary constant. &hen Fq. (2) js
substituted into Eq. (1), y obeys the equation

Iz dy——+y'= 2rrt(E —U) .
i dx

9 C. Beckel and J. Nakhleh, J, Chem. Phys. 39, 94 (1963).
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The %KB RppI'oxiIDRtlon assumes thRt p may be
written as a series in A, i.e.,

y=Z =o(&/i)" y ~

It can in fact be shown that such a series is really an
asymptotic expansion, "with A the expansionparameter.
Recursion formulas for the y„are obtained by substi-
tuting Eq. (4) into Eq. (3) and equating coefFicients of
A" to zero.

The requirement that, It(x) —+0 for x~ +~, It must

be single valued and finite, and iP can be chosen as real
for it to be an acceptable solution, lead to the condition

where the integral is taken about a contour enclosing
the classical turning points and no other singularities of
y. When the expansion for y is substituted into Eq. (5)
the quantization condition to third order in A' is

h'
V) i/2d, — (V') 2(E—V)-&/2dx

C 64m

h' (&+I)h
$49(V')'(E—V) "/' —16V'V"'(E—V) '"7dx= — (6)

8192m&' c (2m)'"

u(r) =i%()/ 7V-(0A)

III. WKB APPROXIMATION POR &HE RADIAL then X(x) ~0 for x~ —~. Also since U —&0 for
EQUATION r —+ ~, then I~ 0 for x~ ~.Hence, I has the same

boundary conditions as are implicit in Dunham sIf @re substitute
derivation. The equation obtained when Eq. (9) is

(7) substituted into Eq. (8) is

into the Schrodinger equation for a spherically sym-

metric potential, the resulting equation for U(r) is

l'4' d' (I+-')'I4'
X+e" V(e*) E+ e—'* X=O. (10)2' t& 2'

i'4' d' l(i+ I)A'

U+ V(r)+ U=EU,
28$ df . 2yer2

and, from Eq. (7), the boundary conditions are U=O
for r=o and r~ , which are different from the

boundary conditions under which Dunham derived the
one-dimensional quantization rules. This can be
remedied by using the I anger transformation, i.e.,

This equation is of the form

(I+i)'
/t'(x, E)= E V(e*) —l'4'e '* —e'~—.

2m
(12)

I—q'X=0,2' dx~

which is of the same form as the ordinary one-
dimensional equation provided we take

U(r) =e~"X(x). (9) e can write Dunham's quantization rule for equations
And since e»&=yi/2 and U(r) ~ 0 at least as fast as r, of the form of Eq. (11) as'

$Q

/tdx — —
(II ) II dx

64m d~

A4 d -' d — d' — (Jl/+-', )h
49 —(II') II

"—16 —(q') (q') II
' dx= —. (13)

8192m' dx dx dx' (2m) "'

Substituting Fq (12) into Fq. (11) and transforming back to r as the integration variable we obtain

(I+1)2I4& —i /2 i'42 ((d/«) 9 (V—E)7)'

(E—V(r) —L(l+-', )'A'/2mr'7)'/' ' 8192m'
E—V(r) — dr

49((d/dr) Lr'(V —E)7)4 —16rL(d/dr) (r'(V —E) )7XLr(d/dr) 74Lr'( V—E)7 1 P'+ si)h
X dr= —. (14)

V Di+ &)2$&/2my27) ii/2 (E—V —L($+ i) 2//42/2my27) i /2
/ 8 (2m) i/2

'~ A. Z~vaan, Arch nder1 Sei. D, 33 (1929}.



The first term" is just the usual first-order integral
with an effective potential obtained by replacing l(1+1)
by (1+-,')' in the effective potential found in the radial
equation. However, if we had merely substituted
V,g~=—V+ (h'(l+ ar) '/2mr'$ into Dunham's second-order
IntcgrRl %'c %'ould not have obtRlncd thc correct sccoQd-
order integral as given in Eq. (14). The same is true
concerning the third-order integral.

r2N

dr, e= —I, o, j..
{E--'kr2 —$(l+-') 2h2/2mrnj) e12

These three integrals are separately zero. This followers

from the fact that

E—~kr' — $ —,
' 'h' 2mr' '~'dr

As is %cll known, the 6rst-order integral leads to the
exact eigenenergies for the Coulomb potential and
harmonic oscillator. We shall now show that in both
CRscs thc second- RIid third-order lrltcgI'Rls RI'c Iden-
tically zero.

A. Coulomb Potential V(r) = —Se'/r

From Eq. (14) we see that the second- and third-order
Intcgx'Rls hRvc singularities Rt thc t%0 classlcRl turning
points given by the solutions of

(l1-',)'h'
E—V— ——-=0

2mfs

The IQtcgl'Rnds RI'c Qot slQgular Rt r=o SIQce» Rs t' ~ 0
both the second-order integrand and the third-order
intcgrand —+r. Since there are Qo other singularities,
%C can deform the contour to bc a large circle with
center at the origin. But for r —+ ~ the second-order
integrand ~ 1/r' and the third-order integrand-+ 1/r',
and hence evaluating the integral along a circle of
radius 8 gives zero as 8—+ ~.

Ba HRX'IQOQ1C 0861HRt01' V= g Af'

From Fq. (14) we see again that the second- and
third-Order lntcgrRls have slngUlal ltlcs Rt the t%'0

clRsslcR1 turning points glvcQ by the solution of

%ith r& 0. There are also singularities at negative r but
the contour of integration does not include them. Hovr-
cvel slncc thcsc slngulRI'ltlcs cxlst, lt ls not posslblc to
simply deform the contour to a large circle as in the
Coulomb-potential case. Instead, we note that the
second-order integral can be written as a sum of terms

"P. M. Morse and H. Feshbach, Vethods of Theoretica/ I'hysi. s
(McGraw-Hill Book Company, Inc. , New York, 1MB), p. 1101.

I'or n= —2, —1, 0,
us= —2» —I» 0.

d f ni d6+e
5„is proportional to —-- -J=o,

d(h') l "l dE'+"
2 I 0

T~ ls propoltlonRl to -J=o.
d(ha) iml dE4+ss

Fol s= 1» 2»
d'n d'6—»il

S~ ls proportional to — —
——J=0.

/Pe d+6—e

Hence the entire third-order integral is zero.

V. CONCLUSIONS

We have derived the radial generalization of the
second- and third-order %KB correction terms to the
energy quantization condition. IQ doing so vie hRve
seen that there is no CGective potential that may bc
substituted into Dunharn's expression which mill give
rise to the correct result for an arbitrary potential. The
derived higher-order correction terms have been sh0%Q
to be identically zero for the Coulomb potential and the
hRrmonlc oscillator» Rs cxpcctcd.

Our results suggest that all earlier work in determin-
ing corrected %KB eigenvalues of the radial equation
should be reinvestigated because previous workers have
employed incorrect expressions for the higher-order
correctioQ terms.

LE/~ —k(~+2)j,
2(2m)'I'

where p=—(1/2')(k/m}'ie. Then Ir is proportional to
(8/Bk)(8e/8E') 1=0 Io is proportional to (Ba/8E') 2=0,
and I r ls proportional to (8/8(ha))(8e/8Ee}I —0.

Thus, the entire second-order Integral is zero.
Similarly Rll thc contributions to thc thill-orde1
integrals can be written in terms of integrals of the form

5„=
f2"

dr
{E——;kr2—P(i+-;)eh2/2mre 3}rr Ie

e= —2, —I, o, I,&2

T =
r2

{E ,'kre —P(E+',-)ahe/2m-rej}»e


