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The radial generalization of Dunham’s one-dimensional WKB quantization condition, including second-
and third-order corrections is derived using the Langer transformation. It is found that, although the first-
order integral can be obtained from Dunham’s results by substituting (/+3%)? for /(}4-1) in the effective po-
tential, there is no choice of effective potential that leads to the correct second- and third-order integrals.
It is suggested that all previous eigenvalue calculations using higher-order WKB approximations for the
radial case should be reinvestigated. It is shown that the second- and third-order integrals identically vanish
for the hydrogen atom and the three-dimensional harmonic oscillator, as expected.

I. INTRODUCTION

NE of the earliest and simplest methods of ob-
taining approximate eigenvalues of the one-
dimensional Schrédinger equation was originally pro-
posed by Wentzel,! Kramers,? and Brillouin.® The
method was further developed by Dunham,* who ob-
tained the higher-order correction terms to the WKB
quantization condition. The evaluation of these correc-
tion terms is very useful in improving the precision of
the WKB calculated eigenvalues.®
When the Schrodinger equation is separated for a
spherically symmetric potential the radial equation can
be written in a form which is identical to the one-
dimensional problem, with an effective potential given
by the sum of the centrifugal potential and the original
potential. This similarity to the one-dimensional
problem led Dunham’ to use the one-dimensional
quantization condition on the effective potential to
determine the eigenenergies of the rotating vibrator.
This, however, cannot be a valid quantization rule
because it is well known that, in order for the first-order
WKB integral to give the exact eigenvalues for the
hydrogen atom and the three-dimensional harmonic
oscillator, the quantity /(/41) must be replaced by
(I+31)? in the quantization condition. It was observed
by Langer® that the reason for this modification arose
from the fact that the quantization condition for the
one-dimensional problem was derived under the
assumption that the wave function approached zero
for x — =, whereas the radial part of the solution
approached zero for » — 0 and 7 — . He then intro-
duced a transformation that mapped the point r=0
into x=— 0 and = into x=, and as a result ob-
tained an equation whose solutions satisfied Dunham’s
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original boundary conditions. An immediate conse-
quence was that the correct first-order quantization
condition had /(+1) replaced by (I4+3%)2, the so-called
Langer correction.

More recently,® an attempt has been made to obtain
the higher-order corrections to the WKB quantization
condition for spherically symmetric potentials. These
workers have assumed that the Dunham* one-
dimensional correction terms are applicable here
provided one uses the appropriate effective potential.
They find that, although the replacement of /(I+1) by
(i43)? is valid if only the first-order integral is con-
sidered, this replacement is no longer valid when the
second-order integral is included, and instead they
conclude that /(J4-1) should be replaced by K, with K
satisfying K+1/64K =I(I+1).

The purpose of this note is to derive the second- and
third-order correction terms for the radial problem. We
shall show that these terms are not given by the usual
Dunham expression no matter how we choose the
effective potential. We shall furthermore demonstrate
that these higher-order correction terms are zero for
the Coulomb potential and the harmonic oscillator.

II. WKB APPROXIMATION FOR ONE-
DIMENSIONAL SYSTEMS

In this section we review Dunham’s* method of ob-
taining the higher-order WKB integral corrections.
Dunham takes the solution of the Schrédinger equation

2 q2
—— — () + V()Y (x) = E(x) (1)
2m dx?

to be of the form '
z @X
Y(x)=4 exp[;/ y(x’,E)dx’] , (2)

where 4 is an arbitrary constant. When Eq. (2) is
substituted into Eq. (1), ¥ obeys the equation

h/dy
T<_>+y2=2m(E— V). 3)
1 \dx.

9 C. Beckel and J. Nakhleh, J. Chem. Phys. 39, 94 (1963).
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The WKB approximation assumes that y may be
written as a series in 7, i.e.,

y=2n—0 (7/1)" Yn. @)

It can in fact be shown that such a series is really an
asymptotic expansion,® with % theexpansion parameter.
Recursion formulas for the y, are obtained by substi-
tuting Eq. (4) into Eq. (3) and equating coefficients of
#" to zero.

The requirement that ¢(x) — 0 for x — ==, ¢ must

hz
f (E—V)2dy—— f (V))H(E—V)~2dx
¢ 64m ¢

8192 2

II. WKB APPROXIMATION FOR THE RADIAL
EQUATION

If we substitute
\b(r) = [U(r)/r] Ylm(07¢) (7)

into the Schrodinger equation for a spherically sym-
metric potential, the resulting equation for U(r) is

h2 2

d (+-1)n
3 U=EU, 8
U+[V< o ] ®)

~2m ar

and, from Eq. (7), the boundary conditions are U=0
for =0 and 7— «, which are different from the
boundary conditions under which Dunham derived the
one-dimensional quantization rules. This can be
remedied by using the Langer transformation, i.e.,

r=ev,

U(r)=e*"2X(x). 9)

And since e*/2=7'/2 and U(r) — 0 at least as fast as 7,
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be single valued and finite, and ¥ can be chosen as real
for it to be an acceptable solution, lead to the condition

f ydx=Nh, (5)

where the integral is taken about a contour enclosing
the classical turning points and no other singularities of
y. When the expansion for y is substituted into Eq. (5)
the quantization condition to third order in %2 is

(N+3)k
@m)vz

then X(x) — 0 for x— — . Also since U — 0 for
7—> o, then X — 0 for x — . Hence, X has the same
boundary conditions as are implicit in Dunham’s
derivation. The equation obtained when Eq. (9) is
substituted into Eq. (8) is

hZ d2 (l+%)2h2
—_ ——X+e“': V(e?)— E+ ————e—Z’:IX=0. (10)
2m dx? 2m
This equation is of the form
h* a2
—— —X—¢2X=0, (11)
2m dx?

which is of the same form as the ordinary one-
dimensional equation provided we take

+H

m

!
g%, E)= I:E—— V(e*)— ( h%‘z”‘:le“ . (12

We can write Dunham’s quantization rule for equations
of the form of Eq. (11) as’

#ord T a a 7 d Wb
——— — (2 —b — — (2 —11__1 (2 —(n2 .
f gdx P [dx(q )} q *dx o ]{ {49[(%(4 )] q 6sz(q )][M(q )] } I (13)
Substituting Eq. (12) into Eq. (11) and transforming back to 7 as the integration variable we obtain
(RSN % (@anr(v=—BT®  dr 2t
f [E— VO ] ” 64m}{ (E—V () — (452 2mr? )52 4 8192m?
49{(d/dn[r*(V—E)}*  —16r[(a/dr){r*(V—E)} IX[#(d/dr) P[r*(V—E)] 1 - (NV+3)h (14)
Xf{ {(E—V— [(14-2)2h2/ 2mr? ]} 1102 {E—V—[(1+2)2h2/2mr*]}712 #8 (2m)112 :

10 A, Zwaan, Arch néerl Sci. 13, 33 (1929).
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The first term!! is just the usual first-order integral
with an effective potential obtained by replacing I(J41)
by (I43%)? in the effective potential found in the radial
equation. However, if we had merely substituted
Vets=V+[%#2(14+%)2/2mr*] into Dunham’s second-order
integral we would not have obtained the correct second-
order integral as given in Eq. (14). The same is true
concerning the third-order integral.

IV. EVALUATION OF HIGHER-ORDER
INTEGRALS FOR THE COULOMB
POTENTIAL AND HARMONIC
OSCILLATOR

As is well known, the first-order integral leads to the
exact eigenenergies for the Coulomb potential and
harmonic oscillator. We shall now show that in both
cases the second- and third-order integrals are iden-
tically zero.

A. Coulomb Potential V(r)=— Ze/r

From Eq. (14) we see that the second- and third-order
integrals have singularities at the two classical turning
points given by the solutions of

()
y———=0.

2myr?

The integrands are not singular at #=0 since, as r — 0
both the second-order integrand and the third-order
integrand — 7. Since there are no other singularities,
we can deform the contour to be a large circle with
center at the origin. But for » — « the second-order
integrand — 1/7% and the third-order integrand — 1/74,
and hence evaluating the integral along a circle of
radius R gives zero as R — «,

B. Harmonic Oscillator V= 1kr?

From Eq. (14) we see again that the second- and
third-order integrals have singularities at the two
classical turning points given by the solution of

(3
Y———=0

2mr?

with #>0. There are also singularities at negative » but
the contour of integration does not include them. How-
ever, since these singularities exist, it is not possible to
simply deform the contour to a large circle as in the
Coulomb-potential case. Instead, we note that the
second-order integral can be written as a sum of terms

1t P. M. Morse and H. Feshbach, M ethods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1101.
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of the form

2n
]n = f ’ dr
{E—3kr*—[(+3)*1/ 2mr* ]}

,m=—10,1.

These three integrals are separately zero. This follows
from the fact that

J= }{ (E—br—[(14-3)% 2mr* )11 2dr

2(2m)H2

LE/v—h(+3)], (15)

where v=(1/2w)(k/m)'/2. Then I is proportional to
(8/0k)(8%/dE2)J =0, Iois proportional to (33/0E?)J =0,
and I_, is proportional to (9/9(%2))(6%/0E2)J=0.
Thus, the entire second-order integral is zero.
Similarly, all the contributions to the third-order
integrals can be written in terms of integrals of the form

7211,
Sn=f dr,
{E—3kr*—[(1+3)22/ 2mpt ]y 1112
n=—2,—1,0,1,2

7’27"

r§
(E—3ri—[(1+3)2/ 2mp* Ty
m=—2,—1,0.

For n=-2,—1,0,
dln] dst+n
S» is proportional to J=0,
d(h2) In] dE6+n

a+m

and for m=—2, —1,0,
diml

(A ml EE+m
ar dG-—n

S is proportional to —
dk" dES

T is proportional to
Forn=1,2,

Hence the entire third-order integral is zero.

V. CONCLUSIONS

We have derived the radial generalization of the
second- and third-order WKB correction terms to the
energy quantization condition. In doing so we have
seen that there is no effective potential that may be
substituted into Dunham’s expression which will give
rise to the correct result for an arbitrary potential. The
derived higher-order correction terms have been shown
to be identically zero for the Coulomb potential and the
harmonic oscillator, as expected.

Our results suggest that all earlier work in determin-
ing corrected WKB eigenvalues of the radial equation
should be reinvestigated because previous workers have
employed incorrect expressions for the higher-order
correction terms.



