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The invariance properties of the double-integral and diagonal representations of operators in terms of
the coherent states are examined. It is shown that a unique diagonal representation always exists for bounded
operators, hence for every density operator, and for unbounded operators which are polynomials in the
boson creation and annihilation operators. The associated weight function P (n) is a generalized function in
the space Z. The physical significance of this result is discussed, with particular emphasis on the diagonal
representation of the density operator of arbitrary radiation fields. A general formula for the weight func-
tion P (a) is derived and is used to calculate the particular form of the weight function for several radiation
fields of interest.

I. INVARIANCE PROPERTIES OF REPRESENTA-
TIONS IN TERMS OF THE

COHERENT STATES

~ 'HE normalized eigenstates of the boson annihila-
tion operator 6, the coherent or quasiclassical

states in), satisfy the completeness relation. ' 4
00

—Q cm o"(gin)e iI I'd'n=o. (6)

represents a null vector; the expansion coefficients c
are arbitrary constants. Multiplying Eq. (5) from the
left by an arbitrary bra vector (gl, we obtain the
integral identity

icr)(o. id'u= f,

where d'o. is the real element of area in the complex 0,

plane, and the expansion of
I cr) in terms of the complete

orthonormal set irt) (rt=0, 1,2, . ) is given by
m=1

(1) By virtue of Fubini's theorem, ' we may interchange the
order of summation and integration in Eq. (6) provided
that the infinite series

ltr&=e
—4I I' Q irt).

m-o (n!)'ts
(2) is integrable. Now assuming lg) to be normalized, we

have by Schwarz's inequality

By virtue of (1), it is always possible to express an
arbitrary operator A. in the form of the double integral

in)(e IA" iP)(P i
d'crd'P,

Ã2

I (gl ~) I '&(~l~)(gl g) =1

Hence, if the integral

(7)

where the integration is performed over the two complex
variables cr,P. Since the members of any overcomplete
family of states, and in particular the coherent states,
are not linearly independent, this representation is, in
general, not unique. For example, the vacuum state has
the coherent-state representation

exists, the validity of the interchange in Eq. (6) of the
operations of summation and integration is assured for
all vectors (gl. The null vector in Eq. (5) then has the
form

1
io)=- Ia)(nio&d'n= In)e '"-d'a

pc„ne lI~I'icr&d'n= pc u"e iI I'icr&d'

(4) NI;=1 m=1

It then follows from the fundamental properties of the
annihilation operator 6 that the sum where

g(cr) e-'I ~I'
I
cr&dscr =0 (9)

co cc

P c a™io&=—P c n"
I

)e-iIaI'd'o. =o
m=1

(5) g(n)= Qc n .
m=1

As a result of the last equation, the expansion of an
arbitrary state vector

I f) is invariant under the

blish- 3 R. J. Glauber, Phvs. Rev. 131, 2766 (1963).
4 R. J. Glauber, Phys. Letters 10, 84 (1963).
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transformation

ln)g(n)e ' 'd'nX h(8,8*)(8ld'p

ln)g(n) e
—'&«i'h(8, 8*)(8

I
d'nd'8= 0. (11)

h(P,P*) is an absolutely integrable function of P and P*.
The arbitrary operator representation (3) is invariant
now under the transformation

When h(P, P*)=h(P*)e '"~&~ ', there is a formal symmetry
between the variables n and P* in Eqs. (11) and (12).
This corresponds to the multiplication of two null
vectors.

The invariances (10) and (12) of the matrix elements
(n I f) and (n I

A
I p) are mathematical consequences of the

overcompleteness of the coherent states. They do not
seem to imply any physical conservation laws. Useful
representation of vectors and operators have the prop-
erty of uniqueness. To ensure this property, Glauber
chooses the weight coefficients f(n*) and A(ne, p) of the
arbitrary vector and operator expansions

1
If)=- f(~*)e '~ ~'I~)d'~ (13)

1
p(tr* p)(pie "«~' &~~~'dscrdsp (14)

7r2

as entire functions of n* and cs*, P, respectively. e He calls
the resulting unique expansion in the case of the density
operator the R representation.

There is a class of operators A. which also have a
diagonal representation of the form

E(n) la)(nld'n.

P(n) is a weight functional in the complex ct plane. The
fact that the use of this representation for the density
operator leads to an equivalence of descriptions between
the classical and quantum-mechanical versions of
optical-coherence theory was pointed out by Sudarshan, '

' E. C. G. Sudarshan, Phys. Rev. I.etters 10, 277 (1963).

(~lf) ~ ((~lf))'=(~lf)+~(~)e-'~ ~* (1o)

This vector invariance, under the transformation (10)
of its expansion coeScients, can be extended to arbitrary
operator representations in terms of the coherent states.
For this purpose we multiply now the null vector (9) by
an arbitrary, not necessarily null, bra vector (hl, ex-
pressed in terms of the coherent states,

and has since been the subject of several publica-
tions. ~"

Section II of this paper is devoted to a discussion of
some elements of the theory of generalized functions
which are germane to the proof in Sec. III of the
existence and uniqueness of the diagonal representation.
It is shown that every bounded operator, hence every
density operator, and every unbounded operator which
can be expressed as a polynomial in the boson creation
and annihilation operators has a unique diagonal
representation, where the weight functional P(n) is a
generalized function in the space Z'. The uniqueness of
this representation implies that an invariance relation
of the form, Eq. (12), derived for the double-integral
representation does not exist for the weight functional
&(~).

In Sec. IV a formula for E(n) derived. in Sec. III is
used for the computation of the diagonal representation
of the thermal and coherent radiation fields. The
physical significance of the existence of the diagonal
representation for the density operator is examined in
Sec. V in relation to the question of the correspondence
between classical and quantum-mechanical models of
physical phenomena.

II. DISTRIBUTIONS AND THEIR
FOURIER TRANSFORMS

We review now some elements of the theory of
generalized functions which are relevant to the existence
and uniqueness theorems of the diagonal representation
discussed in the next section. In particular, we show
how it is possible to define the Fourier transform of an
arbitrary distribution by considering linear functionals
de6ned on a space of entire functions. We first review
some basic concepts and definitions. Further details
and proofs of the results stated here can be found in
Refs. 12—15.

A. Definitions

A generalized function f is a continuous linear func-
tional which maps each test function q of the linear

e J. R. Klauder, J. McKenna, and D. G. Currie, J. Math. Phys.
6, 733 (1965).

7 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 3274
(1965).

s R. J. Glauber, Quantum Optics and Etectronics, Les Pouches,
7964 (Gordon and Breach, Science Publishers, New York, 1965),
p. 64.

e R. J. Glauber, Physics of Quantuns Electronics (McGraw-Hill
Book Company, New York, 1966), p. 788.

'e J. R. Klauder, Phys. Rev. Letters 16, 534 (1966).' R. Bonifacio, L. M. Narducci, and E. Montaldi, Phys. Rev.
Letters 16, 1125 (1966).

's A. H Zemanian, .Distribution Theory and Transform Calculus
(McGraw-Hill Book Company, New York, 1965), pp. 192-205."H. Bremmerman, Distributions, Complex Variables, and
Fourier Transforms (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1965), Chap. 8.' I. M. Gelfand and G. E. Shilov, Generalised Functions
(Academic Press Inc , New York, .1965), VoL I. The spaces D'
and D are denoted here by E' and E."L.Ehrenpreis, Am. J. Math. 76, 883 (1954); Ann. Math. 63,
129 (1956).
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(a)

(b)

Fra. 1. (a) Relationship of
the test function spaces D, Z,
and 8; (b) Relationship oi the
generalized function spaces D',
Z', and S'.

over the whole complex plane. Hence the spaces D (test
functions of compact support) and Z have only the zero
element in common [Fig. 1(a)j. However, it follows
from the definitions of the spaces S and Z that if
f(z)QZ, then P(u)QS; that is, Z consists of all entire
analytic functions of exponential type which decrease
rapidly for real values of their argument, and hence
Z( S, where it is understood that the independent
variable for the test functions of Z is real. Elements
of Z' are sometimes called NAradistribltioms" since the
spaces D' (distributions) and Z' intersect but neither is
contained in the other. From the fact that Z( S, it
follows that S'( Z', i.e., every tempered distribution
is in Z' [Fig. 1(b)j.

space C' onto the complex number (f,4). Linearity and
continuity of the generalized function f imply

(16)

for any two yt, y&+4' and complex numbers n,P and

The set f q „)is a sequence of elements in C which con-
verge to y+C. The test functions q (x) satisfy certain
growth and smoothness conditions and form a linear
space. In general, particular values cannot be assigned
to the generalized function f at any isolated point x.

B. D, D', 8, 8', and S, Z'Spaces

The class of in6nitely differentiable test functions of
bounded support defines the linear space D. All the
continuous linear functionals defined on D form the
space of distributions D'."

S denotes the space of in6nitely diGerentiable test
functions which together with their derivatives vanish
at infinity more rapidly than any negative power of

I
x I .

S' is the linear space of continuous linear functionals
defined on S and termed tempered distribltions. If f(x) is
a locally integrable function of polynomial growth, the
linear functional J'f(x)&p(h)dh converges for all yCS
and hence defines a tempered distribution. Clearly
DPS, therefore every continuous linear functional
de6ned on S is also a continuous linear functional on D;
i.e., S'QD', every tempered distribution is a distribution
The space of tempered distributions includes the Dirac
function, its derivatives, and all their finite linear
combinations.

The entire test functions f(z) of the complex variable
z=N+is, which satisfy the inequalities

lz&'"'(z)
I &c-.-e' ' n,m=o, 1, 2, . (1g)

a,c„, are constants which may depend on f, n, and m,
constitute the linear test function space Z. Z' is the
space of generalized functions defined on Z. Since f(z)
is an entire function, it cannot vanish along any finite
interval of the real axis without being identically zero

C. Fourier Transforms

When test function y of the real variable x lies in S,
the Fourier transform of q, g is also in S. An analogous
result holds for the tempered distributions or linear
functionals defined on S, i.e., the spaces S and S' are
closed under the Fourier transformation. For example,
the Dirac function is a tempered distribution. Its
Fourier transform is a constant which can be viewed
again as a tempered distribution in the S' space.

The closure property of the spaces S and S' under
Fourier transformation cannot be extended to arbitrary
elements of D and D'. Consider the case of a single real
variable x. Let ip(x) be an arbitrary test function in D of
bounded support

I xl &a. Its Fourier transform,
&p(N)=—lt(N), can be extended to an entire function of
z=(I+in) over the complex z plane. That is, the
function

q (x)e'**dx

is analytic for all finite z. Integrating (19) by parts n
times with respect to x and differentiating m times with
respect to s, we obtain

+a dn

(—is) "Pt ~(z) = — [(ix) y(x) je'**dx (20)
dx

so that for all s

IsÃ'"'(s)
I
&

+a dn

[x"p(x)jle—*" dh
dx

where
&c„,e'~ ~, n, m=0, 1, 2, , (21)

+a d'n

[x"y(h)j dx.
dx"

(22)

The converse is also true; that is, every entire function
f(z) which satisfies (18 or 21) for every n,m is the
Fourier transform of some infinitely differentiable func-
tion q(x) of bounded support lxl &a. The Fourier
transform thus establishes a one-to-one correspondence
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between the D and Z spaces which preserves linear
operations and convergence. A similar mapping between
the linear functionals defined on these test function
spaces can be established using the following generaliza-
tion of Parseval's theorem

equation

A(aa, a) =(nIA Ia)

(eIA Im&(n*) "n

(u!m!)'"
(f,v»= 2~(f, ~& (23)

to define the Fourier transform of an arbitrary distribu-
tion f in D' Wh.en y&Z, &p&D and the functional f+Z'
assigns to each y the same number that f+D' assigns
to q. The Fourier transformation establishes then a
one-to-one mapping between the spaces D' and Z'. For
example, the function

g2s

f(g) =e"=P
0 nI

lies in D' Hence. , the Fourier transform of f(x)

P(P)e i~ @'dsP=—P(n) ee i~—~' .(28)

The existence of a diagonal representation P(n) for an
arbitrary operator A. reduces then to the inversion of
the integral equation (28) and its solution for P(n), in
an appropriate generalized function space. Equivalently,
when A. =p, is the density operator, the normally
ordered characteristic function

X (7)=(e p(T&') p(—7*~)&

must have the Fourier transform P(x,y) r'

=Tr(P exp(vd') exp( —v*&))

This is a particular example of the general result; every
ultradistribution has the in6nite series representation"

P(x,y) e'&"*+'»dxdy, (29)

where c is an arbitrary, complex constant.

D. Multiyliers

(25)

where n= (z+iy), y= ',i(u+-ie)
An alternative criterion for the existence of a diagonal

representation of the density matrix operator p has been
suggested. "It states that if p has only diagonal matrix
elements in the bilinear coherent-state representation

(nIP IP&= (nIP I
a&3"'(a—P) (3o)

&gf,.&=(f,g.&, (26)

where q belongs to the corresponding test function
space C. The right-hand side of Eq. (26) is meaningful
only when the product (gp)&4. g is then called a
multiplier for the space C.

The following functions are multipliers for the
following spaces:

(1) for D, all infinitely differentiable functions with
arbitrary support;

(2) for S, all infinitely differentiable functions of
polynomial growth;

(3) for Z, all entire analytic functions f(s) which
satisfy the inequality

I&()I& "~(I+I I)',
for some constants u, b, and c.

III. EXISTENCE AND UNIQUENESS OF
THE DIAGONAL REPRESENTATION

The diagonal coherent-state matrix elements of
Eq. (15) lead to the following convolution integral

When the generalized function f+C', the product of

f with the generalized function g is defined by the
relation

then P can be represented in the diagonal form (15) with
the weight functional P(n) given by

1
P(n) =—(aIPIn&. (31)

7r2

The last equation makes it clear, however, that this
criterion is not valid. The weight functionals P(n) and
(1/7r)(nIPIa), for normal and antinormal ordering, are
not equivalent; in general they have entirely diGerent
mathematical properties. ' "They are related by the
integral equation (28), with A =p. The difhculty with
this criterion is that although formally Eq. (15) follows
from Eq. (3), when Eq. (30) is satisiied, the latter condi-
tion is never true. An arbitrary operator cannot be
diag onalized in any overcomplete representation. '
Moreover, in the case of the coherent states the matrix
element (n I p I p) is, within an exponential factor, an
entire analytic function of n* and P, ' and hence can not
be equal to zero for n&P, as implied by Eq. (30), unless
it is identically zero.

We next consider the question of the generality and
uniqueness of the diagonal representation, i.e., the class

"P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964)."Reference 8, p. 178."Y.Kano, J. Math. Phys. 6, 1913 (].9{j5)."J.R. Klauder (private communication).
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of operators A for which such a representation is
possible and is unique. "We shall prove the following
theorem": Every bounded operator md every un-

bounded operator which is a polynomial in the creation
and annihilation operators has a diagonal representation
with a weight functional P(42) which lies in the general-
ized function space Z'(R2)."

Proof: We first establish bounds on the matrix
elements A = (n

~

A
~
zn) for the two classes of operators

under consideration. If A is bounded, we have by the
Schwarz inequality

f(nfA" /n)/2&(n[n)(nfAtA/n)=i/A/n)J/ &2C, (32)

where C is a constant.
If A. is a polynomial in the creation and annihilation

operators, it can always be expressed in the normally
ordered form

2%,2M

sarily imply that such a sum does not converge in the
space Z'. For example, the translated 8 function defined

by

6(s+c)= g —8&"i(s), s= (u+is)
n=O g!

(37)

(P c„Sl"&(z),e(z))= (g c„Si-l(u+2'&,e(u+ is))
n=o n-o

= (g c„8&"l(u),+(ulnae —zs)) = (Q c„bi"l(u),@(u))
n=o

lies in Z' for every complex constant c. In general, the
sum (36) converges in Z' if the coeflicients c„satisfy a
growth condition that can be deduced by noting that
for every %(z) which belongs to the test function space
Z, the dual of Z', we have

and hence

A= g c 2(iV)z/z"
j,k-o

(33) = (b(u) 2 (—~)"~.+'"'(u)&= 2 (-&)"~-+"(o),
n=o n=o

(38)

2/v, 231 f n lzn l ) 1/2

(niA(nz)= P c,s(
((n —j)!(zn —k)!

& C'n~nz~, for finite constants C',1V,/V. (34)

In both cases, A bounded or a polynomial in a and at,
it is easily seen that the double power series in Eq. (28)

(/2e) n~m

A (n,n*) =A'(x, y) = e l l' g
n, m-o (n!zn!)'/'

is absolutely convergent over the entire finite n plane.
A'(z, y), considered then as a generalized function, is a
regular distribution; i.e., A'(x, y)( D'(R2). Considering
the growth properties of the series (35), we can also

prove the stronger result that A '(x,y) ( S'(R2) and hence

also ( Z'(R2). Although S' is a proper subspace of both
Z' and D', 5'QD' and S'( Z', the spaces D' and Z'

intersect, but neither is contained in the other (see
Sec. II). Hence a proof" that a particular generalized

function of the form

/
dl"

j(u) = g ~-6'"'(u) ~'"'(u) =
I

—
I b(u).=o

" '
&du)

where an in6nite number of the expansion coef6cients c„
are nonzero is not a distribution in D', does not neces-

m~r
IA(-, *)t&C"-"'Z

p (nl)1/2 ~ p (znl)l/2

we must show that the series

&0() ""',
I-o (n!) '/2

(40)

where Q(r) is a polynomial in r. For this purpose we
decompose the series P„pgr"//(n!) '" into sums of even
and odd terms:

r2n 00 y2 n+I

--+Z . (41)
--p (n')"' --o L(2n) O'" -=o L(2n+I)'j'"

Using Stirling's formula for, et

where the second equality follows from the shifting
property of ultradistributions. " Since

~

el"l(p)
~
&o/2,

where c and a are constants Lsee Eq. (21)1, c„must be
such that the series P c z"=g(s) be an entire function
of z. This is then the sufhcient condition for the t,-„jn
order that the sum Eq. (36) lie in Z'.

The generalized function A(n, 42*)( S'(R2) when its
representation (35) grows no faster than a polynomial
as ~n( ~ ~. Since

20 While this work was in progress, a note by Bonifacio eI, al. has
appeared (Ref. lj.) which states that the diagonal representation
is unique. The generalized function space within which their result
hoMs is not specified.

2' The statement of this theorem is due to J. R. Klauder.
"Although there are many important states for which the

weight function is a tempered distribution; e.g., the coherent,
chaotic, and Fock states, it also has been shown that the space S'
is not large enough to indude the weight functional associated
with an arbitrary state. For speci6c examples of states for which
P(a}(t.'S', see Refs. 6 and 9.

"K.E. Cahill, Phys. Rev. 138, B1566 (1965).

we have

. nne n(21m)1/2—

r2"

(2m) '/4(-,'r2)"

2
2tL (2m) 1/4(12,2) ~

L(2n)lg'/so~" (2n)"e "(4 )zr1n4/nne —n( ~2)n1 12

(42)

(43)
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and hence

r2n 2rt(lr2) n g (1r2) n

&Z =r—Z
n 0 L(2rt) )1 t2 n=i rt I r)r n 0

= rse"'t2. (44)

&r2er2/2

O (22!)1/2
(45)

Multiplying both sides of inequality (45) by the
differential operator (rB/Br), we obtain

rn m rtNrn

I

—
I

Z- =2 &Q, ()"", (46)( etre o (I!)1t2 o (rt!)1(2

where Q2N+, (r) is a (2K+2)th order polynomial in r.
Therefore, from Eqs. (39) and (46), we have

I A(~,~*)
I
&C'e "Q»+2(r)e""2P2~+2(r)e' "

= CS2N+2sr+2(r), (47)

where C is a constant and Pzss~z(r) and S2N+2))t+4(r) are
polynomials of order (2M+2) and (21V+2M+4) in r,
respectively. A(()t,et*)=A'(x,y) is thus a, function of
polynomial growth and hence ( S'(R2) and Z'(R2).

There exists a solution of the integral equation (28)
in the generalized function space Z'. For if

A'(x, y) =P(x,y) *e-(*'+0')&Z'(R2), (48)

then, by taking the Fourier transform of both sides,
we obtain

A(N, ()) =srP(N, O)e (n+e")4( D'(R2). (49)

The function e( '+"') t4 is a multiplier (see Sec. II D) in
the test function space D(R2) and hence

1
P(N, ()) = A(g, r))e'"'+—"""

(1I)2n(11))2m

=—A(gv) p
n, m=o ~ fm t

(50)

Taking the inverse transform, we see that the general-
ized function P(x,y) lies in the space Z (R2) in accord-
ance with the statement above.

( I)ng (2n) (x) m ( I)mb (2m) (It)
P(x,y) = A'(x, y) ng-

n=o 4 eI m=0

( I)n( ])m g(2n) g(2m)

m. ~.~=o 4&"+~~n tm! ax{ "~ ay& ~)

XA (x,y) ( Z'(R2) . (51)

Since e'"'+'"~4 is not a multiplier in the test function
spaces 5 and Z, it is, in general, impossible to invert the

Using the same order of magnitude arguments for the
odd series, one obtains

N) rn

integral equation (28) and obtain a solution P(x,y)
which lies in the generalized function spaces S' and D'.

We prove now that the solution P(x,y) ( Z' is unique.
From Eq. (48) it is clear that this is equivalent to the
uniqueness of the solution P(x,y) = 0 of the homogeneous
integral equation

P(x,y) *e-(*'+0')=0. (52)

IV. WEIGHT FUNCTIONALS FOR THERMAL
AND COHERENT RADIATION FIELDS

The results of the previous section, besides delineating
the constraints under which the diagonal representation
exists and is unique, are of importance from the practical
point of view in that they provide for an approach to
the computation of P{x,y). This is facilitated when the
power series (35) can be put in closed form and the
Fourier transforms of A'(x, y) and P(24,2)) can be easily
found. We shall demonstrate this method by considering
the examples of the unimodal radiation field in thermal
equilibrium at a temperature T and the unimodal
coherent radiation 6eld. The density operator of the
thermal 6eld is given by"

exp( —Pa.'(t)
t"= = exp( —Pa'a)(I —e '),

Tr exp( —P(2ta, )
g = ha)/ET, (54)

and the average number of photons equals

(ts) =Tr {to(tra) = e—e/(I —e—e) . (55)

The diagonal matrix representation of the density
operator in the terms of the photon number states

e
—P (&+&)

{rtIpIr)2)=e—e"(1—e
—e)b. ,

= (56)
(rt)

"L. Schwartz, Ttteorie des Distribtttiorts (Hermann and Cie,
Paris, France, 1951),Vol. II, p. 138.

~' A. Messiah, QNuetum Mechanics (John Wiley 4 Sons, Inc.,
New York, 1961),Vol. I, p. 337.

Since e &"'+")/' is a multiplier in the test function
space D, the product P{N,s))e ("'+"')"where P(zt, s)) ( D'
is de6ned and also lies in O'. It is therefore meaningful
to define the convolution Eq. (52) in terms of the
product of the individual Fourier transforms

P(x,y) *e (*'+&')=srF 'LP(24, 2))e ("'+"')")=0. (53)

The last equation has the unique solution P(N, 2))=0
since the Gaussian does not vanish anywhere in the
finite (24,2)) plane, and hence P(x,y) ( Z' is also unique.

This result clari6es the conjecture that the only
solution of Eq. (52) is P(x,y)=0 whether P(x,y) is
tempered or not."We have proven that the solution of
Eq. (52) is unique in Z' as well as S'. It is not meaning-
ful, however, when P(x,y) t D'; in the latter case
P(m, o) ( Z' and since e ("+"')t4 is rtot a multiplier in the
test function space Z the convolution integral is, in
general, not defined.
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The series expansion, Eq. (35), can again be put in the
closed form

(&ap) a (&aa) m

g~(x y)
—e

—(lal +lel ) P Q = e la el (62)
~-0 e! ~=0 m t

with its Fourier transform

J(u, v) =7re &"'+"&"e '& '+"& p= (s+it). (63)

Equation (50) leads now to

(b) P(u v) e—~(as+et) (64)

and the diagonal representation of the coherent field
has the weight function

FIG. 2. (a) Relationship of the generalized function spaces
Z, ', Z', D,', and D'. (h) Relationship of the test function spaces
Z, and Z.

P(x,y) = b(x—s)b(y —t) = b &'l (o—p),
in agreement with the known result. '

(65)

e e s.(n) t (u'+v')(n))
Z(u, v) = exp~—

(n) e eE -4e-e
u'+v' )

exp
4(1 ee)f—

The Fourier transform of the weight function I'(x,y) for
the thermal field follows then from Eq. (50):

( (u'+ v')
t 1

P(u, v)=exp
(
—

~

—1
(

4 k1 —e~

( (u'+ v') (n))
exp (59)

with &(x,y) defined by its inverse transform

(x'+y'))
E(x,y) = exp

s.(n) (n)
(60)

in agreement with the result obtained by Glauber using
an argument based upon a quantum-mechanical version
of the central limit theorem. ""

For a coherent radiation field, P= ~P)(P~, and its
matrix representation in the photon number states is

—
l el &p a(pa) na

(nfp fm)= (61)
(n, !nt!) its

'6 Reference 4s p. 2780.' J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 I'1949).

reduces the power series, Eq. (35), to the closed form

e rse p~ (rse——e) a-

x'(x,y) =a'(r) =
(n) -o n!

e e(—
e e-

exp/—
E, (n) )'

with Fourier transform

X„(u,v)=(P( xy),
e'"~*'" )s (66)

is uhvuys valid in the case of density operators for all N, v

in spite of the fact that the function f(x,y)=e'"~"&
which belongs to Z, does not lie in Z (see Sec. II). Be-
cause it is the space on which the functionals in Z, ' are

V. DIAGONAL REPRESENTATION OF THE
DENSITY OPERATOR AND THE Sp) Sp

AND Dp' SPACES

We have seen that every bounded operator, and every
unbounded operator which is a polynomial in a and at
has a diagonal representation where the weight function
E(x,y) and its Fourier transform P(u, v) are, in general,
functionals in the spaces Z' and D', respectively. For ex-
ample, the weight function associated with the diagonal
representation of the unit operator is I'(x,y) =1/tr with
Fourier transform P(u, v) = (1/s-)b(u)b(v). For applica-
tions in quantum optics, however, we are primarily con-
cerned with the diagonal representation of one particular
operator, the density operator, which describes the
statistical state of the radiation field. Equation (29)
shows that the weight function P(x,y) associated with
this operator has an important property which differ-
entiates it from the weight function associated with
arbitrary bounded and polynomial operators. The
Fourier transform E(u,v) is not an arbitrary distribution
in D' such as b(u) b(v), but equals the normally ordered
characteristic function, X~(y) = (exp(—ytft) exp( —yea)).
This function exists for all y=si(u+iv), is bounded
by eI &~'", and uniquely specifies the state of the system.
The weight functionals associated density operators
thus belong to that subspace of Z' which is mapped by
the Fourier transformation onto the subspace of D'
comprising continuous functions of p bounded by e~ &~'".

We denote these subspaces by Z,' and D,', respectively.
LSee Fig. 2(a).j Since Z, ' is contained in Z', the dual
test function space associated with Z, ', denoted by Zp,
is correspondingly larger than Z LFig. 2(b)j. Hence,
the mapping~
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de6ned, Z, has been called the "natural" test function
space for the diagonal representation of the density
operator. "

The importance of these considerations stems from
the fact that the operators exp(vent) exp(v~8) are simply
related to the unitary Weyl operators, exp(vent —v*a),"
linear combinations of which lead to all bounded
operators. Since the mean value mapping is a linear one,
this implies that we can compute the mean value of
every bounded operator in the diagonal representation
from the mean value of the Acyl operator. The latter
quantity is the characteristic function

The identity

exp(vat) exp( v*—a) = ei &i'" exp(vat v*a—) (67)

leads to the simple relation between the Fourier trans-
form of E(x,y) and the mean value of the Weyl
operator.

x~(v) = e ""x(v). (6g)

There is also an alternate approach to the problem of
the diagonal representation of the density operator p in
which the weight functional P(x,y) QZ', is defined as
the limit of an in6nite sequence of well-behaved weight
functions (P (x,y) }."It can be shown that the resulting
infinite sequence of diagonal density operators (p }
converges to p in the sense of the trace-class norm. This
implies that the difference between the mean value of
an arbitrary bolrIded operator 0 calculated with p and p„
respectively can be made arbitrarily small, i.e., for any
e)0 there exists an integral E such that

I
Tr(po) —Tr(P.0) I (elloll f» ~», (69)

where

(70)

and P (n) is an ininitely differentiable function of rapid
decrease. Although this result does not guarantee that
the mean value of Nebolmded operators such as at8 can
be generally approximated in the manner of Eq. (69) it
does apply to all unitary operators, projection operators,
and those operators whose mean value de6ne the photo-
electric counting distribution. For example, the proba-
bility that m photons are present in a single mode whose
statistical properties are specified by the density
operator p can be approximated to an arbitrary accuracy

'8 J. R. Klauder and E. C. G. Sudarshan, Fundamentals of
Quantum Optics (W. A. Benjamin, Inc., Ne~ cwork, to be
published).

by the integral

0= f(d', 0) = Q c (at) "a™,
Off'

(72)

where c are arbitrary c-number expansion coefficients,
then using the diagonal representation for p we have

(0)=Tr(pf(a', a))= E(n) Q c„(n*)"n"d'n

P(n)f(n, n*)d'n.

The diagonal representation thus accomplishes a formal,
symbolic equivalence between the classical and quantum
descriptiorIs of the optical field. ' This formal similarity
however, does not imply an equivalence between the
predictions of classical and quantum theory for arbitrary
6elds. There are states of the quantized. 6eld which have
no classical analog no matter how great the photon
excitation; e.g. , the Pock states In). Such states lead to
predictions of phenomena, such as anticorrelation
e6ects29 in photoelectric coincidence-counting experi-
ments, which are not accounted for by the classical
theory.
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P(m)= Tr(plm)(nial)= P„() I
IR™dmn. (7I)

mf

One 6nal remark is in order. The preceding considera-
tions demonstrate the fact that the overcompleteness of
the coherent states makes it possible to calculate the
mean value of every bounded operator to an arbitrary
degree of accuracy using the diagonal representation of
the density operator. The usefulness of this representa-
tion in quantum optics stems from the fact that it
facilitates the calculation of mean values of normally
ordered operators in a form which bears a close formal
resemblance to the classical ensemble averages which
arise in the classical theory of optical coherence where
the radiation 6eld is treated as a classical stochastic
variable. If an arbitrary operator 0 has the normally-
ordered power series expansion


