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Gravitational Suyerenergy as a Generator of Canonical Transformation
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The canonical transformation generated in linearized gravitation theory by the Robinson-Bel super-
energy tensor is determined. The light this result sheds on the quantization program for the general theory
of relativity is discussed.

I. INTRODUCTION

N recent discussions' some doubt was cast on the
„„possibility of obtaining a local quantization of
general relativity. Briefly, the argument ran as follows.
An examination of the procedure of field quantization
for special relativistic field theories indicates that in
the transition from the canonical group of the classical
theory to the unitary group of the quantum theory it
is essential that a particular subgroup of the canonical
group, the subgroup corresponding to the space-time
symmetries (i.e., the Poincare group) be singled out
for preferred treatment. The preferred treatment ac-
corded the space-time group is that its structure be
taken over intact into the quantum theory. The
epistomological significance of this requirement and
its evident relationship to the correspondence principle
will be discussed elsewhere. For our purpose it is
relevant to note that the space-time group has no
preferred group-theoretic characterization within the
context of the canonical group. It is the physics of the
space-time continuum which singles it out. In the
general theory of relativity the space-time group is
the Einstein group (the group of four-dimensional
curvilinear coordinate transformations). However, since
this group effectively acts as a gauge group, the ob-
servables of the theory constrained to be gauge in-
variant, the Einstein group should not be preserved
in the. quantization of general relativity, but should
in fact be eliminated. Having thereby eliminated the
preferred space-time group, the possibility of a unique
local quantization in conformity with the correspond-
ence principle becomes doubtful. One is immediately
led to consider nonlocal quantization schemes where a
preferred space-time group is restored via boundary
conditions on the physically permissible solutions (e.g.,
asymptotic flatness at infinity).

In this paper we wish to suggest a novel way of
recovering much of the content of the space-time
translation group without the difhculties attendant
when merely resorting to gauge transformation. The
essential observation is that, in linear fieM theories it
is always possible to extend any first-order infinitesimal
invariant transformation to higher differential orders
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such that the higher-order differentials are invariant
transformations in their own right. In this fashion,
starting from the space-time translations we can obtain
proper canonical transformations. In Sec. II we shall
illustrate our procedure for the simple case of the
Klein-Gordon theory. The specific expressions obtained
for the generators of canonical transformations are
specializations of a general result found by Steude12'
in a somewhat different connection. In Sec. III we
shall determine the canonical transformation generated
in linearized gravitation theory by the Robinson-Bel
superenergy tensor. We shall find that the heuristic
characterization of the superenergy as a second deriva-
tive of energy momentum can be made more specific
by observing that it generates precisely the third
derivative of the field variable. The implication for
the full nonlinear gravitation theory of these results
obtained in linear field theories will be discussed in
Sec. IV.

II. GENERATION OF HIGHER-ORDER
DIFFERENTIALS

For the free particle we can distinguish two diferent
kinds of constants of the motion, both of which are
necessary for the full determination of the classical
trajectory. The first kind, which is typified by the
momentum, but also includes the energy and angular
momentum, is distinguished by the property that the
time t does not enter explicitly into its definition. We
shall call such constants of the motion "p type. " The
second kind of constants of the motion are the so-called
"time-dependent constants, " whose prototype is the
initial position xo= x—~t. Such constants of the motion
we shall call "x type. "

The extension of this dichotomy of constants of the
motion to field theory is evident. The p-type constants
are those whose density can be expressed solely in
terms of the field variables, without the introduction
of other geometric objects. For a homogeneous field,
the energy-momentum is a typical example. The x-type
constants of the motion in field theory have as their
prototype the value of the field on some initial space-
like hypersurface. For their definition they therefore
require in an essential way an auxiliary geometric
object, in this case in order to specify the initial space-

' H. Steudel, Nuovo Cimento 39, 395 (1965).' H. Steudel, Z. Naturforsch. 21a, 1826 (1965).
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like hypersurface. (It might be noted that in this case
the angular momentum is now regarded as x type in
view of the fact that the auxiliary object x~ is required
for its definition. )

I.et us now inquire into the possibility of p-type
constants of the motion other than the energy-rnomen-
tum. For simplicity we shall confine our discussion to
the Klein-Gordon theory, the extension to homogene-
ous linear theories of higher spin being straightforward.
The method we shall employ for the construction of
constants of the motion and for the determination of
the indnitesimal canonical transformations which they
generate is that of the Lagrangian formalism. ' The
basic relation between the constant of the motion and
the infinitesimal transformation which it generates is
determined by the identity

(2.4) that for n=g, C& cannot generate anything. A
somewhat more detailed investigation reveals that re-
placing n by any even-order derivative of p does not
yield a C& which can satisfy Eq. (2.1). (The constants
associated with the even-order derivatives of @ are x-
type constants, closely associated with the multipole
moments of the field C.) We must therefore confine
our attention to the odd-order derivatives of p. For
example, if in Eq. (2.4) we take

(2.5)

and choose fl' judiciously, we may write the generating
density thus:

C'-=l(4 A' 4-'4+—&-'4( +~')4) (2 6)

Cp.p+X,F =0, — (2.1)
whereupon

C&,p+p, F=0, — (2 7)
where C& is the conserved current density, a corrrma
denotes differentiation, F are the Euler-Lagrange ex-
pressions whose vanishing constitute the field equa-
tions, and X,=bg. is the sought infinitesimal change
in the field variable p„generated by the constant of
the motion

where

F=——( +~')y=o (2 8)

is the Euler-Lagrange equation in our present case.
Thus comparison with Eqs. (2.1) and (2.3) yields

C= C&dSp. (2.2) C~.dS, =y,. (2.9)

Cp zy, n o„ay+—Dlnul +fl (2.4)

where e is any solution of the Klein-Gordon equation,
D'»l is an arbitrary antisymmetric tensor, and fp

vanishes modulo the Euler-Lagrange equations. Al-

though fl' does not contribute to the value of the
constant its inclusion will enable us to satisfy the
identity (2.1). (Dl»' generates nothing locally, but
it becomes relevent when we consider asymptotic
questions. Ke shall therefore neglect such terms in
the remainder of this paper. ) The set of constants ob-
tained from the generating density of Eq. (2.4) is
complete in the sense that if we select for o, the singular
solutions of the IGein-Gordon equation, D(x—x'), the
constants of Eq. (2.2) are precisely the values of the
field P at each space-time point.

In order to obtain p-type constants of the motion
we must select n such that it is a solution of the Klein-
Gordon equation which involves no auxiliary geometric
objects. If, in addition, we require that the generating
density C& be a local field, all that is available is the
field @ itself and its derivatives. It is evident from Eq.

' P, G, Bergmsnn and R. Schiller, Phys. Rev. 89, 4 (1953),

We may sununarize the content of Eq. (2.1) employing
Poisson brackets

L4„Cj=~, . (2.3)

For the Klein-Gordon theory a complete set of
constants of the motion may be obtained from a
generating density of the form

We thereby recognize C& as the usual energy-momen-
tum tensor. (The angular momentum may be similarly
obtained by selecting cr = -', (x P e—

xsam ); however, it
manifestly yields an x-type constant in view of the
auxiliary object x employed in its definition. ) There
was nothing unique in our choice of Eq. (2.5). If,
instead, we employ for o. any odd-order derivative of

p, the computations go through identically as before.
We obtain thereby new p-type constants of the
motion closely akin to energy-momentum. Rather than
generating the first derivative of the field g, these new

constants of the motion generate the higher odd-order
derivatives. The interesting and important feature of
these new constants is that although they are in a
certain sense trivially related to the energy-momentum,
they generate proper canonical transformations, that
is, canonical transformations which do not lie in the
space-time subgroup. The simplest example of such
constants is obtained by considering the third deriva-
tive of p:

(2.10)

Again choosing f& adroitly, if we write for the generating
density

C&.ev st 4, e,4 4,. 4——e-
'bb(8 F,e +be F—

, -+O' F, e)
+s& '(4.eF.&+4,vF, e)+s~e'(4. vF.«+4,.F,v)

+s4'(4. F.e+4, eF, )
F(f:~.e,+f e~—.-,+~;~.-e)], (2.11)
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we find the identity

C' pv..+4.-pvF=o. (2.12)

As before, comparing Eq. (2.12) with Eqs. (2.1) and
(2.3) we find. .

(2.13)

III. ROBINSON-BEL SUPEREÃERGY

The procedure for the construction of constants of
the motion of the Klein-Gordon theory which we
employed in the preceding section may easily be ex-
tended to linear 6eld theories of higher spin. ' It is
evident that we again obtain generators of proper
canonical transformations by considering higher deriva-
tives of the field variables. However, rather than pro-
ceeding in the inductive fashion which we employed
in the discussion of the Klein-Gordon theory, we shall
be much more specific in this section. In the general
theory of relativity a fourth-order completely sym-
metric tensor occurs whose covariant divergence van-
ishes modulo the Einstein field equations. This tensor,
named the Robinson-Bel tensor, is formed from the
Riemann tensor much as the Maxwell stress tensor is
formed from the Maxwell field tensor. ' Although it has
two indices too many to understand it as an energy-
momentum tensor, the Robinson-Bel tensor is clearly
associated in some sense with the energy-momentum
distribution, for it can effectively be obtained by
averaging the Einstein energy-momentum pseudo-
tensor over an infinitesimal region keeping the lowest-
order terms which yield a covariant contribution. ~ The
question naturally arises whether the Robinson-Bel
tensor, dubbed the "superenergy, " generates canonical
transformations in its own right, and if so, whether they
are related to the space-time translations generated by
the energy-momentum.

In the preceding section we found a fourth-order
tensor occurring in the Klein-Gordon theory which
generates proper canonical transformations trivially
related to the space-time translations. It immediately
suggests that the Robinson-Bel tensor is the analog in
gravitation theory of the tensor C& pv of Eq. (2.11),
in the sense that both generate the third derivative of
their corresponding Geld tensors. The remainder of this
section shall be devoted to con6rming this conjecture
for the linearized, spin-two field theory which may be
obtained from the Einstein theory by discarding all
nonlinear terms in the 6eld equations. . In order to
facilitate a comparison with. the. full nonlinear. theory
we shall modify our notation slightly. Heretofore, we
used a comma to denote ordinary differentiation; we
shall now employ the comma to denote covariant

' A. Komar, Phys. Rev. 154, B1450 (1964).
M. Bel, Theories Retatieistes de la Gravitatiol (Centre National

de la Researche Scientihque, Paris, 1962), p. 119.' F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

where y„ is an arbitrary vector 6eld, are understood to
describe the same gravitational 6eld. The curvature
tensor, defined by

R.p, s=', (It.e,
—pv-+Itp, .t apt .,—It., ps)—, (3.2)

is the local quantity of lowest differential order which
is invariant under the gauge group, Eq. (3.1). If in
addition we define the Christoffel symbols

(3.3)

the Ricci tensor

the Ricci scalar
E p=—gI""I' „p„,

R=—g pEp,

(3.4)

(3.5)

and the Einstein tensor

GuP —RnP 2 gaP+ 7 (3.6)

a Lagrangian for the linearized theory may be written

(3 7)

from which we can deduce the held equations

6 p
——0. (3.g)

As a consequence of the gauge group (3.1), one can
con6rm that the Einstein tensor satisfies the identity

GAp, v

If we now define the Weyl tensor

C-pvt =&-pvs+ s (—~-t~pv+n pv&-t

vtav+pt lps+av)+ s (vtavrtps 7at tpv)+

=+apvs++apvt,

we may write the Robinson-Bel tensor thus:

(3 9)

(3.10)

T pvs Caav Cp t +Cpov C

svt prtvtC„„„C—&"" (3.11).
Exploiting the symmetries of the Riemann tensor, from
Eq. (3.10) it is easy to obtain

C~ph g.~)
=S~p)~g, ~) (3.12)

(where the bracket denotes cycling the three sub-

scripts), and

C-pv" .=~-pv".+. &v-p &, vp-, —(3.1,3)

Taking the divergence of Eq. (3.11), and employing

differentiation with respect to the Qat Minkowski
metric vt„„(I.n the usual rectangular coordinate frame
there will of course be no change. )

BrieQy, the linearized gravitation theory may be
summarized as follows: The basic field variable is a
second-order symmetric tensor h„„which is subject to
gauge transformations such that tensors which can be
obtained from one another via the relation

(3.1)
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Eqs. (3.12) and (3.13) we find

ape",„=S«imp„fC, p
" +Spcivp plC. a'

+Cacvp (Sp p+R p R p' )
+Cp.„(S:»,„+R",. R.'—). (3.14)

Tabc'= fcbc P~(TaPp—v 2Ca"'P—R7p

+2C.p"pp„pR„. 2q.pC, p"pR—„„), (3.16)

we find, via Eq. (3.14), and the fact that the vectors
$ " are covariantly constant

Tabc, p+2kabc (CapPv, y+VaPCy», p

+Ip „C„pvp, p)Gp"= 0. (3.17)—
We can therefore conclude as in Eq. (2.3)

h„„, T,b,pdSp 2p. b, p&C „p——„, (3.18)

[Note that in obtaining Eq. (3.18) we discarded the
last two terms in the parenthesis of Eq. (3.17) in view
of the fact that it follows from Eq. (3.13) that these
terms vanish modulo the field equations. $

Employing Eqs. (3.10), (3.8), and (3.2) we can re-
write Eq. (3.18)

~h»= ~abc "(hav, ppv+hpl, avv», apv "ap, l vv) (3 19)

Although Eq. (3.19) is not quite in the form which we

conjectured, we still have at our disposal the gauge
transformations of Eq. (3.1). Employing the identity
equation (3.9), it is readily seen that the generator of

Although the right-hand side of Eq. (3.14) evidently
vanishes modulo the field equations (3.8), we cannot
yet determine what the superenergy T p~& generates,
for this equation is not of the form of Eq. (2.1). One
discrepancy is that the comma on the left-hand side of
the present equation denotes ordinary differentiation
only in rectangular coordinates. If we wish to employ
curvilinear coordinates we recall that the rectangular
coordinates of Minkowski space are characterized up
to a Lorentz transformation by an orthonormal quad-
ruple of covariantly constant Killing vectors
(Latin indices are used to denote the vectors of the
quadruple. ) We then project these basis vectors into
the three indices of Eq. (3.14), thereby reducing covari-
ant differentiation to ordinary differentiation. The sec-
ond discrepancy with Eq. (2.1) is the usual situation
whereby the right-hand side of Eq. (3.14) is not linear
in the field equation (3.8). As in the Klein-Gordon
example of the previous section we remedy this by an
appropriate choice of fp. Thus if we take

k.b:P'= 5(:hb—P$'), (3.15)

where the parentheses denote complete symmetry, and
define

the gauge transformation may be written

Cf —2~ Qvu (3.20)

We see that C& vanishes modulo the field equations.
Such a term may therefore be incorporated into the
definition of T,b, v of Eq. (3.16) without altering its
value. It is simply one more term in the expression for
fp. If we choose for y„

V.b.,= k.b:"(h.-p ,
'—h--p -). (3.21)

it is easy to check that three of the terms on the right-
hand side of Eq. (3.19) cancel and we are left with

bh»= —$,b, p'h„„, p„. (3.22)

Had we worked in a rectangular coordinate system
throughout, we could have dispensed with the projec-
tion tensor $,b, »I and obtain at this point

h„„, T p„&dSp = —h„„, p~. (3.23)

Apart from the minus sign, the analogy of Eq. (3.23)
with Eq. (2.13) is complete. We have demonstrated
that in linearized gravitation theory the Robinson-Bel
superenergy generates the proper canonical transforma-
tion which is obtained by taking the second derivative
of a translation. It is in this precise sense that we may
regard the superenergy as the second derivative of the
energy-momentum.

IV. CONCLUSION

Within the context of the linear theories discussed
in the preceding sections the only motivation for
singling out the generators of the third derivative of
the field variables was that it provided the simplest
example of p-type constants of the motion other than
the energy momentum. There exist infinitely many
such generating densities which we can obtain by con-
sidering arbitrarily high odd-order derivatives of the
field variables.

Our principal interest concerns the quantization of
general relativity, which is of course a nonlinear theory.
It is by no means evident that the methods which we
have developed for linear theories have any extension
to nonlinear theories. In general, we would in fact
expect the contrary. However, for the particular case
of the superenergy we have cause for encouragement.
For the recognition of the existence of the superenergy
first occurred within general relativity. ' Namely, there
exists within the Einstein theory a tensor T p» [ob-
tained by the obvious modification of the formulas
(3.11) and (3.10) replacing g p by g pg which has the
following properties: It is completely symmetric on all
indices, the trace vanishes on any pair of indices,
$ )PPPT p»&0 for any timelike vector $, and, most
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where the semicolon denotes covariant differentiation.
When the Riemannian manifold permits Killing vector
fields P, we return to a situation strikingly similar to
that of the linearized theory. For if we define

(4.2)

then if follows from Eq. (4.1) that

—0iP ) (4 3)

where a comma again denotes ordinary differentiation.
That is, we have again obtained a true constant of the

significantly, when the. Einstein 6eld equations are
satis6ed, we have

(4.1)

motion which generates a proper canonical mapping
closely related to that of the linearized theory.

In general there do not exist Killing fields in the
solutions of the Einstein Geld equations. However, the
fact that Eq. (4.1) remains valid gives rise to the
expectation that the superenergy generates proper
canonical transformation in the full nonlinear theory,
closely related to the third derivative of the metric
(as computed in some preferred coordinate system).
Investigation of this conjecture is currently being
pursued. The significance of an afhrmative conclusion
to this investigation for the quantization program has
been indicated in the introduction to this paper. For
the relationship between the space-time translations
and the proper canonical transformations generated by
the superenergy is conspicuous.
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A new method is reported for testing the electrical neutrality of matter containing an equal number of
protons and electrons. A small iron spheroid was magnetically suspended in a uniform, horizontal electric
field in such a manner that it was possible to measure electric deflecting forces small enough to detect 0.03
proton charge on the spheroid. An upper limit to the charge difference between the proton and electron,
defined by 1 =1+(electron charge}/(proton charge), was found to be

~ f ( &0.8X10 ".It was necessary to
assume: (neutron charge) = (electron charge)+ (proton charge). Values of f in the range 0 8X10 "(

~ f ~(2.8X10 "were excluded, and the probability that
~ f ~

)0.8 X10 "isnot greater than 0.2. A by-product oi
the measurements was the 6nding that the iron spheroids contained less than 1 quark in 2.5 &10' nucleons.
The measurements also permitted an estimate that the absolute electric charge on 2-eV photons is less than
10 's proton charge.

I. INTRODUCTION

HE equality of the magnitudes of the electric
charges of the proton and electron is an empirical

discovery which remains as one of the fundamental
mysteries of atomic physics. The very great experi-
mental precision of this equality rests on measurements
made during the last forty years, ' 4 although most of
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search and the Ofhce of Scienti6c Research.
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$ Present address: University of Connecticut, Storrs, Connec-
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these n.easurements have been made in the last decade,
the best of these being those by Hillas and Cranshaw
(1959),' whose limiting accuracy sets an upper bound
on the equality of 2 parts in 10".

Stimuli, other than curiosity, to experiments to look
for a charge inequality between the proton and the
electron have come, at various times, from suggestions
that, if present, it might explain: (1) the magnetic
field of the earth, ' (2) the expansion of the universe, '
(3) baryon conservation. ' Items (1) and (2) are pre-
cluded by several experiments. ' ' Any charge inequality,
however small, would be sufhcient to account for baryon
conservation, if charge conservation is assumed.

In order to avoid deceptions arising from the sys-
tematic errors in a particular experimental method it
is important to have several diferent experimental

~ R. A. Lyttleton and H. Bondi, Proc. Roy. Soc. (London),
A252, 313 (1959).

6 G. Feinberg and M. Goldhaber, Proc. Natl. Acad. Sci. U. S.
45, 1301 (1959).


