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Electric-dipole photodisintegration cross sections of 'H and 'He into deuteron plus nucleon and into
three nucleons are calculated using simple zero-range forms for the initial- and final-state wave functions.
Final-state interactions between nucleon pairs in S states are taken into account. Shape fits to the experi-
mental data are obtained, but the required normalization of the ground-state wave function is found to
differ between two- and three-body breakup.

I. INTRODUCTION

~

'HE photodisintegration reactions
J.

(1a)

sH+y —+ p+tt+n, (1b)

'He+y —+ d+p,
'He+y ~ I+p+ p, (lb')

in the low to medium energy range (0-40 MeV), occur
predominantly via electric-dipole transition. The ground
state of 'H and of 'He is thought' to be an almost pure
S~~2 state. An electric-dipole transition then gives a
P&~2,&12 6nal state. The cross section is then given by

g2

da = (2sr) ' —
( Mr;

~

'E,pr, .

IttC

(2)

where ~&,——(4r, (e.rs)%';) is the transition amplitude
with 0'; and 0y as the initial and final nuclear wave

FrG. 1. Coordinates in the three-nucleon system. Vectors r,s, t
are internucleon coordinates. Vectors r', s', t' locate a nucleon with
respect to the center of mass of the remaining nucleon pair.
Particles f and 2 are the like nucleons (protons in 'He and neutrons
ln I).

' B.F. Gibson, Phys. Rev. 139, B1153 (j.958).
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functions. E~ is the photon energy and e its polarization
vector. The coordinate of the odd particle (the proton
in 'H or the neutron in 'He) is re acr' (——see Fig. 1).pr is
the density of final states.

Since at present there is no general solution to the
three-body Schrodinger equation for phenomenological
two-body potentials (except in the special cases of
Gaussian or separable potentials), most three-body
ground-state wave functions are chosen from analyti-
cally convenient forms. A good test of these wave func-
tions is provided by calculation of the cross sections of
reactions (1), since the transition operator is known. As
has been shown in Refs. 7, 8, and 9 for reactions (1a)
and (1a'), there are several forms of the ground-state
wave functions which yield fair agreement with the
experimental photodisintegration cross sections. How-
ever, these same ground-state wave functions yield cross
sections for reactions (1b) and (1b') which are much
larger than the experimental ones. The disagreement is
even larger when the final-state interactions between
the outgoing nucleons is included.

Ke seek, therefore, a three-nucleon ground-state
wave function that predicts reasonable values for both
two- and three-body breakup. In the case of the photo-
disintegration of the deuteron, a simple e6ective-range
theory fits the experimental data up to 40 MeV fairly
well. ' This approximation works because the main
contribution of the bound state to the electric-dipole
matrix element comes from outside the range of nuclear
forces where the asymptotic form of the wave function
can be used. We attempt here a similar approach to the
three-body photodisintegration.

In the following section we discuss an asymptotic
form for the three-nucleon bound state. The final
continuum states for two- and three-body breakup are
shown in Sec. III. In Sec. IV we calculate the transition

J. S. Levinger, Nuclear Photodisintegration (Oxford University
Press, New York, 1960), p. 39.
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amplitudes and cross sections. Comparison with the
data and conclusions are in Sec. V. An Appendix gives
useful relationships among the particle coordinates,
momenta, and spin functions.

II. THE BOUND STATE

The assumption of a 'S&~& bound-state symmetric
under interchange of any two particles 6xes the form
of the angular and spin functions. ' The radial form is

chosen by considering the action of the electric-dipole
operator. The one-body E1 operator leaves one of the
three nucleons in a p wave about the center of mass and

the other two nucleons in a relative s wave. The operator
and the radial p wave weight the large coordinate values
of the bound wave function for this nucleon. If, say,
particle 3 is far removed from the other two, an appro-
priate form of the bound state is p(r)/. s"/r'. For
simplicity we also take rp(r) as a two-body zero-range
wave function e "/r. Since we assume the wave func-

tion is symmetric in all three nucleons, it will have the
same form in the three asymptotic regions characterized,
respectively, by r' —+ ~, s' —+ ~, t'~ ~. Specifically,
we take

+(4&p)1/2 &
ar

&
/&—r'—

x,(12,3)
r r'

(3)

for r'~ ~, and the same function with the variables

(s,s') or (t,t') for the regions s' ~ ~ and i' —+ ~, respec-

tively. The parameters n and P are then subject to the
condition

o,2+ p2 —(~/$2) z (4)

where e is the total binding energy of 'H or 'He, but the
ratio n/p is considered a free parameter. E is introduced
for normalization and to allow for an eRective range
correction. x,(12,3) is the total spin-~ eigenfunction

antisymmetric in the pair 12. (See Appendix for
definition and notation of spin states. )

III. FINAL STATES

In two-body breakup Lreactions (1a) and (1a')j the
deuteron and nucleon are in a relative p wave. Since
the doublet p-wave phase shift for nucleon-deuteron
elastic scattering is small, we take the relative motion
as an (antisymmetrized) plane wave of momentum @&I.

1
4,=—Lp(s)e''&"x, (23,1)—y(t)e''& 'x,(31,2)).

V2

p(s) is the space part of the deuteron ground state and
will be taken as

( 2p )1/28—~,N

cp(s) =
k4x(1 yr p))— s

where y'= m/A2 (2.22 MeV) and ro is the triplet effective
range. The doublet spin eigenstates X have particles 2,3
and 3,1 coupled to a (symmetric) triplet, respectively.

In three-body breakup t reactions (1b) and (1b')j
there are two orthogonal final states 4'~„&') and %1, "&

with S=-,'. These are eigenstates of the three-nucleon
system belonging to the double continuum of energy
eigenvalues describing the motion of three unbound
nucleons characterized by mornenta Ak and Ay. When
no interactions are present they become the plane-wave
eigenstates e'&~'+&'"&x, (12,3) and e'+'+~"x&(12,3). In
the present case 41,„("and O'A, „(2) must be taken with
the incoming spherical wave asymptotic condition since
they appear in the 6nal state of a reaction.

In the transition amplitudes the electric-dipole
operator selects the 1 component of the space part of
the final states. To include the s-wave final-state
interactions among the nucleon pairs, we take the
6nal states as

e
—i/|&:12r- e

—iI&,23e

%/, &'&=x,(123) e'~"'+f & '(k )

and

—e'» "+L
——,'x, (23,1)f, &

—
&(k,3)—-,'&3x,(23,1)f, &

—
& (k,g) $

r S

e
'—Agyt

+(—-,'x, (31,2)f, & &(k8&)+~v3xg(31,2) fg& &(kgb) j e'»'" (5a)

e—ik23s

0/, „&'&=xg(12 3)e'&»'+» "&+LW3x,(23 1)f.& '(k2g) ——',xg(23, 1)fg& &(k23)j e*»"

e
—j7c31t

+L——',%3x.(31,2)f, & &(k3g) ——,'x, (31,2) fg& &(ka&)] e'» ' (Sb)
t

The s-wave part of the scattering amplitudes are
e" sinb

-=(k cotb —ik) ', (6)

with the phase shift given by the nucleon-nucleon s-wave4 scattering length and effective range k cot&& = a,
—'+ ~2+,k'.

G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958). Isospin formalism will not be used. Antisymmetrization will be carried
out only over the two like particles.

4 In the calculation we have used
g= —23.78 F, ra=2.670 F for n-p singlet, u= 5.411 F, ro ——1.749 F for n-p triplet.
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Iv. CROSS SECTIONS

The transition amplitudes are calculated in the approximation where the ground-state wave function is replaced
by the appropriate asymptotic forms discussed in Sec. II, i.e., in those terms where nucleon 3 is in the P wave
relative to the center of mass of nucleons 1 and 2, the ground-state wave function is replaced by the form Eq. (3).'

Since in the two-body breakup there is no term in the continuum corresponding to r, we have only two terms:

/V(n8y) '"
iV,=—

4m-s/s(1 —mrs) '"
e
—ys—iq s' e

—as—Ps'

dssdss' (—e s'/3) —(X,(23,1)
~
X,(12,3))

s $$

e
—yt—iq. t' e

—at—Pt'

(—s t'/3) ——(&g(31)2) i
X.(12,3)

$$

g~l/2+ (n8y) 1/2 (—se q)

~3(1—v")'" (-+» (~'+8')'

%e have made use of the relations r3= —~s—3s'= ~ t—~t' and noticed that contributions from z. s and e t terms
cancel. The spin matrix element is —',VB.

The three-body breakup amplitudes (including the spin matrix elements) into the two symmetry states are
given by

gV(4nP) &/s esk12r-

d'rd'r' e * "'+f.(kn)-
4x 3 r

e
—ar—Pr'

e *» "'(e.r')
rr'

e+ikpgs e
—a~Ps'

—sL4 f.(k»)+-'f~(k») 3
$ $$

e+ik31t
—sl3f (k»)+-'fs(k») j ds«s/'

e
—at—P t'

e ~ps t'(e. t~)
tt'

E(4n8) '/' 2 4s. 4x —Sxi
+f.(k.) —,,('p.)—:f.(k. )

4s 3 ns+kgs' n —ikn- (P'+ ps')'

4x —Sxi
—, ,(e ts~)

n zkss (8 +Pl )

-lf.(k-)
4x —Sxi

n —sksg (8 +Ps')'

/V(4nP)'/s 1 K3 e—ikg3s e
—as—Ps'

——ff, (kss) —f((kss)) dssdss' e '" "(s.s')
4x 34 s $$

143 e
—iksyt e

—at—Pt'

———
I f,(k») —f,(ksg) j ds/d9' e+s '(s-t')

3 4 tt'

cV(4n8) '/' 1 4m —Sxi—f-(kss) ——,(s ui)—
4~ 4v3 n —sk„(8'+p, ')'

—Smi
(ksi) -(s ps)

n ik» (8'—+Ps')'
(Sb)

with the notation

f+(k) =-:f.(k)+lf (k),
f-(k) =f.(k) —f (k)

The density of final states for two-body breakup is

de 2 m qdQ
p

dE(2')' 3 ks (2s)'
' If the bound state were to be considered as the sum of three

terms of the type shown in Eq. (3) then cross terms of the type
pk„(r,r')(e, r3)p;(s, s') would have to be included in the matrix
element. The spirit of this calculation is, however, to consider only
the r', s', t' asymptotic directions.

where q is related to the energy available E by
q'= s (m/A')E. The density for three-body breakup is

d'kd'p 1 rig s

/ s= = —
~

Lier(2Z —3W)g'/'dWda, da
dE(2s) 2(2s) |ssf

where 8' is the energy of the odd particle and E the
total energy available for breakup.

For two-body breakup, averaging over photon
polarization gives (~ e tt~ s)~o~= —,qs sins', where 8 is
measured between the direction of photon propagation
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and q, and the differential cross section is

dos 2'N' e' ) m~ nPy E~qs sin'8

dQ 3' hej hsj (1—Trs)(n+y)' (q'+ps)4
~ (9)

G~
(mb)
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FIG. 2. The total cross section for 'He(y, d)p. The histogram is
from Ref. 8, the points from Ref. 7. The solid curve is the calcula-
tionwith theparameterscx=y=0. 232 F ', P=0.420F ', X'=1.82.

6 J. M. Knight, J. S. O' Connell, and F. Prats, Phys. Letters 22,
322 (1966); 23, 491 (1966).

The di6erential cross section for three-body breakup
is obtained from

(Ms/&&'= /MJ, &'&['y t&Mz, &'&['

by expressing all momenta in terms of E, W, and f' as
described in the Appendix. The resulting expression
after averaging over photon polarizations and integra-
tion over azimuthal angles is of the form

d'o s (4s.lV) s /e' m

dWdfd(cos8„) 3 Ehc h'

&& LF(E,W,f) sin'8, +G(E,W, f')j
XE,LW(2E—3W)]'I'. (10)

8„ is the angle between the direction of the incident
photon and the momentum Ap of the unlike nucleon. The
functions Ii and 6, associated, respectively, with the

p wave and isotropic parts of the angular distribution
of the unlike nucleon, are lengthy but easy-to-obtain
combinations of the functions appearing in the ex-
pressions (Sa) and (Sb) for the transition amplitudes.

Integrations over f and W are done numerically to
obtain the total cross section.

When only the 6nal-state interaction between the
like pair is considered, only the term containing (e ps)
appears in the amplitude Ms„&'& LEq. (Sa)) and

(2)-P
Then

SN'(h' ')e'
p n

sin'8i cosh+ —sinB
d WdQQQs 9m' km (he 4 his

E„WLW(2E—3W))'&'
X

LE—-'W+ (h'/m) n'7'L2W+ (h'/m) Ps j4

This expression was previously derived in Ref. 6.

l.o—
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Fio. 3. The total cross section for 'He(y, r&)2p. Histogram (o) is
the data of Ref. 9, histogram (b) of Ref. 8. The curve is the calcu-
lation with anal state interaction between all three s-wave nucleon
pairs with the parameters a=0.232 F ', P=0.420 F ', E'=0.77.

V. DISCUSSION

To evaluate os and os there are two parameters n/P
and N' that must be fixed. The value of n/P is chosen
by noticing that the peak of os occurs at E= 4(h'/m)P'.
Using this to fix the values of P=0.420 F ', we find
n =0.232 F ' by Eq. (4). These values are used for both
cr2 and 03. We 6nd that we cannot fit 02 and o.s with a
common value of E'. The two-body breakup requires
S2'=1.82 while for three-body breakup E&'=0.77.
Using the more realistic Hulthen form (e "—e '")/r in
place of the zero-range form does not improve the
N ss/N s' ratio'.

The total two-body breakup cross section is shown
in Fig. 2 together with some of the experimental data '
on 'He. The total three-body breakup cross section is
shown in Fig. 3 with the 'He total-cross-section meas-
urements of Refs. 8 and 9.

The energy distribution of the odd particle is shown
in Fig. 4 at an excitation energy near the peak of the
three-body cross section. This general shape agrees with
the data of Ref. 8. The high-energy peaking is due to
the attractive forces between the like nucleons in the
final singlet s state. Figure 5 shows the contributions of
the various final-state interaction terms to the total
cross section. The singlet interaction between the like
pairs is seen to give the largest addition to the plane-
wave cross section. The triplet interaction between the
unlike particles is small and subtracts from the plane-
wave result. The angular distribution of the odd nucleon
has a fairly constant ratio of isotropic term to sin'8
coefficient of about 7—

S%%uq. (The symmetric spin term
contributes about 70% of the isotropic term. ) The
experiment ratio' is (3&3)%.

A justi6cation can now be made of the approximation
that the asymptotic forms of the bound and 6nal-state
p waves can be used in computing the E1 matrix

7 J.R. Stewart, R. C. Morrison, and J. S. O' Connell, Phys. Rev.
138, 8372 (1965).

8 V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev, Nucl.
Phys. 71, 305 (1965).

~ H. M. Gerstenberg and J. $. O' Connell, Phys. Rev. 144, 834
(1966).
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FzG. 4. The energy spectrum of the odd nucleon at the peak of
the cross section. The curve labeled BA is the spectrum without
final-state interactions (Born Approximation); the curve labeled
3P shows the effect of the three s-wave pairs.

elements. Both the two- and three-body matrix elements
have radial integrands in the primed coordinate of the
form r"e &"j t(pr'). This function (for p corresponding
to the maximum values at the peaks of the two cross
sections and P=0.420 F ') has its maximum value at
r' =5 F, a value well outside the range of nuclear forces

(K =1.4 F). Therefore, the electric-dipole matrix
element will be insensitive at small distances to devia-
tions of the true wave functions from the asymptotic
forms

The results of the approximation presented here
parallel those obtained by Fetisov, "who has used for
the ground state the wave function of the Pappademos
type with the parameters 6xed by Dalitz and Thacker"
to 6t the 'H and 3He rms radii and binding energies.
Fetisov gets fits to a & and 0.3 of about the quality of the
ones obtained here, that is, os is 15%%uq too low and os
is 30%%u~ too high. However, this calculation included

only the like nucleon pair interacting in the 6nal state.
Inclusion of all the interacting nucleon pairs would
worsen the agreement.

The importance of the asymptotic region of the
ground-state wave function in relation to the radii and
binding energies has been emphasized by Dalitz and
Thacker and recently its relevance for the photo-
disintegration problem has been studied by Fetisov. "

In relation to the three-body breakup we would like
to point out that other workers" incorporate the final-
state interactions by taking an incoherent sum of the
like-nucleon-pair matrix element and the unlike nucleon
pairs. This amounts in eGect to assume that in the Anal

state there are several independent three-particle
channels which can be distinguished by the way a
nucleon pair interacts. This does not seem to us to be
the case, but rather that the final states of the three

» V. N. Fetisov, Phys. Letters 21, 52 (1966).
» R. H. Dalitz and T. W. Thacker, Phys. Rev. Letters 15, 204

(1965)."V. N. Fetisov, Nucl. Phys. A98, 437 (1967}."V. N. Fetisov, J. Nucl. Phys. (U.S.S.R.) 4, 720 (1966)
LEnglish transl. : Soviet J. Nucl. Phys. 4, 513 (1967)g.

FIG. 5. Contribution of various terms to the total three-body
cross section. Curve BA is for a plane-wave anal state. Curve Si is
the contribution due to the singlet s-wave interaction between the
like nucleon pair, 2 Su of the unlike singlet nucleon pairs, and 2 Tu
of the unlike triplet nucleon pairs.

free particles are characterized solely by the momenta
and spins of the outgoing particles.

The purpose of this paper has been to show that the
electric dipole transition operator and the 6nal-state
wave functions, constructed in terms of interacting
pairs, emphasize certain regions of the bound-state
wave function. We have seen that the choice of simple
asymptotic forms of the bound state in these regions
lead to transition amplitudes that give reasonable
estimates of both the two- and three-body photo-
disintegration cross sections. The true symmetric s-wave
bound state will diff er from our approximate form in
regions of nucleon interaction not tested by the low-

energy photodisintegration process and possibly by
correlation effects among the three particles or other
intrinsic three-body eGects, but the forms of Eq. (3)
seem to be valid in the region tested.

APPENDIX

We give here some useful relations between three-
body coordinates, momenta, and spin functions.

Coordinates

In general, the positions of three particles are
specihed by nine coordinates. A useful decomposition is
to use three of the coordinates to give the center of mass
of the three particles, and three Euler angles to locate
the plane passing through the three particles, leaving
three internal variables. These last may be taken as
either the interparticle coordinates r~2, r23, r3~, or the
particle coordinates as measured from the center of
mass, rt, rs, rs. Another useful set (because, unlike the
erst two sets, it does not have the implied delta function
among the vectors) is one of the set (r,r', r" r"'), (s,s',S.s'),
(t,t', t t'). The following relationships hold among the
coordinates:

s= r», t= r»
r'= 2r3, s'= 2r~, t'= ~r2,3 & 3

r&'+rs'+rs'= s(mrs +&28 +est ) sr +a&
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The coordinates have the following properties under pressed in terms of E and W by means of the Jacobian
interchange of the like particles j. and 2:

dS'dE
Py2f = —I',

Pg2s= —t,
Pg2t= —s,

Pg2r'= r;f.
P~2s'= t';
Pg2t'= s'.

dkdp=gm
[W(2E—3W)j'i'

Plane waves in all three particles can be expressed in
one of the following equivalent forms:

Momenta

Let Aki, Ak~, Ak3 be the momenta of the three
particles relative to the center-of-mass system with the
condition ki+k2+k3=0. We then define

k"=-'(k —k )
Ps=

These momenta can be expressed in terms of the
energy of the odd particle W=kmp32/2m, the total
energy available for breakup E, and $ the cosine of the
angle between p~ and ki2..

g&(k1 &1+%2'12+%3 f3) —g&(k&2.&+P3.T )

—ps+23's+Pl's ) —g&(&3&'t+P2't )

Spins

X,(12,3), X,(12,3) are total spin-~i eigenfunctions with
the spins of the nucleon pair 12 coupled, respectively,
to a singlet (antisymmetry in the pair 12), to a triplet
(symmetry in the pair 12). Specifically, for s,=+2i,

1
X.(12 3)=—[n(1)P(2)—P(1)n(2)Pn(3)

V2

kip'= (2E—3W),
2h'

m
pi2= {E W ([W—(2E——3W—))'~'}

Ig'

kpsm= —{-,'E+4W+4$[W(2E —3W)j'i'},
P2

pmm= {E W+ $[W(2—E 3—W)g'I'}-
km

ksi2 =—PE+ 3 W—43 $[W(2E—3W) pi&2}
A,"

The three-particle phase-space density can be ex-

1
X,(12,3)= ——[n(1)P(2)+P(1)n(2) jn(3)

—(&l) (» (2)W»,

where n means spin up, P spin down.
The following spin matrix elements are used in the

photodisintegration calculation:

(X,(12,3)
~

X,(12,3))=1,
(X,(23,1) i

X.(12)3))= ——', ,
(Xi(23,1)

~
X,(12,3))= —i2&3,

(X,(31,2)
~
X,(12,3))=——;,

(X,(31,2) i
X,(12,3))=i',

where the subscript s means the two nucleons are in the
(antisyrnrnetric) singlet state and the subscript t means
they are in the (symmetric) triplet.


