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An improved method of treating three-body cluster correlations in reaction-matrix calculations is pre-
sented and applied to nuclear matter. A three-particle reaction matrix is defined which allows three parti-
cles to interact with each other in all possible ways after specifying the particles involved in the initial and
terminal interactions. The method is similar to that proposed by Bethe but, since all off-energy-shell terms
can be treated separately, full advantage can be taken of the Faddeev formalism as applied to the three-
nucleon system. The Pauli exclusion operator is included in calculating on-energy-shell reaction-matrix
elements but is neglected in the off-energy-shell terms. Numerical calculations are presented for two spin-
independent, s-state, separable potentials, one of which contains a hard-shell repulsive term. Higher-order
terms are found to be important for the hard-shell potential but not for the simple attractive potential.
In both cases the total three-body correlation energy is found to be small.

I. INTRODUCTION

HE basic idea behind the Brueckner-Goldstone!

theory of nuclear matter is the rearrangement of

the perturbation series for the energy into an expansion

in terms of the two-body reaction matrix £2 The reaction
matrix is defined by the integral equation

t=v—2(Q/e)t, ¢y

where v is the nucleon-nucleon potential, Q forbids
scattering into occupied states, and the energy de-
nominator e is the difference in energy of the total
system before and after the virtual excitation. Matrix
elements of ¢ remain finite even when the two-body
potential is singular, so it is reasonable to hope that a
perturbation expansion in terms of ¢ will converge. The
terms involved in the revised expansion are conveniently
represented by a series of diagrams involving #-matrix
interactions of increasing order. The first-order diagram
shown in Fig. 1(a) gives the major contribution to the
energy, and since the ¢ matrix sums all ladder diagrams
involving repeated v interactions, the second-order
diagram is automatically included in first order.

It is also possible to include some of the third-order
diagrams in the first order by modifying the definition
of the propagator appearing in the definition of the ¢
matrix. Thus the contribution of the hole-bubble
diagram shown in Fig. 1(b) can be absorbed into the
first-order diagram by a suitable definition of the single-
particle potential energy of occupied (hole) states.®? The
hole-bubble interaction is evaluated on the energy
shell34 and is found to be strongly attractive. Similarly,
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1K. A. Brueckner, in The Many-Body Problem, edited by B. S.
DeWitt (Dunod Cie, Paris, 1960), pp. 47-166; J. Goldstone, Proc.
Roy. Soc. (London) A239, 267 (19517)).

2 Here we use the notation of the ¢ matrix instead of Bethe’s g
or Brueckner’s K. We reserve the symbols g and K for defining
some other quantities in this paper.
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4 H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev.
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a potential energy for excited (particle) states can be
defined to cancel the particle-bubble diagrams of Fig.
1(c). However, the particle-bubble diagram, which
involves the excitation of three nucleons and must be
evaluated off the energy shell, is found to be strongly
repulsive due to the effect of the hard core. If the
particle-bubble diagrams (hereafter referred to simply
as bubble diagrams) are included in the first-order
calculation according to the prescription of Bethe,
Brandow, and Petscheck,* they give rise to a positive
contribution to the energy per particle of ~5 to 10
MeV.5

However, Rajaraman® showed that the other third-
order diagrams, including the various exchange terms,
are of comparable magnitude to the third-order bubble
diagram and thus cannot be neglected. Rajaraman also
showed that all third-order diagrams, even those
corresponding to genuine three-body clusters, can be
cancelled by slightly modifying the BBP definition of
the potential energy in intermediate states. Further
investigation by the same author? of fourth- and higher-
order terms (which now constitute the only correction
to the revised first-order calculation) was carried out to
study the rate of convergence of the Brueckner-
Goldstone series. He found that there are many higher-
order diagrams whose contributions are comparable to
the third order. The important higher-order diagrams
are those which involve only three hole lines. Each hole
line implies an integration over the hole momentum
from O to kp. Thus a diagram involving two hole lines
(first order) is proportional to kr® (or p?, where &y is
Fermi momentum and p is density) ; while the diagrams
involving three hole lines are proportional to the cube
of the density. A diagram of any order which involves
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Fic. 1. First and third-order #-matrix diagrams discussed in text.

5 E. E. Brown, G. T. Schappert, and C. W. Wong, Nucl. Phys.
56, 191 (1964).

8 R. Rajaraman, Phys. Rev. 129, 265 (1963).

7 R. Rajaraman, Phys. Rev. 131, 1244 (1963).
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only three hole lines is therefore proportional to the
same power of the density as the important third-order
diagrams.

The density dependence is not the only reason for the
importance of the higher-order diagrams. An nth order
diagram involving three hole lines will contain #—3
extra factors of fe! as compared to a third-order
diagram. These factors must be integrated over a set of
intermediate particle states and the importance of
fourth- and higher-order diagrams arises from the fact
that te! integrated over particle states gives a factor
~1. This estimate of Rajaraman? is based on the
assumption of a hard-core potential. Thus, for a hard-
core potential of radius ¢, an appropriate expansion
parameter is neither the density nor the ¢ matrix alone
but rather the product of the interaction strength
(e.g., ¢®) and the density. Rajaraman’s work shows that
the entire series of diagrams involving three hole lines
must be summed at once and not simply order by order.
Thus the Brueckner-Goldstone expansion for the energy
should be further rearranged into a series in terms of the
number of interacting particles rather than in the
number of successive ¢ matrix interactions.

Bethe,? extending these ideas further, has proposed
a method for summing the three-body cluster inter-
actions to all orders of perturbation theory by applying
the Faddeev® technique. He obtained an approximate
solution to the resulting Bethe-Faddeev equation and
found that the total three-body correlation energy was
small. Bethe did not calculate the correlation energy
directly. Instead, he modified the potential energies of
the particle states to try to include all three-particle
correlations and then estimated the effect of the new
spectrum on the total binding energy. He estimated
the binding energy found by including only the third-
order bubble diagram in defining particle potentials
was too low by ~2 to 8 MeV.

Brandow! recently suggested extending the above
ideas still further and completely rearranging the
linked-cluster perturbation series in terms of “compact
clusters.” His theory requires that the single-particle
potentials be defined only in terms of those diagrams
which can be evaluated entirely on the energy shell.
Thus, while Bethe still prefers to consider the three-
body cluster terms as contributing to the potential
energy of particle states, Brandow’s theory requires a
separate calculation of the three-body terms. Brandow’s
theory, however, is essentially equivalent to Bethe’s as
far as the graphs included in two-body and three-body
clusters are concerned. Thus, if it can be shown that the
total three-body contribution is negligible it will not be
necessary to extend Brandow’s theory beyond the third-
order except, possibly, to calculate some higher-order
terms associated with the rearrangement energy.®10-12

8 H. A. Bethe, Phys. Rev. 138, B804 (1965).

9 L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)].

1 B, H. Brandow, Phys. Rev. 152, 863 (1966).
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The three-body diagrams are obviously very im-
portant and more careful treatments of their effects are
needed. In this paper we present an alternate method of
summing all three-body cluster interactions which we
believe to be simpler in interpretation, more sym-
metrical in form and easier to use in both nuclear matter
and finite-nucleus calculations. The central quantity in
our theory is a three-body reaction matrix which differs
in definition from that of Bethe and allows us to specify
both the initial and terminal ¢ matrices in the required
ladders of ¢-matrix interactions. Our three-body
reaction matrix can thus be used as the middle inter-
action in third-order diagrams in calculating the three-
body correlation energy. The important point here is
that the three-body reaction matrix can then be
calculated entirely off the energy shell and our formal-
ism and calculations become identical to those used in
solving the usual Faddeev equations.

Our formalism is discussed in detail in the next
section where the integral equations for the three-body
reaction matrix are presented. The expression for the
three-body cluster energy is also presented and we show
that our solution reduces to that of Bethe when ex-
pressed in terms of three-body “defect” wave functions.
However, the power of the present formalism lies in the
fact that our equations maintain the compactness of
Faddeev’s equations, which enables us to evaluate the
integral equations by replacing them with matrix
equations. Thus if we know the off-energy-shell matrix
elements of the two-body reaction matrix we can solve
for matrix elements of our three-body operator. Since
we have specified the initial and terminal fmatrix
interactions involved in our three-body operator we can
work directly with these three-body matrix elements
rather than with three-body wave functions.

The calculations are outlined in Sec. III. We work
entirely in momentum space using separable two-body
¢ matrices which we have evaluated using the Yama-
guchi®® potential and a modified version of the Puff't
potential. Both of the potentials used are separable,
S-state, spin- and isospin-independent potentials which
have been used extensively in three-nucleon calcula-
tions. The Yamaguchi potential has been fitted to low-
energy nucleon-nucleon scattering data and contains
no repulsive term. The Puff potential, however, has
been fitted to high-energy data and has a repulsive term
consisting of an infinite hardshell. We can thus compare
directly the effect of the strong repulsive term in the
higher-order diagrams.

Finally, in Sec. IV we present the results obtained
and compare them with previous calculations. We
consider in detail the dependence. of the results on the

( u H) S. Kohler, Phys. Rev. 137, B1145 (1965); 138, B831
1965).
2 K. S. Masterson, Jr., and A. M. Lockett, Phys. Rev. 129, 776

(1963).
1628 (1954); 95, 1635

18Y. Yamaguchi, Phys. Rev. 95,
(1954).
4R, D. Puff, Ann. Phys. (N.Y.) 13, 317 (1961).
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different potentials used. The effect of the Pauli
operator, which we have included in the on-energy-
shell matrix elements, is also discussed.

II. FORMALISM

The series of Goldstone diagrams involving three hole
lines can be summed to all orders in ¢ matrix interaction
by introducing a three-particle reaction matrix T
defined by the matrix equation

T=t—KT, (2)
where T is the 3)X3 matrix
Tll T12 T13
™ T2 T38| 3)
T31 T32 T33

and the two-body ¢ is a diagonal matrix

H 0 0
0 t, Of. )
0 0 4

The interpretation of superscripts and subscripts is
given below. The kernel of integral equation (2) is

given by
tie” Q

he Q| , ®)
tse_lQ 0

0 tle“lQ
K=|teQ) 0
tze~ IQ

where ¢! is a three-particle energy denominator

e l= [Er'—E,—'-Ek—'El—Em—En:]—l (6)

In Eq. (6), E;, E;, and E; denote single-particle energies
in excited states, and E;, En, E, are energies of states
inside the Fermi sea. From now on we shall always use
(4,4,k) and (I,mn) for states above and below the Fermi
sea, respectively. With these definitions we note that
the energy denominator in Eq. (6) is always positive
definite.

The above equations are modified Faddeev integral
equations for three-particle scattering. The most
important point in Faddeev’s generalization of the
Lippman-Schwinger equation is that he avoids the
non-uniqueness of the solutions of these equations. Here
also in Eq. (2) we maintain the property of compactness
which is a necessary feature of the Faddeev formalism.
This fact is obvious in Eq. (5), where the kernel has
zero diagonal elements thus eliminating the occurrence
of é-function singularities. This compactness property
enables one to evaluate integral equations by replacing
them with matrix equations.!s

An individual matrix element of T can be written as

iZ g(1 du) T, ()

€

15 C. Lovelace, Phys. Rev. 135, B1225 (1964).
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F16. 2. An nth order diagram containing 74,

where the two-body ¢ matrix element obeys the integral
equation
ti=v;—v,(Q/e)t;. ®)

The Pauli operator Q forbids scattering into occupied
states. However, matrix elements of 7%/ are evaluated
only between momentum states above the Fermi sea
so we can probably neglect the effect of the Pauli
operator in evaluating 7%/ We examine this point
further in Sec. IV but from here on we drop the operator
Q in Egs. (2)-(8). It should be emphaswed that the
energy denominator e occurring in Eq. (8) is the three-
body excitation energy and not the usual two-body
energy. Thus, Eq. (8) requires that the two-body
reaction matrix be evaluated off the energy shell.

The superscripts or subscripts 4, 7, k& in the above
equations are particle indices. Thus #; is the two-body
reaction matrix in which particle ¢ is not involved, and
T is the three-body reaction matrix not involving j
and 7 in initial and final interactions, respectively. This
fact becomes transparent upon iteration of Eq. (6).
Finally the factor (1—8;) ensures that the same pair
of particles cannot interact twice in succession.

Our definition (6) differs from that of Bethe only in
the fact that we specify the initial and final ¢-matrix
interactions rather than just the final one. This defini-
tion enables us to write down the three-particle cluster
contribution to the binding energy as

l,m,n

W= 3 (k,knk n!ts‘—{TH‘Q‘(lfz-l"lfs)'f‘Tm‘Q“(h‘f-fs)

—|—T13—Q—(t1+tz) } [k km k), (9)
e

where /, m, n involves summation over spin and isospin
variables and integration over the momenta of three
particles. In other words, matrix elements of 7%/
occurring in the middle are to be evaluated entirely off
the energy shell, whereas the two-body operators
t:(Q/e) or (Q/e)i; are to be evaluated on the energy
shell and refer to two-body excitation only in the initial
or final state.

A typical three-body diagram involving T%s is
shown in Fig. 2(a) where, following the convention
established by Rajaraman,® the hole lines have pur-
posely been left open. In Fig. 2(a), the initial (bottom)
interaction lifts particles 1 and 2 out of the Fermi sea.
This initial interaction is followed by an arbitrary
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number of #matrix interactions beginning and ending
with #. Finally nucleons 1 and 2 are returned to the
Fermi sea.

There are an arbitrary number of ¢ interactions be-
tween lines B and C. However, the interaction just
below C cannot be #; and the interaction just above line
B cannot be ;. That part of the diagram between A and
E represents 7, while the subdiagram between A and
D can be identified as one term of 7%, In Fig. 2(b) we
represent the diagram of Fig. 2(a) using a condensed
notation.

Figure 2(b) is one of six distinct (topologically)
diagrams entering into the calculation of the three-body
cluster contribution. These are shown in Fig. 3, where
we have defined the final interaction as #; and the
second-to-last interaction as #. Therefore, as discussed
by Bethe,® we must integrate independently over the
momenta of all three particles in summing all possible
three-body diagrams. In this manner, summing all
topologically distinct three-body cluster diagrams, we
get Eq. (9). Thus to evaluate the three-body correla-
tion contribution, we will need to introduce two sets of
intermediate states in (9), and only the T/ part of (9)
will have to be evaluated off the energy shell.

In the above discussion we have not taken into
account the effect of exchange terms or spin-isospin
statistics. We show later that these effects can be taken
into account by a statistical factor. Neglecting the
statistical factor, there are 272 distinct diagrams in
nth order which enter into the energy calculation. The
six diagrams shown in Fig. 3 reduce to the two third-
order and four fourth-order diagrams shown in Fig. 4
when only the lowest order (in {) terms are retained for
W, T'2) and T%.

We shall now show how our equations reduce to those
of Bethe® when we impose identical assumptions. We
introduce unperturbed and perturbed three-body wave
functions by

Téigp= s (10)
or, in obvious matrix notation, by
Td=1T. (11)

The substitution of (11) into (2) or (7) leads to the
matrix equation

V=d—e T, (12)
where, now
0 et ¢!
el=let 0 et (13)

el el 0

1 2 3 1 2 3 1 L 3 1 2 3 1 2 3 1 2 3
() (b) (<) (d) (e) (f)

F1c. 3. All diagrams involved in calculating
the three-body cluster energy.
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Next, in the spirit of Bethe! and Moszkowski,'® we
replace the integral operators ¢~' by functions of the
interparticle distances £(r). Thus Eq. (12) becomes a
set of simultaneous equations given by

V=¢—§V, (14)
where
0 & &
E=& 0 & (15)
£ & O

It may be noted here that in Eq. (14) we require only
one set of the £’s in solving for the y*7’s, since we are
working entirely off the energy shell.

Solving Eq. (14) we thus obtain

yi=(1—¢6)D7', (16)
and
Yii=—¢,(1—&)D'¢, an
where the denominator D is the determinant
D=1—§&8s—Eobs—Eb1+28:6085. (18)

In order to evaluate the energy we must also define a
function 7 (r) to replace the integral operator ¢~ when
the latter is evaluated on the energy shell. The evalu-
ation of the function £(r) differs from that of 5(r) in an
essential way. T hese functions were evaluated by Bethe
using the reference-spectrum approximation of BBP.
The parameter «v3? in the reference-spectrum energy
denominator used in solving for £(7) is not the same as
the two-body 72 The former contains an extra term
3kx? because of £(r) must be evaluated off the energy
shell. [See Ref. 8 Eq. (3.10)].

Substituting the above results into Eq. (9) we find
the three-body cluster energy given by

W= 3 (kjkn,kn| D7s{ (1= £285) (n2t13)

l,m,n

— £a(1—£3) (mt-ns) — Es(1— £2) (n1tn2) }
X | kikmkn). (19)

This expression is equivalent to that obtained by Bethe,
however, the derivation here enables us to handle
on-energy-shell terms and off-energy-shell terms
separately.

III. CALCULATIONS

In this section we present calculations using the above
formalism. The calculations are done entirely in
momentum space, and the notations and kinematics are
given in Appendix A. We work in momentum space
since, as suggested by Faddeev, the coupled T-matrix
equations can be expressed and solved in terms of three
equivalent sets of momentum variables.

Thus in momentum space, assuming that total
momentum is conserved [and dropping the factor

16 S, A. Moszkowski, Phys. Rev. 140, B283 (1965).
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8(K)], Eq. (7) becomes

y ti(kir, —q—3ki; va+-3k:2)
T (kjx,ki; pir,Di; v8?) = ti(Kjn,pir ; v+ 3820 (ki— pi)—/daq ’

kit +ki- g4y

4 X[T#(ki+3q, q; s, Di; v&)+ T4 (ki+30; —a; pix, Pi; vs)]  (20)
an
ti(kii, —q—3ks; v 4307
Tj‘(kki,kj;Dik,Pi;732)=—/dsq] : R
ki+@+k;-q+vid
X[T*(kj+39, q; Pix, Pi; v&)+T%(ki+3q, —q; pix, Pi; vs) 1. (21)

The steps involved in these equations are given in Appendix B. The v3? is given in Eq. (A16) and is the three-
body extension of the two-body vs* given in Eq. (A18). Thus the fact to be noticed here is that the two-body ¢
matrices involved in Egs. (20) and (21) are not only calculated with respect to the three-body vs? but with v24-3k2,
i.e., involving the momentum of the third particle whose effect occurs as a spectator in shifting the energy de-
nominator. Once the -matrix form is assumed these equations can be solved. Equations (20) and (21) are exact
except for two approximations. We have used the reference spectrum method for the hole-state energies and we
neglect the Pauli operator in excited states.

With the above definition of 7%/ in momentum space, we get a total contribution to the three-particle correlation
energy (below we shall drop writing v3* explicitly) of

Q([‘H‘%ksl , Kij, Kp)
(a+3ks)*+2?

kF 0
W= / B 1d% o0k 56 (K) / dsqd3qlit3(k12, q+1ks;v2?) [T (ks+34q, q; o, 3q'+ks)
0 0

Q(I q,+%k3l ) K’U’ KF')
(a'+3ks)*+v2

+T2(ks+3q, q; o/, 39" +ks) ] 13(q'+3ks, kio; v2*) +t3(kot-3ks, q+3ks; v4?)

Q(,q+%k3la Kijr KF)

[T (ks+3q, q; ', 39"+ ko) +T5(ks+3q, q; 9, 39"+ ko) ]

(a+3ks)*+72*
Q(la'+3ks|, Kij, Kr)
( +2 ; )z+] 2 (a4 bk, Kot Fhos v22)+ta (o3, a-+3ks; v42)
q 132K Ye
Q(I(H"%kd,i{ﬁ’ KF)r- 12 1 71 1 ’ 147
(q+3ks)2+v2? [T2(ks+39, @; o', 30"+ k) + T2 (ks +3q, ; ¢/, 39,4k
2R3 2

Q(Iq'-{-%kl[,f{ﬁ, Kr)

11(a'+3ky, kat+3ki;ve?) . (22)
(@' +3k0)*+v2*
In the above expression we have dropped minus signs  be factorized in off-shell variables and thus
occurring before the momentum variables as we are ®)e:(p)
going to use expressions (22) for S-state calculations t(kpy)=3 Bilke)gr (23)

1 k2+'y?Pl(i(~ii)'

This is, in fact, another reason to use separable poten-

and hence dependence of —% can be put k. Otherwise
Eq. (22) is exact and has no approximation and the sign

can be restored back by use of Appendix A. Again in
arriving at Eq. (22), the intermediate steps involved are
similar to those given in Appendix B.

In order to solve Egs. (20) and (21) we need ex-
pressions for off-energy-shell two-body reaction mat-
rices. Our approach in solving these equations has been
motivated by the extensive applications of Faddeev’s
formalism to the three-nucleon system using separable
potentials. The simplicity offered by separable poten-
tials in solving the integral equations has led us to apply
them to nuclear-matter calculations. Furthermore, as
Lovelace! has pointed out, near bound states or
resonances the two-body scattering matrix can always

tials since the kernel of the integral equations remains
compact and enables one to numerically evaluate the
integral equations using matrix methods.

However, a common shortcoming of most separable
potentials is the purely attractive nature of the force.

| [ I:t’ E Ajﬁj
t 2 3 1 2 3 1 2 3 4 2 3 1 2 3 1 2 3
(a) (c) (d) (e) (f)

(b)

F1G. 4. Third- and fourth-order diagrams
involved in the energy calculation.
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One cannot expect reasonable results in a nuclear-
matter three-body correlation calculation if a separable
potential is used which is fitted only to low-energy
scattering data. It is only because of the hard-core
nature of the force that higher-order diagrams are of
comparable magnitude to those of third order. On the
other hand, there is every reason to expect that a
separable potential which does fit nucleon-nucleon
scattering data at all energies and does yield a reason-
able saturation density and energy for nuclear matter
in a first-order reaction-matrix calculation, will yield a
reasonable value for the three-body correlation energy
of nuclear matter.

In a previous investigation!” we calculated the first-
order (in f) binding energy per particle and saturation
density for a number of separable potentials in current
use. We used the reference-spectrum approximation for
hole-state energies and assumed kinetic energies only
in particle states. In the present work we investigate the
cluster energy first with the Yamaguchi average
(triplet and singlet) s-state force which is fitted to low-
energy data only. This potential has a simple attractive
structure and gives rise to a first-order energy per
particle of —15 MeV at kr=1.36 F~!, but does not
yield reasonable saturation properties. From the above
arguments we would expect a very small three-body
correlation energy.

The second part of our analysis involves calculations
with a modified version of the Puff potential which
contains an infinite hard shell of radius 7,=0.45 F. The
original Puff potential used in our earlier paper has
separate attractive singlet and triplet s states and the
same hard shell. This potential yielded an energy per
particle of —19 MeV at a saturation density correspond-
ing to kp=1.6 F! and an energy per particle of
~—16 MeV at kp=1.36 F~1. In the present calcu-
lation we retain the same hard-shell repulsion and use
an average s-state attractive force chosen to yield a
binding energy per particle of ~16 MeV at kr=1.36
F-1. We expect the Puff potential to yield results
equivalent to those of a local s-state interaction contain-
ing a hard shell or hard-core repulsion.

A. Yamaguchi Potential

This is an attractive average s-state force whose
momentum-space matrix elements are given by

(klo|K)=—xg(k)g(k"), (24)
which gives rise to a two-body reaction matrix
(|t|p)=t(k,p,y?)=g(k)g(p)D (v,  (25)
where ©
2
D(722)=-x/{1-x/daqg ! } (26)
¢+v*

17B. S. Bhakar and R. J. McCarthy, Nucl. Phys. (to be
published).
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The parameter \ is taken to be 0.3519 F—3 while the
function g(k) is given by
g(k)= (15",

where 3=1.4488 F-1. Equation (26) is given in terms
of the two-body parameter v.2. The same expression is
valid when +,? is replaced by v32+2k;? as is required in
the three-body reaction matrix equation.

Substitution of Eq. (25) in Egs. (20) and (21) yields
T (ki ki; pipi; v4?) = g (ki) (P ) D (v + 3k )

X[4 (ki,p)+Bk;p) ], (27)

and
T (kyi k5 Dje,Ds; vs?)
= g(kr:)g(pir)D (vs*+2k ) B(kj,pi)

where the spectator functions 4 and B obey the integral
equations

A(k,p)=6(k—p)+ f d%K (k,q)A(q,p),

and

Bk =K~ [ o Kk

+2 / @K (kK (q’,q)]B (@p). (28)

The kernel of the integral equations is given by
g(k+3p)g(p+3k)
Dy ).
k4 p*+k-ptvs?

An iterative procedure was adopted to replace the part
of Eq. (28) involving K (k,p). Thus the 6(k—p) part
of A (k,p) is kept as such so as to enable us to calculate
separately the third-order diagrams contribution to W.
Finally the values of v,? and v;? were taken as given in
Appendix A.

K(k,p)= (29)

B. Puff’s Potential

The potential in momentum space is again separable
and is given by

<k I v I kl > =— >\g (k)g (k,)+ >\hard shellh (k)h (k,) )

where Apard snenn 1 the limit goes to infinity. The param-
eter A of the attractive terms is given as 6.35 F—2 while
the functions g(k) and %(k) are defined by

g(k)=(F+p)",

h(k)= (sink-r.)/k,

where 3=2.2785 F~'and r.=0.45 F. Using this potential
the two-body scattering matrix is given by
(k|t|p)=g(k)g(p)D1(y2)+h(k)h(p)D:(v*)

+{g (R (p)+h(k)g ()} Ds(v7") ,

(30)

and

(31
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where

Di(y2?)=—NH(v:) {H (v (1 —NH 1 (v-?))
N2 (v},
Dy(v?)= {1—MH1(y) }{H2(v2*)(1—NH1(v5?))
FAHZ (v,
and
Dy(v) =N 3(v2") {H2(v2") (1—NH1(72?)
FAH (v}t

The functions Hy(vs?), Ha(v:2), and H;(y.?) are given
by the following integrals:

(32)

g(9)
H1(7 2>=/d3‘1 )
2 q2_,_,YZ
hZ
H2(722)=/d3q <(I) ,
q2+72
and @h(@)
g(@h(q
Hi(yH)= / d’q . (33)
q2+,y2

Taking expression (30) for the two-body ¢ matrix and
replacing this in Eqs. (20) and (21) yields the expres-
sions

T (ki ki; pir,Di; vs*) = g (kn)g (P i) A1(ks,p.)
+hkjx) h(pir) Ba(kiyps)+g (k) (P ja) A (kip:)
+h(kir)g(p ) Bi(k,ps) ,

and
T3 (kioykj; DirsDi; vs?) = g (ki) g (p 1) C1(k ;,p5)
Fh (ki) h(pin) Es(kjpe)+g (Rai)h (p 1) Ca(ksp:)
+ h (kkt)g (pﬂc)El (kJ;pl) )

where the spectator functions (4’s, B’s, C’s, and E’s)
satisfy the two sets of coupled integral equations

(34)

A4 1(k7p):D1(732+%k2)5(k——p)—2/d3q

X[K1(k,a)C1(q,p)+K2(k,a)Er(q,p)], (352)
Pr(k,p)=Ds(ys*+3k)5(k—p)—2 / d%q
X[Ks(k,a)C1(q,p)+Ka(k,q)Er(q,p)], (35b)
Ci(k,p)=— / @*q[K1(k,@){C1(a,p)+41(q,p)}
+K2(k,@){E(q,p)+Bi(q,p)} ], (35¢)
Ey(k,p)=— / d*[K5(k,@){C1(q,p)+41(q,p)}
+Ka(k,a){E:(q,p)+Bi(g,p)}]. (35d)
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Similar equations are obtained for 4, Bs, Cy, and E, if
one makes the replacements D; — D; and D3 — D, in
the inhomogeneous terms, and changes the subscripts
1—2in 4, B, C, and E. The kernels of these integral
equations are given by

K1 (k,q)=GG (k,q)D1(y2+2k)
+HG (k,q)Ds(vs+-3%%)
K,(k,q)=GH (k,q)D:1(vs*+k?)
+HH(k7q)D3 ("/32+%k2) ’
K5 (k,q)=GG (k,q) D3 (vs*+3k?) .
+HG(k,q)D:(y2+3k7),
K, (k)q) =HH (k)q)D2 (732+%k2)
+GH (k,q)Ds(vs*+3%2) .
Because of the following expressions:
(k+349)g(a+3k)
GG (k@) =GG (gl ="— T
B+g+k-qt+vs?
h(k+3q)k(q+3k)
Btg+kgtys
h(k+3q)g(q+7k)
B4tk gty
we notice that the spectator functions are not all
independent but they have certain symmetries which

result in much saving of computer time. Thus here we
have

(36)

HH (k,q)=HH (q,k)=

and

HG (k,q)=GH (q,k)= (37)

A1(k,p)=A4:(p)k),
Bs(k,p)=Bs(p,k),
Ci(k,p)=Ci(p,k),
Es(k,p)=E:(p k),

E, (k)p) =C, (pyk) )
Bi(k,p)=4:(p,k).

Another simplification which appears is the fact that
in Eq. (35) we have essential coupling only between
Ci(k,p) and E;(k,p), which becomes clear if one
eliminates A;(k,p) and Bi(k,p) from the last two
equations. Thus one has to solve only two coupled
equations, which we solved by iteration after taking the
0xq angle average of the kernels in Eq. (36). Once the
matrices for Ci(k,p) and E,(k,p) are known, the struc-
ture of 4((k,p) and Bi(k,p) is given in terms of them.
Thus it appears as if there are two sets of four coupled
integral equations, but in fact one has only two sets of
two coupled equations. Another point which we would
like to emphasize is that the averaging of the kernels
has an impact only on the spectator functions and hence
most of the three-particle 7" matrix is given in analytic
form. This is very useful for the evaluation of W. The
latter appears to have several three-dimensional

and further
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TABLE I. Three-body cluster contributions to the energy per
particle of nuclear matter. Units in MeV. See text for description
of individual terms.

Ws Wer W1 W2 W w
Yamaguchi —0.241 -0.129 -0.021 -0.013 —0.023 —0.427
Puff +1.09 +41.00 —0.096 —0.059 —1.10 +0.835

integrals, but most of them are quite independent and
involve at most one angle 6 between two vectors which
can be evaluated analytically or by numerical methods.
Moreover, the magnitude integration is also of de-
coupled form. Therefore, in numerical calculations,
most parts can be evaluated in one do-loop. For the
integrations we used the Gaussian quadrature method
with 20 points and the integrals involving 0 to
integration over magnitude were checked before making
an upper-limit cutoff.

Equations (27) and (34) can now be used in Eq. (22)
to find the three-body correlation energy for the
Yamaguchi and Puff potentials, respectively. Since we
have explicitly separated out the §-function term in 7
we can calculate separately the two third-order dia-
grams and the contribution of all fourth- and higher-
order diagrams. Thus (22) can be expressed as

W=Wgp+Wr+Wi+W:t+Wo, (38)
where W g and Wy are the contributions of the third-
order bubble and ring diagrams while W; is the con-
tribution of all fourth- and higher-order diagrams
having ¢; as the initial interaction.

We now consider the effect of exchange terms and
spin-isospin statistics. In calculating the energy we
must sum over all distinct diagrams, and over all
possible initial and final states. It is sufficient to anti-
symmetrize one wave function and we choose the initial
state. Thus the energy is given in Eq. (22) by six sums
of the form

W= Y. (mn|t(Q/e)T(Q/e)t|lmn—min—Inm

—nml+mnl+nlm). (39)

There is no factor of ¢ appearing since we are summing
only over topologically distinct diagrams (i.e., those
diagrams which cannot be related to each other by any
exchange). The sum over the momenta [/, m, and =
converts into an integral over the three momenta. As
mentioned previously, we must integrate these three
momenta independently from O to kp. The spatial
contribution of each of the six terms in Eq. (39) will be
the same since we are considering only s-state inter-
actions. There are 64 possible spin-isospin states avail-
able for the three particles, each of which contributes to
the direct term. Each of the single-exchange terms
(which appear with a minus sign) carries a weight
factor of 16 since the spin-isospin states of the ex-
changed nucleons must be equal. Similarly, the double-
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exchange terms carry a weight factor of 4-4. Therefore,
since the spatial contributions of all the terms are equal,
we can rewrite Eq. (39) as

kF kF k¥
W=24/ d%lf d3k2[ @ks
0 0 0
Q

X (kikoks) l“Tgi |kikoks). (40)
e e

Equation (40) actually gives the contribution of
2(Q/e)T(Q/e)g to the energy per unit volume and must
be divided by the appropriate density to give the energy
per particle.

1V. DISCUSSION OF RESULTS

The results obtained with the Yamaguchi and Puff
potentials are shown in Table I. The total three-body
cluster energy is found to be small for both potentials,
but for different reasons. For the Yamaguchi case, the
third-order diagrams dominate, as was expected, but
the third-order terms are themselves very small. Since
the potential has no repulsive term all the diagrams are
attractive and no cancellations are contributing to the
small results for Wy, W, and W;. The contributions of
the bubble and ring diagrams are of comparable magni-
tude to previous estimates'® ! obtained using simple,
s-state, attractive forces.

Results obtained with the modified Puff potential are
of much greater interest. The third-order diagrams are
repulsive due to the combined effect of the hard shell
and the Pauli operator. However, the higher-order
terms are also important and give an attractive con-
tribution. Thus the sum of all higher-order terms cancels
a large part of the repulsive third-order terms.

The final results for the Puff potential are due to a
delicate balance between attractive and repulsive terms
and this balance depends a great deal on the effect of the
Pauli operator Q shown explicitly in Eq. (9). A third-
order diagram involves the operator ¢(Q/e)t(Q/e)t,
where the middle ¢ operator is evaluated off the energy
shell and without the Pauli operator. Both energy
denominators are positive-definite while the matrix
elements of the three ¢ operators can be positive or
negative depending on the relative momenta involved.
The Pauli operator (@ discriminates against small
relative momenta in intermediate states and thus
causes matrix elements of ¢ to be positive on the average.
When the Pauli operator is neglected, the third-order
terms become attractive and the higher-order terms
become repulsive.

A further cancellation appears in summing the
higher-order diagrams. Because of the Pauli operator
each f matrix element is, on the average, repulsive. Thus
the sign of an nth order term is determined solely by the

18 K. A. Brueckner, Phys. Rev. 100, 36 (1955).
9 H. A. Bethe, Phys. Rev. 103, 1353 (1956).
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sign obtained when Eq. (7) is iterated and the over-all
attractive contributions of Wy, W, and W; seem to be
determined by the fact that the fourth-order diagrams
are attractive and the successive terms in the alternat-
ing series are of decreasing magnitude.

Our results seem to confirm Bethe’s conclusion?® that
the total three-body cluster contribution is small.
However, the individual terms do not agree with
previous estimates obtained using hard-core or hard-
shell potentials. For example, the contribution of the
bubble diagram above is much smaller than the 5 to
10 MeV per particle obtained in most previous esti-
mates®202t and is closer to the results obtained by
Brueckner and Masterson”? who did not treat off-
energy-shell effects correctly. However, the reason for
the discrepancy does not lie in our off-energy-shell
treatment but rather in the fact that the hard-shell
potential acts only in s states rather than in all partial
waves. An exact comparison of results is rather difficult
here since we evaluate the bubble-diagram contribution
directly rather than introducing intermediate-state
potentials.

On the other hand, the contribution of the ring
diagram found here is larger than previous estimates.!%
Our result for this term might be reduced somewhat if
our force contained Serber exchange characteristics but
our present result confirms the estimate of Rajaraman®
that all third-order terms are of comparable magnitude.

We have not considered higher partial waves, spin-
dependent forces, nor tensor forces. These effects could
modify our quantitative results a great deal and would
probably make our over-all result attractive. However,
we would still expect the total three-body contribution
to be small. Therefore it seems more worthwhile to
consider first the case of a soft core or velocity-depend-
ent potential since, at this time, it appears that hard-
core potentials cannot yield the correct binding energy
per particle for nuclear matter or for finite nuclei.
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APPENDIX A: NOTATION AND KINEMATICS

Let the system of three particles be characterized by
masses my, ms, M3, and momenta pi, ps, ps, where sub-
scripts 1, 2, 3 denote particles. Sometime we denote
these particles by (4,7,k) subscripts which take values
1, 2, 3 cyclicly, or we use (!,m,n) for particles inside the
Fermi sea. This system can be characterized in momen-

2 M. Razavy, Phys. Rev. 130, 1091 (1963).

2 S, A. Coon and J. Dabrowski, Phys. Rev. 140, B287 (1965).

2 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267 (1962).

23 H. S. Ké&hler, Ann. Phys. (N. Y.) 12, 444 (1961).
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tum space by three equivalent sets of variables which
are well suited for the c.m. coordinate system.

K= P1+P2+P3 5 Kij= P,’+Pj

(A1)
kij= (m,'Pi-m,Pj)/m,-,- ,
and
k= {m(Pit-P;)—mi;Pe}/ M,
where
M=m+mj+my, miy=m—+m;.
The inverse relations are given by

msg mi
Pi=—K+—k.+ky,
M o

Mmj

m; m;
Pj=—K+—k,—ky,
M Mmsj
and

MK,
M

The three coordinate systems thus defined are related
to each other and one can transform from one to the
other using the relations

My miM
k= ——ki+ ks,
Mk M KM
and
m;
ki=—k;——k;. (A3)
(2
The total
K2 k2 R
K.E =— —_,
M 2u 2
where the reduced masses
mim; MEMs;
Mj= and = . (A4)
ms;

Sometimes it is convenient to work with pairs of vari-
ables k;, k;, k; which have the property

kit k;+k=0. (AS)
This is true whether you have c.m. momentum zero or

not. In terms of these variables the above variables can
be put as

ms M5k
k;j= i k.'—' —kk = kj'}"*—kk (A6)
Mms; ms;
and total
k,'2 k,-- kj k,z
KE=—-+F (A7)

2p; mp Zﬂjk

These expressions become simple in the case of equal-
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mass particles. Thus

kij=3P:—P;),

(A8)
ki=5(P:+P,)—3P,,
and
kij= — 3kt k= —3kp— ik, 49)
kk= _kki'—%kj= kjk_%kj.
Similarly we have
kij=—ki—ki=k;+ k. (A10)

The Jacobian of the transformations among different
coordinate representations is unity, and

Total K.E.= (1/m)[k:f-+2k:]
= (1/m)[k+ki-k+k2].

Further we assume the total momentum is conserved
since nuclear matter is expected to have translational
invariance. Thus a total-momentum 6 function will be
assumed to be factored out. The Hilbert space for the
three-particle system consists of square-integrable
functions of two-momentum vectors |p,q) normalized
to one.
The three-particle energy denominator is

(A11)

6=Ei+Ej+EK'—El—Em—En, (A12)
where 2, j, k refer to particles in excited states, and
I, m, n to particles inside the Fermi sea (again cyclic
notation is maintained).
The single-particle energy for states above the Fermi
sea is given by
E;=3k3, (A13)
where, in our notation, Z=m=1. We use the reference
spectrum approximation for states below the Fermi
sea SO
El= (kﬁ/Zm*)—l—A y (A14)
where the reference-spectrum parameters m* and A
must be found from self-consistent two-body calcu-
lations. Thus the three-particle energy denominator can
be put in momentum space as

(kijke| et ki Jai')=08(kij— ks, )d (kp—kx")

X[ki+2k? 721", (AlS)
where
v=—3A4+3K2(1—1/m*)— (kun’+3kn®) /m*
~— 344 (3k/10)(1—3/m*). (A16)

We list here also the expressions for the one-energy-shell
energy denominators and the corresponding +y.? for the
two-body case:

(kijle| et Kif K" )
=8(kij—k,;/)o(k— k") ki Hv22 1, (A1)
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and

voP=—2441K 1 (1—1/m*)— kunl/ m*

~—24+ (3kp2/10)(1—2/m*). (A18)

In the expressions for .2 and ;> we have used the
following momentum averages:

(K%)= (9/5)ks*,
(kin®) =15k,
(ka?)=%kr*,
and

(Kum?)y=(6/5)kr". (A19)

However, we do not average over the third-particle
momentum k;? occurring in Eq. (A15). Besides the
three-particle system, we shall also use two-particle
subsystems of it. The corresponding operators in three-
particle Hilbert space are given by

(kijke | 4 (va®) | pijspe)
= 0(ky—pi)ts (kijypij; vs*+3ki?)

and most of the time we use the notation for the three-
particle reaction matrix as

(ki ke | T%| priyp iy = T* (ki ki ; pjsDri; ¥4 -

(A20)

(A21)

This notation is convenient when writing down the
integral equations.

Finally, we list here the reference-spectrum param-
eters used in defining v,? and ;2. We have

A=—2.255fm2, m*=0.5995;
and

A=—2.346 fm~2, m*=0.5373,

for the Yamaguchi and Puff calculations, respectively.

APPENDIX B: INTERMEDIATE STEPS

The reaction matrix for two-particle correlations is
given in momentum space by

L) |K)
(o[ p)Q(p, K ) (0| sy [K')

= (k|9|K')— / & ,
lolK)~ [ & o
(B1)

where v4? is given by Eq. (A18) and we use the angle-
averaged Pauli operator defined by

Q(p,K kr)=0 if (pH+K2)2<kp,

=1 it |p—K|>r,

P4 K2—Fkp?

=—————— otherwise. (B2)
2pkr
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Here K is the two-body center-of-mass momentum
instead of the usual three-body c.m. momentum. We
use the average values of K and K2 in evaluating the
Pauli operator.

Here below we give details of the steps involved in
obtaining integral equations for the three-particle
reaction matrix. Thus Eq. (7) in momentum space
becomes

(kjiki| 7% pjw,pi)= (ki | t:(va?+$5) | pjn )6 (ki—p2)

— (kjik | ti(vs?)e{ T#+T%} [pe,ps).  (B3)
Similarly one can write down an expression for T'% The
most important advantage of Faddeev’s approach is
used here, i.e., the wave function has been expressed in
terms of momentum variables which are appropriate
for two interacting particles and a third particle. Intro-

ducing intermediate states the second term in (B3)
becomes

/ (i | 2:(vs?) | 9, pi’)
over all primed variables
X' ,pd | e ped” 07" Yok’ 05 | T%| pja,0s)
+ i’ pd e pi 0k ) (pi 0 | T | pja,pi)].

This term can be simplified by making use of the three
6 functions occurring in

(kjnoks| t:(va®) [ i’ 0 ) = 8 (ki—p)ts(Wjm, st v+ 3R,
and

(pjx’\pi [ e [ prpi")

=3(pi'—pi")o(p/ — /N pn*+1p v (B4
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These 8 functions lead to the following expression after
performing integrations:

/d“’ tillje, —p/—3ks; v +3RS)
T ket p itk p/
X T#(ki+30/, 87’ ; Pi, Die; 75
ti(Kje, D&’ +5ks; v@+3k:2)
+ | &*p’
kit ik pi'+vd?

XT%(—Ki—3Dx, P’ 5 Pi, Pir; v4%) -

In the last step we have made use of the following
transformations:

P 1o B0/ 1o f__ 3/
P’ = —3P. +2Ps' = — 3P —2D; ,
r__ r__ 1.7 __ 1.7
P =DPri —2P; = —Pij —2Pk
and

piv’=—p/—%ki, pr/=Kki+3p/

in the first term and
pi’ =pi'+3ki; pi’=—Kki—3ps

in the second term. These lead to our expressions (20)
and (21) in the text when the integration variable is
replaced by q.

A similar procedure has been adopted throughout the
calculations for the reduction of the reaction-matrix
equations and also in the evaluation of .



