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case (Fig. 2), the Inglis formula gives 4 =0.03, whereas
our method gives 4 =0.116, nearly four times the Inglis
result. If we now change the single-particle spacings
only slightly (Fig. 3), we do not expect the spectrum to
undergo a drastic change. However, the Inglis formula
now gives negative result for 4, i.e.,4 = —0.007, whereas
our method gives 4=0.114, a sensible result. Quite
generally, the Inglis formula is not applicable to odd-4
or odd-odd nuclei, so that the comparison in the case of
21Ne is rather unfair.

Note that in Figs. 2 and 3 some unoccupied orbitals
come below some occupied orbitals. Also, the degeneracy
between |K) and | —K) orbitals maintained in an even-
even nucleus is removed. These phenomena have been
discussed before® and we will not go into these details
again here. We want to emphasize, however, that al-
though in the K=% band there is no real gap between
occupied and unoccupied levels, the HF description is
still valid. This is because there is no low-lying two-
particle-two-hole state with K=3, the only K value
which can connect to the ground state. Indeed, by
explicitly calculating second-order corrections to the
ground state in a Rayleigh-Schrodinger expansion we
verified that the HF description for the K=$% band in
21Ne should be as valid as in the K=0 band in 2Ne,
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where a significant gap appears between occupied and

unoccupied orbitals.

VI. CONCLUSION

We have suggested a method for calculating the
moment of inertia which, unlike the Inglis method, can
be used for any nucleus, even-even, odd-4, or odd-odd.
By calculating higher-order corrections in many cases in
the s-d shell, we have verified that these are small. Al-
though the examples shown used intrinsic HF states,
the method can be readily extended to cases where
Hartree-Fock-Bogoliubov correlations exist. Equations
(2) and (3) can be also used when the intrinsic state is,
for example, a Tamm-Dancoff state. Our only restriction
is that we do not allow for any change of the intrinsic
state from one spin state to another but, in view of the
past investigations,®? this is not a severe restriction in
the deformed region of the s-d shell.
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We investigate a static soft-core potential (the Morse potential) and three representative velocity-
dependent N-N potentials. First we study the problem of adjusting potentials to maintain the 1S state
bound near zero energy, and we test two integral criteria. For the Morse potential we derive a convenient
analytical expression for the S-wave phase shifts. By fitting experimental phase shifts in the energy range
Ea, <400 MeV for elastic nucleon-nucleon scattering, we evaluate the potential parameters for the 1S,
and 3S; states. We then examine and compare a phenomenological and two-meson-theoretic one-boson-
exchange potentials in S states which are representative of a number of N-N potentials in current use. We
point to ways of characterizing these potentials which are helpful in assessing their scattering consequences.
We show that different mechanisms embodied in such potentials can account equally well for the negative

S-wave phase shifts observed at higher energies.

1. INTRODUCTION

HE nucleon-nucleon interaction is S states has
and continues to be a fundamental topic of
nuclear research. The development of effective-range
theory'™ which indicated that any reasonable two-
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In recent years a number of studies have indicated
that short-range interactions with soft cores can equally
well account for the behavior of S-wave phase shifts
at high energies, in particular the fact that these phase
shifts become negative. The numerical solutions of
Bystritskii et al.,® using a combination of an attractive
Yukawa interaction in conjunction with a repulsive
Yukawa of slightly shorter range, provides an example
of a static soft-core interaction which fits the experi-
mental S-wave phase shifts throughout the energy
range. A number of studies carried out several years
ago have shown that phenomenological velocity-
dependent potentials can also account for the S-wave
phases.%10

Perhaps the most important recent development in
our fundamental understanding of the V-V interaction
has been the successful fitting of the experimental phase
shifts with one-boson-exchange potentials (OBEP)
drawn from meson field theory.!'—'¢ Unfortunately,
most of these studies have neglected the .S-wave phases
which are of primary importance in nuclear applications.

The present study originated as an effort to guide
the development of OBEP models which could simul-
taneously give good S and higher partial-wave phase
shifts over a broad energy range. The success in this
regard of regularized, almost relativistic, V-V potentials
of Green and Sawada'’” was in part a consequence of
the clarifications engendered by the present study. The
clarifications pointed to the necessity of maintaining
the 1S state near the zero binding energy condition and
the 35 state in a weakly bound condition (constraints
long recognized in phenomenological studies) while
pursuing OBEP parameter variations intended to im-
prove the fit of the high-energy and higher partial-wave
phase shifts. They also pointed to the importance of
employing regularized potentials whose nonsingular
properties near =0 are the key elements in the success
of the Green-Sawada studies with .S waves. The major
purpose of this paper is to elucidate the large degree of
variability in soft core versus velocity dependence
inherent in the high-energy S-wave phase shifts. For
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simplicity we do not include the tensor coupling of the
3D; to 3S; potentials, which while important in pre-
cision fits, is not consequential to the gross physical
aspects under investigation.

In this study we have made considerable use of the
Morse potential'® as an analytic repulsive soft-core
potential whose characteristics can be conveniently
specified by three parameters. The Morse potential has
been used extensively as a repulsive core atom-atom
potential in studies of the bound states of diatomic
molecules. Its great advantages are a simple energy
eigenvalue formula and its relatively simple analytic
wave functions. In a recent study'® we have utilized
the Morse function to treat the problem of a nucleon
bound in a velocity-dependent nuclear potential. The
practicality of the Morse function in this nuclear
context led us to consider it for this nucleon-nucleon
problem. In Sec. 3 we treat the S-wave scattering
problem for a static Morse potential and present an
analytic formula for phase shifts which can be used to
fit the experimental S-wave N-NV scattering data over
the entire energy region. In Sec. 4 we examine the
S-wave problem for a phenomenological velocity-
dependent potential and two meson-theoretic velocity-
dependent potentials. Here again the Morse function
can serve as a convenient approximate effective po-
tential provided that its parameters are varied with
energy. In the conclusion we discuss the physical mech-
anisms implicit in the various static soft-core and
velocity-dependent potentials which we have examined.

Before going to the central topics of this paper, let
us first consider the general problem of maintaining
an .S state bound near zero energy.

2. MAINTAINING THE 1S STATE AT ZERO
BINDING ENERGY

From effective-range theory it is known that low-
energy .S waves are sensitive to some over-all aspect of
the potential. It would be valuable to know what aspect
of the potential should be preserved while testing
various models against the higher-energy phase shifts.
Another way of viewing this is to say we should examine

18 P. M. Morse, Phys. Rev. 34, 57 (1929).

¥ A, E. S. Green, G. Darewych, and R. Berezdivin, Phys. Rev.
157, 929 (1967). It should be mentioned that the formulas in that
paper for the eigenvalue [Eq. (8)] and wave function [Eq. (9)]
are written in dimensionless form (¢=FEo=1). To convert energies
to MeV when distances are in fermis, W, D, Do, and 8 in Eq. (8)
should be read as W /E,, D/Eo, Do/Eq, and fBa, respectively, where
a=1F and E¢=7%2/ (2ua?) =20.73 (A +1)/A MeV if p=3%(M ,+M,)
XA4/(A41). Note also that the (D,Do) values in Tables I, II,
and IIT of Ref. 19 were incorrectly converted to MeV. The correct
(final iteration) values should read: for O, 1S5i» (54.3, 48.3),
1Ps» (48.8, 35.8), 1Py (36.5, 29.2), 2512 (54.0, 48.4), 1Dsp
(27.8, 21.7), 1Dgp2 (13.0, 10.8); for Catl, 1Sy2 (92.1, 51.7), 1P3,
(76.6, 38.2), 1Py (70. 6, 36.9), 2512 (73.0, 50.5), 1Ds/;2 (50.6,
28.8), 1Dg2 (39.0, 24.0), 1Fy (28.3, 18.6), 2P3» (46.0, 38.7).
The (U,K) values in Table III should read 1S:. (67.4, 18.7),
2512 (52.2, 4.1). The value of 8 for 15y, state in Table I should
read 0.686 F. The values of (8,x1) in Table III should be the same
as the corresponding values in Table I. The sign of the Z5 term
in Eq. (5) should be reversed. The energy values are all correct.
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only models which preserve the scattering length and
the effective range. Only for such models is it meaningful
to interpret the information embodied in S waves at
higher energies in terms of the middle range and inner
range of the potentials.

As measured by the number of states it can bind, the
nuclear force is a very weak potential, one which barely
binds the 3S state and barely misses binding the 1S
state. In view of this it seems worthwhile to seek in-
variants of a potential function which will insure
E(15)=0. Then it would be clear that this would rep-
resent the 1S state rather well and that with slight
strengthening it could be used to represent the 3S state.

The relationship between an interaction protential
and the number of bound states has been studied many
times.?~% Here we concentrate our attention on adjust-
ing the parameters of a potential to achieve one bound
S state at or near zero energy.

Effective-range theory'™ shows that S-wave phase
shifts at low energies for any potential are given by

k cotdy= —a,'+3rok?, (2.1)

where @, is the Fermi scattering length evaluated at
zero energy and 7, is the effective range. We wish to
consider the case when @, is large or infinite. It is
possible to find such potentials by solving the scattering
problem for the phase shifts and representing them by
Eq. (2.1). With some trial and error it is simple to
bracket the combination of well parameters which lead
to large or infinite a,. It is interesting to note that when
as=

ro=2/w [1—ue(r) Jdr,

where #y(r) is a function which vanishes at the origin
and goes to unity outside the range of the potential.
If, following Bethe,* we take for u, the function 1—e=#7,
it follows immediately that 8=3/7,. This gives a wave
function that can be used in conjunction with a known
_effective range as an approximate zero-energy wave
function for dealing with various potentials including
velocity-dependent potentials.

For application to the low-energy N-N problem it
would be desirable to have simple criteria on potential
parameters for any reasonable well which would insure
that we are in the neighborhood of E(15)=0. A problem
of this type has been studied previously by one of us
(AESG) %5 in connection with the adjustment of realis-
tic shell-model potentials to achieve 2§, 3S, and 4S
neutron size resonances at 4 =12, 55, and 160. Then in

20 H, M. Schey and J. L. Schwartz, Phys. Rev. 139, B1428
1965).
( a R) Jost and A. Pais, Phys. Rev. 82, 840 (1951).
22 J, Schwinger, Proc. Natl. Acad. Sci. (U. S.) 47, 122 (1961).
% F. Calogero, J. Math. Phys. 6, 161 (1965); Nuovo Cimento
36, 199 (1965); Commun. Math. Phys. (Germany) 1, 80 (1965).
24 P, Swan, Phys. Rev. 153, 1379 (1967).
25 A, E. S. Green, Phys. Rev. 99, 1410 (1955); 102, 1325 (1956).
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exploring various central potentials with uniform in-
terior and exponentially diffuse tails it was helpful to
use the equivalent square well strength

S=2'/°<> Uryrdr, U(r)=—2uV(r)/h, (2.2)

where V (r) is the potential and u is the reduced mass, as
a measure of the binding power of a potential. In a
larger perspective we are now concerned with an extra-
polation of the shell-model size resonance problem to
the problem of maintaining the 1S size resonance very
close to A =2, i.e., the deuteron.

If we use Eq. (2.2) to calculate the equivalent square
well strength, then the criterion to achieve E(1S)=0
may be written as

1=8"=1r=1.571. (2.3)

A similar criterion proposed by Jost and Pais* based
on scattering considerations is equivalent to the con-
dition I;=V2=1.414, which is a bit weak for the
square well.

An alternative criterion comes out of the old semi-
classical phase-space quantization techniques and is
implicit in the application of the WJKB approxima-
tion. Here one examines

Iz=/°o LU (r) ]2, (2.4)

where 7, is the classical turning point. If we impose the
condition I,=7%m, again we obtain the exact quantum-
mechanical criterion for E(1S)=0 for the square well.

In applications to various wells both criteria serve
to relate a natural well distance parameter ¢ to a well
depth parameter V,. Thus we define

€= (2ua®Vo/m)\2. (2.5)

Now the critical values of €, for various types of po-
tential forms (to be denoted by &*) which will lead
to E(15) =0 may be determined exactly for a number of
analytically solvable potentials or may be established
by numerical analyses. These values are listed in column
3 of Table I. Sources of these constants are indicated
by the reference numbers in column 4. Here A denotes
analytically solvable and DG denotes this work. In
columns 5 and 6 we indicate the corresponding critical
values of I; and 7, which will insure £(15)=0 on the
basis of the critical e* listed in column 3. For the case
of the Morse function and the hard-core square well,
the lower limit of Eq. (2.2) has been replaced by 7,.
In column 5 the choice 7./a=} has been used as rep-
resentative for the square well with a core and the
parameters for the 1S, state discussed in Sec. 3 have
been used as representative for the Morse function. One
notes from this table that the I;* values are fairly
consistently in the range 1.57 to 2 for all of the func-
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TasiE I. Critical values of I; and I for various potential forms required on the basis of quantum-mechanical
determinations of critical values of e.

Potential Functional form &* Ref. I* I,*
Square well V=O—(Vo (r)<a) /2 A le*=1.571 le*=1.571
=0 (r>a
Exponential V=—"Voerle 1.202 A V2e*=1.700 2e0* =2.404
Yukawa V=—Vola/r)e e 1.297 3 V2e*=1.834 (27)2ep* =3.252
Gaussian V=—Ve /a2 1.640 1,3 le*=1.640 1m)V2e* =2.055
Square well Voo (r<r) ) A (142 (ro/a) 2er* ~1.93 «*=1.571
with core V=—Vo (re<r<a-r.)
V=0 r>a+trc)
Morse V="Vz(z—2) 3 DG [6+4{ (rm/a)—In2} [V2e*~1.73 ret=1.571
z=¢ (r—rm/a
tional forms considered. The I* values are more sensi- asymptotic form of (3.2), viz.,
tive to the well shapes tending to values greater than ) ) . SCortsy i)
. . . UK — —1K y— T p—
2 for attractive-core potentials but taking on values Zix=aZ%, with e v—e ®.
from 2 to 1.571 for coreless or repulsive-core potentials.
L . . . At large Z,,
For applications to the N-NV interaction problem either
I, or I, may be used, provided that the numerical Fi(a; ¢; Z) — €221 (c)/T (@)
constraint imposed is taken from a potential form .4 (3.4)

similar in shape to the potential or effective potential
under study.

3. REPRESENTATION OF !S, AND 3S; INTER-
ACTION BY THE MORSE FUNCTION

In this section we show that the 1Sy and 3S; nucleon-
nucleon interaction in the energy range Ei.p < 400 MeV
are well described by a simple, three-parameter, static,
soft-core potential, the so-called Morse potential'®;

V(75 Vo,ams?n)=Volexp[—2(r—7m)/am]
—2exp[— (r—7m)/am]}.

For this potential, Schrédinger’s equation has the
positive-energy solution
G(r)=e2[ZF1(3— eotxi; 142i; Z)

—aZ " 1F1 %—ea*Ki; 1—2KZ, Z)],

3.1)

(3.2)
where G/r is the S-state wave function,
a=Zo2"i1F1(%-" €0+K’L.; 1+2K’L, Zo)/
F1(—eo—ri; 1—2xi; Z),
Z=2¢ exp[— (r—7m)/@m,
Zo=2¢q expl¥m/n],
€= (MVode/hg)”?,

(3.3)
k=kamn,

and 1Fi(a;c; Z)

is the confluent hypergeometric function. The S-wave
phase shift is readily obtained now by comparing the

a— T(14+2x)T G— eo—«i) /[T (1—2x)T (3 — eo+xi) ],

where T'(Z) is the usual vy function. It then follows
that the S-wave phase shift takes on the simple,
analytic form, for large Z,

8o (k5 Voy@myrm)=argl (1+42kaui)

—argl (3— eo+kamt) — k[ 7n+an In(2e0) J+nmr, (3.5)

where # is an integer. The Morse parameters Vo, @nm,
and 7, are obtained by fitting §o™(k) to the experi-
mentally determined data on #-p and n-n scattering
in the /=0 states. We may relate the parameters 7,
and a, to the scattering length @, and the effective-
range parameter 7o (Table II), by expanding % cotdp™
in powers of k2. When the first two coefficients are com-
pared with the effective-range formula (2.1), we obtain

AGs=1"m— Gm¢'1/ (%_ 60)
and
ro=30,420,7s/[ 302 (3— )],

where ¢; and ¢, are the slowly varying functions (see
Fig. 1)

$1=14+G—e)/G—e)— G—e)[y+1+In2e)+ f(x) ],
$2=14+[ G—€0)/ G—e0) P'— (G— «0)*[ 8 (3)+3d*f/dx*],

x= (%— e0)7

TasLe II. Parameters for the S-state Morse functions.

Sytsem a; (F) ro (F) Vo (MeV) am (F) rm (F) 20
1So of n-p* —23.67840.028 2.44 +0.11 61.99 0.3957 0.9365 10.3
1So of n-n® —17 +1 2.84 +0.03 40.38 0.4799 1.0531 8.5
3S; of n-p* + 5.397+0.011 1.7274-0.013 119.49 0.3408 0.8668 14.7

a See Ref. 26.

b See Ref. 27.
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F16. 1. Functions ¢:(e0) and ¢2(e) used in evaluating Morse
parameters from effective-range parameters.

and

F= % (=)Lt () —1Tam.

n=2

Here vy is Euler’s constant and { (%) is the Riemann
zeta function. The third parameter ¢ (i.e., V) is now

0. 2 10 25 50 I?O 200 __ 300 400
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F16. 2. Morse potential fits (long dashed lines) to experimental
S-wave phase shifts (solid lines). Above 20 MeV the experimental
n-p and p-p phase-shift analysis of Arndt and MacGregor are
used (Ref. 28). Short dashed curves are effective-range param-
etrization of low-energy experimental data (Refs. 26 and 27).
These are coincident with Morse potential prediction at low
energy.
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adjusted so that & fits the experimental data above
10 MeV. Specifically, in the 1S, state it is chosen so
that 8=0 when Ei;5,=253 MeV for both the #-p and
the n-n case, and in the 3S; state such that §,=29.6°
when Ej,=142 MeV. We find that by fitting the 3a,
and %, parameters for the 3S; state the same potential
gives the correct binding energy of the deuteron (2.22
MeV) if the latter is assumed to be a pure 35 state. The
values of the Morse parameters so obtained, for #-p
and #z-n elastic scattering are given in Table II. Figure
2 is a plot of §y™ versus energy for #-p and #n-n scattering
together with the experimentally determined phase
shifts.26-28 Figures 3 give the corresponding potentials.
It will be noted that there is a substantial difference
between the n-p and #-n potential curves in the 1S,
state, suggesting a violation of charge independence.
This is a reflection primarily of the large differences in
the experimental values of the effective-range param-
eters for #-p and n-n, as is evident from Table II. To
what extent this apparent contradiction of charge
independence of nuclear forces persists depends on how
well the presently available experimental data will
hold up under further investigation. In particular, there
are no high-energy n-n data (we have used the n-p,
p-p high energy data in fitting the #-% curve) while the
low-energy data (usually parametrised in effective-
range form) are very imprecise and available only from
indirect, three- (or more) body experiment. There is

MeV T T T T T T T T T T T T T T T T
40 [~ .
L : -
20 (~ .
o
-20 - 4 -
- V7 1
40 // -
L / -
-60 [~ /[ — 'S of n-p -
n / ‘—_".’S,ofn-p
‘ / wreerrenne 'Soof n-n -
-80 — / -
- / -
-100 |- \ / -
i |/
\/ ]
-120 |- v -
[EENEENERANEERENENNE RRRRERNER!
05 10 15 20 25 30
r(F)

F1c. 3. Morse function parametrization of #-p and
n-n potential in s states.

26 H, P. Noyes, Nucl. Phys. 74, 508 (1965).
27 G. Breit, K. A. Friedman and R. E. Seamon, Progr. Theoret.
Phys. (Kyoto) Suppl. (extra number, 1965), 449 (1965).
( 28 R) A. Arndt and M. H. MacGregor, Phys. Rev. 141, 873
1966).
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also some ambiguity in the value of the effective-range
parameter 7, for the 1S, of n-p 26:27,

The integrals I; and I, may be evaluated analytically
for the Morse function. The results are

[1= 60*[6—'—4 In2+4(rm/am)]1/2z 1.73
and
Iy=7e*=1.571,

where for 7; we have used the parameters for the 1S,
state as representative of the case E(15)=0. We see
that both 7, and I, are close to the square-well values.

4. S-WAVE STUDIES WITH VELOCITY-
DEPENDENT MESON POTENTIALS

For the purposes of this study we first consider
phenomenological velocity-dependent potentials, which
lead to good 'S, and 3S; phase shifts. We examine in
particular the work of Herndon ef al,*® which not only
fits these phases quite well but serves quite well in
three- and four-body problems. We compare these with
our static Morse potentials and with the meson-
theoretic potentials of Green and Sawada.'$'” Our
purpose is also to investigate the nature of the effective
repulsion provided by these potentials.

In this connection we come to the problem of how
to compare different velocity-dependent potentials.
Since we have two degrees of freedom, the central term
and the momentum-dependent term, a variety of
radial dependences might have equivalent effects upon
the phase shifts. Let us assume that we wish to compare
velocity-dependent potentials, which may be presented
in the symmetrized form

Vp)=V()+M'[Puw)+w@)p’].  (41)

We may now compare separately V.(r) and w(r). Of
course, when two potentials have similar functions V,(r)
and w(r) they should act somewhat similarly upon the
phase shifts. Alternatively, we might write V(r,p) in
the form

V(f,?) = Vo(r)-l-a?(VVA -V+ VAVZ),
where @ is a suitable unit of length and
Vo=V (r)—E@®V*w(r) and Vai=—2Ew(r) (4.3)

or

(4.2)

Ve=Vo—31a®V2Va and w=—3Va/E, (4.4)

and Eo=7#*/Ma?. Then two equivalent acting potentials
may be compared by separately comparing V.(r) and
w(r) or Vo(r) and Va(r).

A third possibility, if one knows the true wave
function, is to introduce an effective potential given by

Volr)=Vo(r)+ay(VVa - W+VaV). (4.5)

This would be the closest thing for comparison to a
static potential since this is what is acting upon the true

2 R. C. Herndon, E. W. Schmid, and Y. C. Tang, Nucl. Phys.
42, 113 (1963).
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wave function. A problem arises with this representation
since the potential becomes infinite at the zeros of the
wave function. Such zeros occur at high energies for .S
waves in the nucleon-nucleon problems. It should,
however, be clear that these infinities are not trouble-
some precisely because the wave function vanishes at
the same point. Thus this type of respresentation prob-
ably provides a realistic way of displaying the difference
between a velocity-dependent potential and a static
potential. Unfortunately, the use of this representation
is complicated by the necessity of generating an accurate
wave function. For the zero-energy solution we can use
the wave function ¢o=1— (r/a,) —exp(—3r/ry).

A fourth mode of representation is to make use of
the transformation which eliminates the first derivative
in the Schrodinger equation. In this case one arrives
at an effective potential given by

Veff (r,E) = (1 - VA/E())_l{ Vo (r) - %0,2‘72 VA— a2k2VA
—a*(VVa)2/[4(Ey—Va)]}. +1(+1)Eea?/7.

This potential must be considered only in relation to a
“false’” wave function given by

Xi(r)= (1—Va/Eo)"*Gi(r), (4.7)

where G,/ is the true radial wave function. For scatter-
ing problems, we may use this false wave function since
in the asymptotic limit the true and the false wave
functions agree. Accordingly, one can extract the phase
shifts from false wave functions.

Figure 4 shows the various representations V., w, V,
Ve(ro), Vesi(r,E) of Herndon’s® velocity-dependent
potential V(r,p) for the 1S, state of the p-p system
together with our Morse potential for the #-p system in
a similar state. The effect of the velocity dependence,
in this case, is to provide an effective repulsive soft core
which grows with the energy, but is weak at low energies.

Figure 5 represents a six-parameter OBEP model of
Green and Sawada!” involving m, 7, vector w, p, and
scalar (w,,0,) meson exchanges with derivative coupling
on the p. This model fits all phase-shift data quite well.
In this case the effective energy-dependent potentials
exhibit clearly a soft repulsive core nature. The effec-
tive potentials are very similar to our Morse function
potential provided that the parameters vary with
energy.

Figure 6 is a similar plot of a modified relativistic
OBEP of Green and Sawada.!®!7 involving only pion,
vector meson (w), and scalar meson (s) exchanges. This
one-parameter model gives an excellent description of
the S-wave phase shifts and all other partial phase
shifts except the 1P, wave. The effective potentials in
this case are quite unlike those of Figs. 4 and 5. The
effect of the velocity dependence here seems to be to
“squeeze out” the attraction which is apparent in the
inner region. An actual repulsion begins to manifest
itself only at high energies.

An examination of Figs. 5 and 6 reveals a great
contrast in the form of the effective, energy-dependent

(4.6)
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FiG. 4. Various representations of the phenomenological velocity-
dependent N-N 1S, potential of Herndon et al. (Ref. 29).

component Ve (r,E) in these two cases. Although the
energy-independent component Vo(r) and the coefficient
of the momentum-dependent term w(r) in V(r,p) are
qualitatively similar, their quantitative values show
considerable difference. Thus, the model of Fig. 6 has
a substantially stronger velocity-dependent coefficient
w(r) by about a factor of 2.5 while the central term
Vo(r) is larger only by about 1.4. In this sense the
modified relativistic OBEP model of Fig. 6 is more
strongly velocity-dependent than that of Fig. 5. These
differences lead to entirely different effective potentials
representing different repulsions which account for the
negative S-wave phase shifts observed at higher
energies. These two examples of velocity-dependent
OBEP’s indicate that the observed V-V elastic scatter-
ing phase shifts can be accounted for by entirely dif-
ferent physical mechanisms in the inner and inter-
mediate regions of r<S1.5 F (the outer region is, of
course, dominated by the one-pion-enchange contribu-
tion). In particular, it is evident from Fig. 6 that it is
not necessary that the effective potentials have a
repulsive core in the inner region, as is the case in both
the phenomenological model of Herndon ef al.?® (Fig. 4)
and the meson-theoretical model of Fig. 5.

It should be clear that the V(r) representation shows
more vividly the gross equivalence of velocity de-
pendence to repulsive core than does the V.(r) repre-
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sentation. However, the ‘“effective potential” repre-
sentation Ve(r,E) exhibits most clearly how the energy
dependence manifests itself effectively by reducing the
strength of the well and strengthening the repulsive
core.

5. DISCUSSION AND CONCLUSIONS

We find from the foregoing study that for a potential
to describe low-energy N-NV interactions in .S states it
is sufficient, in first approximation, that it bind the
system in the 1S, state at or near zero energy. With this
condition as a point of departure, the fits to S-wave
data can then be improved by requiring that the
potential reproduce the observed scattering length and
effective range. Clearly, from old work,"™* a great
variety of S-wave potentials can be used. In the present
work we also show that, for a phenomenological Morse
potential, it is simply necessary to take the well-
strength parameter ¢ to be % to insure an .S state of
zero binding (Table I). When the effective-range
parameters are reproduced (Table II), this well-
strength parameter is not much different from the
critical value of %, being 0.4841 for 1S, of n-p, 0.5787
for 357 of n-p, and 0.4738 for 1S, of n-n.

To reproduce the observed negative S-wave phase
shifts at higher energies with a static potential it is
necessary to incorporate a repulsion into the potential.
Here the Morse function serves as a far more realistic
point of departure than the square-well, exponential,
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F16. 5. Effective energy-dependent N-N potentials in 1S,
state for OBEP model of Green and Sawada (Ref. 13) (Fig. 4
of Ref. 17). Dashed curve is the static soft core (Morse potential
for the same state).
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F16. 6. One-parameter modified relativistic OBEP of Green
and Sawada (Ref. 17) involving = (pesudoscalar), « (vector),
and s (scalar) meson exchange (Fig. 3 of Ref. 17).

Gaussian, or Hulthén potential used in early studies.
Our studies clearly show that the soft repulsive core
of the Morse function, which goes at the origin to 5.7
GeV for the 1S, state of #-p, 16.3 GeV for the 3S; state
of n-p, and 2.5 GeV for the 1S, state of #n-n, can do just
as well as an infinite hard core.

To achieve a zero-energy scattering length approxi-
mately with velocity-dependent potentials or with
various combinations of soft-core and velocity-depen-
dent potentials, we may again use our integral criteria
using either the true potential with the effective-range
wave function or the false effective potential at zero
energy. Since this latter quantity can be studied in the
absence of a detailed knowledge of the wave function,
the integral of this function can be evaluated either
numerically or by planimeter. Our studies indicate that
I, or I, for velocity-dependent potential functions are
close to the invariant estimates for static potentials.

Good high-energy behavior for the S-wave phase
shifts can also be obtained by using a velocity-depen-
dent potential in conjunction with a coreless static
component or by using various combinations of soft-core
and velocity-dependent potentials. Looked at from the
standpoint of the V.(r), w(r) representation, the phe-
nomenological potential of Herndon ef al.?® appears to
be a coreless potential. However, looked at from the
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standpoint of the Vo(r),Va(r), V(ryo), or Ve:(r,E)
representations, this potential displays a core. Hence
it should be clear why such a velocity-dependent po-
tential acts in a similar way as a static repulsive-core
potential.

Most of OBEP in current use, including several
models of Green and Sawada (e.g., Fig. 5), have a
similar character to the potential of Herndon et al.,
as indicated by the ¥V, representation or the Ve (7,E).
On the other hand, several of the Green-Sawada
models, particularly their almost relativistic models
(e.g., Fig. 6) which also do well on S-waves, have an
entirely different character. For these the effective
potentials Ve (r,E) are coreless. At low energies they
are near the strength needed to bind an S state. How-
ever, they become increasingly weaker as the center-of-
mass energy increases. The Vo(r) and V.(ryo) repre-
sentations are still suggestive of repulsive-static-core-
type potentials. Kiang® has also pointed out that
velocity-dependent potentials which can reproduce
S-wave phase shifts may actually contribute an
attraction.

These indications as to the variablility of combina-
tions of soft core with velocity dependence which are
successful with regard to S-wave suggest that it may
be difficult to distinguish physically which type of
velocity-dependent potentials actually characterize the
N-N interaction. Possibly such effects as the deuteron
magnetic moment and the quadrupole moment would
help distinguish between them. In any case, the details
of the N-N potential in the very innermost region
(r<0.3 F) can probably not be determined unambig-
uously from experimental evidence or from field-
theoretical OBEP models as presently constituted.!*—17
At such small internucleon separations the effects of
nucleon and perhaps boson structure will surely have to
be considered in detail.3 Alternatively, the possibility
exists that applications of the N-NV interaction to the
nuclear many-body problem might help resolve the
ambiguity. In this connection we might note that
Kohler and McCarty, using the highly velocity-
dependent V-V potential represented by Fig. 6, obtain
a binding energy of 7.2 MeV/nucleon for O as com-
pared to the experimental value of 8 MeV. This con-
trasts with the results of their calculations with hard-
and soft-core-type potentials which give much too
little binding energies.
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