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Statistical Properties of the Scattering Amplitude and Cross Sections
Using the Statistical Collision Matrix
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The statistical collision matrix is used to study the statistical distribution of the random part of the
partial scattering amplitude and the partial Quctuation cross section. Using simplifying assumptions,
explicit expressions are obtained for the lower moments of the partial scattering amplitude for the inelastic
processes. It is shown that the real and imaginary parts of the Quctuating scattering amplitude have a
Gaussian distribution with the same variance. Using ensemble averages of the resonance parameters of the
statistical collision matrix, an expression is obtained for the partial reaction Quctuation cross section in
the region of overlapping resonances. A remark is made about the partial elastic Quctuation cross section.

I. INTRODUCTION'

~ 'HE statistical theory has been used to study the
average properties and the fluctuations of the

nuclear collision cross sections for the reactions which

go through the formation of a compound nucleus. ' The
main interest of the various models developed by Eric-
son' and Brink et al. ' has been to explain the fluctua-
tions in the cross sections and the calculation of correla-
tion functions. In both models the random part of the
scattering amplitude is taken to be Gaussian. In the
Ericson model this assumption is justi6ed by making use
of the central-limit theorem, while in the Brink model
it is one of the basic assumptions. The statistical prop-
erties of the random part of the scattering amplitude
can be studied much more accurately if we start from
some theory whi. ch can predict the statistical distribu-
tions of the partial-width amplitudes which are the
central quantities entering into the pole expansion of
the scattering amplitude. The need for such a study in-
creases when we are also interested in studying the
average cross sections, or the fluctuating part of the
cross sections in the case of overlapping resonances.

We feel that since R-matrix theory is ideally suited
for a statistical description of the compound nucleus, it
should provide a natural way to describe the average
values and the mean-square fluctuations of the cross sec-
tions. Recently a formalism has been developed by
Moldauer' for the statistical treatment of the cross sec-
tions. This formalism makes use of a statistical colli-
sion matrix, which is de6ned in terms of the eigenstates
of a complex boundary-value problem. The advantage
of using this type of formalism is that the statistical
properties of the parameters of collision matrix can be

' For a brief review and earlier references see J. P. Bondorf, in
Proceedings of the IX Summer Meeting of nuclear Physicists
(Hercegnovi, 1964), Vol. II p. 133, (Publication No. 1.56, NOR-
DITA, Copenhagen @, Denmark).' T. Ericson, Ann. Phys. (N. Y.) 23, 390 (1963).' D. M. Brink and R. O. Stephen, Phys, Letters 5, 77 (1963);
D. M. Brink, R. O. Stephen, and N. W. Tanner, Nucl. Phys. 54,
377 (1964).

4A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).' P. A. Moldauer, Phys. Rev. 135, 8642 (1964).

easily studied using the random-matrix hypothesis. The
purpose of the present paper is to use the knowledge of
the statistical distribution of the parameters of the col-
lison matrix, together with some simplifying assump-
tions, to study the statistical properties of the random
part of the scattering amplitude and the average cross
sections in the region of overlapping resonances.

The statistical collision matrix is given by'

gpcgpce
U-'(E, Es) = U-'(Es) —i2, , (1)

~ E—8„+-,'ir„

where Eo is a specified total energy and the channel
label c specifies the coupling scheme (ns/JM), n being
the target and projectile internal state, s the channel
spin, l the orbital angular momentum, J the total angu-
lar momentum, and M the Z projection of J.8„—~iF„is
the complex energy of the state p, .The quantities g„.are
related to the complex amplitudes 8„„'which are pro-
portional to the overlap integral of the channel wave
function and the compound-nucleus wave function. The
term U„(Ee) gives rise to the major part of the direct
interactions.

The statistical properties of the cross section, like its
average value at Eo, are obtained by averaging it over
the ensemble of random matrix functions of which U~

is an element. The ergodic theorem~ tells us that such
averages are equal to ordinary energy averages of the
appropriate functions of U8(E,Ee) over an energy in-
terval which is large compared to the mean resonance
spacing D and the average total width F.

We rewrite expression (1) as

i(f 4~")
e E 8„+',ir„—-

&yacc'-iZ, . (2)
o E 8„+,'iI'„—-

6 Nazakat Ullah, Phys. Rev. 154, 893 (1967).
~ A. M. Yaglom, An Introduction to the Theory of Stationary

Random Functions, translated by R. A. Silverman (Prentice-Hall,
Inc. , Englewood CliAs, New Jersey, 1962).
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where

s""=g"g" —(g"g' ).
and ( )„denotes an ensemble average over the resonance
parameters of the statistical collision matrix, which is
delned in terms of the eigenfunctions of a complex
boundary-value problem. ' The ensemble averages of the
quantities involving g„, can be worked out using the
formalism described in Ref. 6. We remark here that the
statistical treatment of the complex boundary-value
problem' using the random-complex-orthogonal matrix
has the further advantage that certain relations among
the average values of the parameters of the statistical
collision matrix, arising from the imposition of the uni-
tarity condition, are also satisfied.

tegral of
Z gpcgp, c'

ReU
2 ~ E—h„+-',ii'„

gf c gi "
)

E—8„——,'iF„

along a rectangle in the upper half-plane of the complex
E plane with its base of length 8' along the real axis
and of large enough height so that along the top. of the
rectangle ReU„~" has reached its limiting constant
value' which is zero because of our assumption (ii). This
gives us'

. 2~i
(ReU„s "), = lim — P R„+,

II. RANDOM PART OF THE SCATTEMNG
AMPLITUDE

The statistical properties of any random quantity
which is a function of Us(E, E0) will be studied by cal-
culating its various moments. In principle it is possible
to calculate such moments using the definition of
Us(E, E0) and the formalism described in Ref. 6, but
this will lead to quite complicated results. To bring out
the main points of the present paper, we now make the
following simplifying assumptions. (i) We consider the
case of large I'/D, for which the number of open exit
channels is large and therefore we can approximately
take I'„= I', the average width. ' (ii) For c&c', the quan-
tities g„, are uncorrelated. '

Let us consider the case of inelastic scattering; then
the Quctuating part of the partial scattering amplitude
U„.s ",using assumption (ii), can be written as

where E„+is the residue of any pole of ReV.. " which
lies in the upper half-plane and whose real coordinate is
8„.The first term in expression (5) has no pole in upper-
half plane and the second term gives us

(ReU„s "), = —lim—Q g„,*g„.*

7r
=—&g. *g"*)'

D

This js zero, because of our assumption (ii) and so

&ReU, s fl.) —P

For the calculation of

((ReU., s ")')„,
we see from expressions (5) and (6) that

gf cgg c'
s fl. —

~ E—8„+-,'ir„
(3)

gCcgf"

4 ~ E 8„+',iI'„)—-
does not have any poles in upper half-plane, also the
contribution of

The moments of U ~" will be calculated by first
averaging it over an energy interval, the width of which
is allowed to grow beyond all bounds, and then using
the resonance statistics. The energy averages will be
calculated using a technique developed by Moldauer'
and will be denoted by ( ), . We first consider the real
part of U ~ " and write'

lt'~
( " E Bq—siI'fvl—

is zero and the remaining term gives

7n
((ReU .s ")') =lim—

1
&ReU s fl') = 11m

8' This finally gives us'

gpc gpc' gvcgvc'
x p

inw v (g„—g„)+2i(1„+I„)

gpcgyc'
X Re —i+

w " E—h„+-,'il'„
«, (4) &(ReU 'fi)2) =- lg..l'lg. "I'

D F„

where 8' is the averaging interval. The integral in ex-
pression (4) is evaluated by considering the contour in-

+p
+ gcc glvc' gvcgvc'C'Ol (9)

D0
" "

& 2D
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where the function 49 is dered in Ref. 5. Using the
assumptions (i) and (ii), expression (9) becomes

~ (lg" I'lg" I'),
ReU, s 11. 2

D r

1

expressions (5) and (6) that there is a contribution from
the term

g= Z
gvcgvc' gpc gyc

~ Z—6„+-',lr„~ Z 8„—', 2r„——'

For the third-order moment of ReU„8 ",we Gnd using which can be written as

lz" I'la."I's"a»" I g" I'I x."I'g-g-
lim —P +2

g„ in W ~ '. ~ ~ ('r.)L(h.-~.)+22(r.+»)]
gpc gp, c' gvc gvc'2 Q

gpcgpc'gvcgvc'gXc gXc'+~ ~,. -+zzz —--
4'-w ~ I(@ .—@)+, 22(r +„r)],' 2, -~ . . L(h, —h„)+-',2(r„+r„)]l(h„—h„)y-', 2(r„+r„)]

(all diferent)

and a similar contribution from the complex con&ugate Q*. Under the assumptions (i) and (ii) we find

((ReU, s a.)2
3~ (Ig" I

'I g." I

' Re(g"r" )).
p2

Similarly the fourth-order moment in our approximation is given by

((ReU..s")'). =
3~' (la" I'lg" I'). '

(12)

Higher moments of ReU, .~ " can also be written down in the same fashion. However, these higher moments are
not needed if we use the principle of moments, which says that by identifying the lower moments of the two distri-
butions we bring them to approximate equality.

The ensemble averages of the quantities involving g„, can be obtained using the formalism of Ref. 6. Let us con-
sider the complex amplitude 8„., the real and imaginary parts of which will be denoted by 8„,", 8„.', respectively,
and write the joint probability

E(81.",81,',Ol, ",81. ') .
This probability is given by'

(N —2)(E—3)
&(81.")Olc', Ole" )81"')=

4n21V2IZI

——1

p~(X)Lll(1+X)]~ I ~& ~dX dX pN(ll)p(1+X)]~ ~ ~&

1 1
X 1 {(~ )11(Olc ) +2(~ )1281e Ole' +(~ )22(Olc' ) )E 1+X

1 —(li2) (N—5)

+ ((Z )11(Ole ) +2(Z )1281c Olc' +(~ )22(Olc' ) ) + —(81,"81,.'—Ol, "81,') '
~(1+~@ lzl

where E is the dimension of the complex orthogonal matrix, Z ' is the matrix

(13)

The dimension S is very large in practice. Assumption
(ii) will be satisfied if we take y to be zero. This leads
us to the result that the ensemble average in expression
(11) vanishes. Therefore, we see from expressions (8),

8 M. G. Kendall, The Advanced Theory of Statistics (Charles
GriKn and Company Ltd. , London, 1945), Vol. I, p. 83.

(10), and (12) that the lower moments of ReU„s ",
under assumptions (i) and (ii), are the same as the mo-
ments of a Gaussian distribution with mean zero and
variance

—(la, I'lr" I'),/r.
D
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A similar calculation can also be carried out for the
imaginary part of the amplitude U,. ", and it turns
out that these moments also approach the moments of
the Gaussian distribution with the same variance

~ (lg" I'lg" I').
D r

We note from expression (13) that for the case
N —+ ~, y ~ 0, correlations of the higher moments of
the amplitude 0 belonging to channels c and c' depend
on the weight function p~(X). The channels c and c' will

become completely independent of each other only if
p~(X)P.(1+X))&'I'&&~ '& becomes a 8 function. How-
ever, in the formulation in Ref. 6, there is nothing which
tells us that p~(X) should become a b function as
N-+ ~. The most which can be done about p~(X) at
present is to guess its form' so that it 6ts the plot of the
probability density function of N„obtained numerically.
The difhculty we are facing here in choosing the form of
p~(P ) is similar to the one which arises in describing the
anamolous radiation widths, where Rosenzweig had to
introduce new kinds of ensembles and choose some
plausible weight functions. ' We would like to add fur-
ther that the weight function p~(X) depends strongly on
the boundary condition chosen for the problem. The
particular choice of p~(X) in Ref. 6 was almost inde-
pendent of Ã, which may not be true for other boundary
conditions.

III. FLUCTUATION CROSS SECTION

The partial Quctuation cross section is defined by'

~-" =(~l& ')L(l &-'I'&-—l(U-')-I'j, (14)

where k, is the wave number in channel c. Using the
assumptions (i) and (ii) and expressions (2) and (10),
we get for the reaction fluctuation cross section

(~ ) I
2~)(lg" I'Ig."I').

(15)4.2& ED& r
The ensemble average of the quantity lg„, l'Ie„..l'

is given by'
X

%+3
X (A „')„(5y'+3)+(1—v')

E—1

where N„ is a parameter called the normalization con-
stant. ' The ensemble average (X„')„~&1.For the case
of large E and y=0, we have

Using the above value of the ensemble average we can
write expression (15) as

The quantities I'„, are channel parameters, ' which add
up to the total width I'„when summed over the channel
index c.

IV. CONCLUDING REMARKS

In Secs. II and III we have discussed the case of in-
elastic scattering. %e mould. now like to say a fern words
about the elastic scattering. I.et us consider the elastic
fluctuation cross section 0„".The main diKculty which
one faces here is to see whether 0„"can be represented
as

(18)

( I 8„,I
4)„= J,2L1/2(lv„')„].

X+2

Expression (18) can then be written as

(~) (2~1 (r~-" =
I

—
II
—I2(llew '&

4,2) ED) r (19)

The interesting result to note is that expression (19)
is similar to expression (3.24) of Ref. 1, except that the
factor 2(E„2)„,which occurs in expression (19) will al-

ways be ~&2, instead of a factor ~&2 as indicated in

Ref. 1.

For cases where expression (18) holds we need the en-
semble average of

I e„,I
4. It is given by6

9 N. Rosenzweig, Phys. Letters 6, 123 (1963).
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