Study of Unbound Levels in N¹⁴ by the $C^{12}(He^3, p_{\gamma})N^{14}$ Reaction

A. GALLMANN, F. HAAS, AND B. HEUSCH

Institut de Recherches Nucléaires, Universite de Strasbourg, Strasbourg, France

(Received 29 May 1967)

The 8.49-, 8.96-, and 9.17-MeV unbound levels of N¹⁴ have been studied by particle- γ angular-correlation measurements for the $C^{12}(\text{He}^3, p\gamma)N^{14}$ reaction at 8.92 MeV bombarding energy. These levels were found to γ decay in competition with proton decay with the width ratios $\Gamma_p/\Gamma_{\gamma}=3.7\pm1.1, 4.09\pm0.49$, and 10 ± 3 , respectively. The spin and parity of the N¹⁴ 8.96-MeV level have been definitively established as $J^{\pi} = 5^+$. The γ widths of the E2 transitions from the 8.96- and 8.49-MeV levels have been compared with shell-model predictions. In addition, an unusual result was obtained for the N¹⁴ 7.03-MeV level. While at $E_{\text{He}^3}=5.11$ MeV, the m=0 substate of this level was predominantly populated, it was found that at $E_{\text{He}^3}=8.92$ MeV the |m| = 1 substates were strongly populated. The latter has been interpreted as due to s=1 transfer in a possible heavy-particle stripping reaction.

I. INTRODUCTION

TN a previous paper, Gorodetzky *et al.*¹ studied the properties of the bound states of N¹⁴, excited in the reaction $C^{12}(\text{He}^3, p\gamma)N^{14}$, by particle- γ coincidence experiments at four bombarding energies: 4.62, 4.90, 5.11, and 5.46 MeV. Detenbeck, Armstrong, Figuera, and Marion,² by a careful investigation of the $C^{13}(p,\gamma)N^{14}$ reaction, observed three midget resonances corresponding to the N¹⁴ 8.49-, 8.96-, and 9.13-MeV unbound levels. Carlson³ found that the 8.49- and 8.96-MeV levels, excited by the $\mathrm{B^{10}}(\mathrm{Li^6},d)\mathrm{N^{14}}$ reaction, γ decay in competition with proton decay. This last result was confirmed by Gallmann, Haas, and Balaux⁴ for the N¹⁴ 8.96-MeV level excited by the $C^{12}(He^3, p\gamma)N^{14}$ reaction at $E_{\rm He^3} = 10$ MeV.

The 5.5-MeV Van de Graaff accelerator at the Centre de Recherches Nucléaires at Strasbourg, has recently been equipped with a doubly ionized helium beam. With the beam energies now available, the highly excited N¹⁴ unbound levels were studied by particle- γ angular correlation measurements of the reaction $C^{12}(He^3, p\gamma)N^{14}$, where the particles were detected close to 180°.5 Some further data were also obtained on the lower-lying levels of N¹⁴.

II. EXPERIMENTAL PROCEDURE

In a preliminary study, particle spectra were recorded at $(He^3)^{++}$ bombarding energies between 8.5 and 10.5 MeV. To obtain particle spectra with good resolution, a semiconductor counter (resistivity 2200Ω cm) was placed at 172°, the mean angle of detection for the subsequently used annular counter, and thin selfsupporting carbon targets of 15 μ g/cm² thickness were used. Good yield was obtained at a bombarding energy

of 8.92 MeV; this energy was chosen for the present experiments. The corresponding particle spectrum is shown in Fig. 1 for a collected charge of 400 μ C. The proton groups feeding the bound and unbound states of N^{14} in the excitation region of 5 to 10 MeV are indicated. The excitation energies of the N¹⁴ levels are taken from Carlson.³ Other peaks observed in the spectrum correspond to the elastically scattered He³ beam and to particle groups from population of excited states in C¹¹ from the reaction $C^{12}(He^3,\alpha)C^{11}$, and to the ground state of N^{13} from the reaction $C^{12}(He^3, d)N^{13}$. Particle groups with weak intensity, arising from the reactions O¹⁶- $(He^3,\alpha)O^{15}$, and $O^{16}(He^3,He^3)O^{16}$, due to oxygen impurity in the targets, are also evident. A careful energy calibration was made for this spectrum. A full width at half-maximum of \sim 3.5 channels corresponds to a resolution of ~ 25 keV.

Experimental details of the angular-correlation measurements have already been given in previous papers.^{1,4,6} We used the target chamber described in previous experiments^{4,6}; the particles were detected close to 180° in an annular silicon semiconductor counter (resistivity 1000 Ω cm), placed at 4 cm from the target. The γ rays were detected in a 5×6-in. NaI crystal, whose front face was 28.5 cm from the target. For all the experiments, the intensity of the (He³)⁺⁺ beam was approximately 0.05 μ A. Good coincidence yield was obtained using self-supporting carbon targets of 70 μ g/cm² thickness. The resolution of the particle counter was ~ 90 keV. The particle- γ coincidences were registered in a multidimensional 20 000-channel analyzer (200 channels for the γ ray spectra and 100 channels for the particle spectra). The coincidence spectra were measured twice at 5 angles: 0° , 30° , 45° , 60° , and 90° . At each angle a charge of 300 μ C was collected. These coincidence spectra were added together in order to have good statistics for determining the γ -ray decay schemes of the levels. The γ -ray spectra shown in this paper were obtained by this means.

¹S. Gorodetzky, R. M. Freeman, A. Gallmann, and F. Haas Phys. Rev. 149, 801 (1966).
² R. W. Detenbeck, J. C. Armstrong, A. S. Figuera, and J. B. Marion, Nucl. Phys. 72, 552 (1965).
⁸ R. R. Carlson, Phys. Rev. 148, 991 (1966).
⁴ A. Gallmann, F. Haas, and N. Balaux, Phys. Rev. 151, 735

^{(1966).} ⁵ A. E. Litherland and A. J. Ferguson, Can. J. Phys. 39, 788

^{(1961).}

⁶S. Gorodetzky, R. M. Freeman, A. Gallmann, F. Haas, and B. Heusch, Phys. Rev. 155, 1119 (1967).

FIG. 1. Particle spectrum for $(\text{He}^3)^{++}$ incident on an C¹² target (15 µg/cm² thickness) at a bombarding energy of 8.92 MeV. The semiconductor counter was placed at ~172°. The particle groups are labeled by the excitation energy (MeV) and nature of the final nucleus. The peaks are due mainly to elastic scattering and the C¹² (He³, ϕ)N¹⁴, C¹² (He³, α)C¹¹, C¹² (He³,d)N¹³ reactions, but some small peaks from oxygen impurity, i.e., elastic scattering and the reaction O¹⁶ (He³, α)O¹⁵, are also present

III. EXPERIMENTAL RESULTS

The angular correlations were fitted by a minimum- χ^2 calculation with a series of Legendre polynomials of the form

$$W(\theta) = a_0 [1 + a_2 P_2(\cos\theta) + a_4 P_4(\cos\theta)].$$

The coefficients a_2 and a_4 of the angular correlations for the N¹⁴ bound levels are listed in Table I, and have not been corrected for the finite size of the NaI crystal. The appropriate attenuation coefficients are $Q_2=0.97$ and $Q_4=0.91$.

The angular correlations depend on the mixing ratios of the de-excitation γ rays and also, for the C¹²(He³, $p\gamma$)-N¹⁴ reaction presently studied, on a population parameter describing the relative population P(0)/P(1) of the m=1 and 0 magnetic substates of the N¹⁴ levels.

The experimental angular correlations were analyzed using the minimum- χ^2 computer program previously described.¹

TABLE I. Coefficients of the Legendre polynomials of the angular correlations for the N^4 bound levels at 8.92-MeV beam energy.

Level (MeV)	γ-ray energy (MeV)	a_2	<i>a</i> ₄
5.10	2.79	$+0.43 \pm 0.13$	-0.88 ± 0.17
	5.10	$+0.02\pm0.05$	-0.31 ± 0.05
5.69	3.38	-0.18 ± 0.07	
	5.69	$+0.17\pm0.10$	
5.83	2.79	$+0.66\pm0.14$	-0.42 ± 0.16
	5.83	$+0.79\pm0.09$	$+0.18\pm0.09$
6.21	3.90	-0.05 ± 0.05	
	6.21	-0.07 ± 0.06	
6.44	2.49	$+0.53\pm0.05$	-0.39 ± 0.06
	6.44	$+0.59\pm0.04$	-0.45 ± 0.07
7.03	7.03	-0.66 ± 0.03	-0.20 ± 0.02
and the second	and the second		

From the p- γ angular correlations of the bound levels of 5.10-, 5.69-, 5.83-, and 6.21-MeV, at the present bombarding energy of 8.92 MeV, no information can be added to our previous results¹ obtained at different, lower bombarding energies. The p- γ angular correlations of the 6.44-MeV level will be considered in the study of the 8.96-MeV level.

At 8.92-MeV He³ beam energy, the 7.03-MeV level was strongly excited. An accurate angular correlation for the ground-state transition [Fig. 2(a)] has been measured, with the following results:

$$a_2 = -0.66 \pm 0.03$$
,
 $a_4 = -0.20 \pm 0.02$.

The corresponding solutions for the mixing ratio $\delta = E2/M1$ of the 7.03-MeV γ rays are

$$\delta = +0.7 \pm 0.1$$
 or $\delta = +1.1 \pm 0.1$.

At $E_{\text{He}^{\circ}}=5.11$ MeV, the angular correlation of the 7.03-MeV γ rays [Fig. 2(b)] leads to the following values of the Legendre-polynomial coefficients:

$$a_2 = -1.02 \pm 0.03$$
,
 $a_4 = +0.21 \pm 0.04$.

These last values are in agreement with our previous measurements.¹ The positive a_4 values obtained in our previous work¹ at the bombarding energies 4.62, 4.90, 5.11, and 5.46 MeV all led to a single solution for the mixing ratio, i.e., $\delta = +0.6 \pm 0.2$, in good agreement with the solution $\delta = +0.7 \pm 0.1$, which fits the angular correlation of the 7.03-MeV γ rays at $E_{\text{He}} = 8.92$ MeV.

The coefficients a_2 and a_4 should lie near the segment AB of the triangle indicated in Fig. 3, where A, B, and

FIG. 2. Angular correlations for the ground-state transition from the 7.03-MeV level. The correlations (A) and (B) were obtained at beam energies of 8.92 and 5.11 MeV, respectively.

C correspond to 100% population of the |m| = 0, 1, and2 magnetic substates, respectively, of the 7.03-MeV level. The vertices of the triangle were calculated assuming $\delta = +0.70$. The a_2 and a_4 values measured at beam energies of 5.11 and 8.92 MeV are plotted with their errors as rectangles in Fig. 3; these points lie near vertex A, m=0 substate strongly populated, and near vertex B, |m| = 1 substates strongly populated, respectively.

At $E_{\text{He}^3} = 5.11$ MeV, the strong population of the m=0 substate of the N¹⁴ 7.03-MeV level is not surprising, because it has been found that for all the excited bound states of N14 with nonzero spin a strong preference exists for the m=0 substate.¹ Thus the result obtained at $E_{\text{He}^3} = 8.92$ MeV seems quite remarkable. At this bombarding energy 100% population of the |m| = 1 substates is needed to account for the measured angular correlation of the 7.03-MeV level, while for the other levels P(0)/P(1) is less than 1. If the reaction mechanism contributing to the excitation of the N¹⁴ 7.03-MeV level is predominantly compound nuclear, it would not be expected that any one substate would be preferentially populated for all bombarding energies. The strong populations of the substate m=0 at $E_{\rm He^3}$ = 5.11 MeV and of the substates |m| = 1 at $E_{\text{He}^3} = 8.92$ MeV indicate that at the two bombarding energies, direct interaction is contributing significantly to the formation of the 7.03-MeV level. The strong excitation of the 7.03-MeV level at $E_{\text{He}^3}=8.92$ MeV argues in favor of a heavy-particle stripping process for two reasons. Firstly, the effect due to normal stripping should be small at 180°, while the effect due to heavyparticle stripping is near a maximum.⁷ Secondly, the 7.03-MeV level, which belongs to a core-excited configuration, could only be formed by normal stripping through the $p_{3/2}{}^6 p_{1/2}{}^2$ minor component of the C¹² ground state.⁸ Indeed, if the C¹² ground state were a pure $p_{3/2}^{8}$

FIG. 3. Triangle bounding the region of a_2 and a_4 values theoretically possible for the correlation of the 7.03-MeV γ ray, spin \rightarrow 1 transition, assuming a mixing ratio $\delta = +0.70$. Each vertex corresponds to 100% population of |m| = 0, 1, and 2 substates in the order ABC. The experimental values for the correlations are shown as rectangles and lie near vertices A and B at beam energies 5.11 and 8.92 MeV, respectively.

configuration, the 7.03-MeV state could only be formed by a heavy-particle stripping process where the outgoing proton comes from the C^{12} core. If the mechanism is heavy-particle stripping, the strong population of the |m| = 1 substates seems to show s = 1 transfer,⁹ i.e., spin flip, between the intrinsic spins of the incident He³ particle and the outgoing proton from the C¹² core. A further study of the reaction mechanism concerning the 7.03-MeV level between 4 and 11 MeV bombarding energies is planned.

The 8.96-MeV Level

A spectrum of γ rays in coincidence with protons to the triplet of levels at 8.91-, 8.96-, and 8.99-MeV is shown in Fig. 4, where the dashed line is the randomcoincidence spectrum. The triplet is unresolved in the annular counter; however, γ rays of 6.44, 2.52, 2.31. and 1.64 MeV seen in the spectrum can be attributed to a cascade through the 6.44-MeV level and there is no evidence for any other mode of decay. Only the 8.96-MeV member of the triplet, has such a decay scheme² and thus the γ rays from the triplet shown in Fig. 4 can be assigned to the 8.96-MeV level.

Two angular correlations have been measured for the 8.96-MeV level for the following transitions and γ ray energies:

(i)
$$8.96 \rightarrow 6.44$$
 transition:

2.40 MeV
$$\leq E_{\gamma} \leq 2.72$$
 MeV;

(ii)
$$6.44 \rightarrow 0$$
 transition:

5.52 MeV $\leq E_{\gamma} \leq 6.76$ MeV.

The correlations, shown in Figs. 5(a) and 5(b), were fitted to Legendre polynomial expansions yielding

(i)
$$a_2 = +0.46 \pm 0.06$$
,
 $a_4 = -0.28 \pm 0.07$;
(ii) $a_2 = +0.45 \pm 0.05$,
 $a_4 = -0.29 \pm 0.07$.

⁹ L. J. B. Goldfarb, Nucl. Phys. 57, 4 (1964).

FIG. 4. Spectrum of γ rays from the C¹²(He³, $p\gamma$)N¹⁴ reaction in coincidence with protons to the triplet of levels 8.91, 8.96, and 8.99 MeV, obtained at an (He³)⁺⁺ bombarding energy of 8.92 MeV. The γ -ray peaks, which are marked by their energies in MeV, are due to a cascade through the 6.44-MeV level. An estimation of the number of random coincidences is shown by the dashed line. A total charge of 1895 μ C was collected to obtain this spectrum.

For the angular correlation of the $8.96 \rightarrow 6.44$ transition, a contribution of the 2.49-MeV γ rays, due to the $6.44 \rightarrow 3.95$ transition, was subtracted. To obtain the correction at each angle, we measured the two p- γ angular correlations for the 6.44-MeV level, $6.44 \rightarrow 3.95$ and $6.44 \rightarrow 0$. From these identical correlations of spin $3 \rightarrow 1$ E2 transitions, shown in Figs. 5(c) and 5(d), we knew at each angle the relative intensity of the 6.44-and 2.49-MeV transitions.

Minimum- χ^2 fits to the correlation of the 8.96 \rightarrow 6.44 transition are shown in Fig. 6 with spin assignments J=3 for the 6.44-MeV level and J=1, 2, 3, 4, and 5 for the 8.96-MeV level. The value J = 0 can be excluded by the anisotropy of the angular correlation. Only spins J=3 and 5 for the 8.96-MeV level lead to good fits to the measured angular correlation. The χ^2 value obtained for J=6 and pure octupole radiation is 13, and thus J=6 is eliminated. A simultaneous fit to the correlations of the 2.52- and 6.44-MeV transitions, taking the latter to be pure E_2 , is shown in Fig. 7 with spin assignments J=3 and 5 for the 8.96-MeV level. The spin assignment for the N¹⁴ 8.96-MeV level is definitively J=5. From Fig. 6, the value of the mixing ratio for the $8.96 \rightarrow 6.44$ MeV transition is found to be $\delta = -0.01 \pm 0.06$, indicating that the 2.52-MeV γ -ray transition is a pure E2 or

M2 transition. (The sign of δ corresponds to an M3/E2 mixture.) With the value J=5 for the 8.96-MeV level, the spins of the levels in the cascade $8.96 \rightarrow 6.44 \rightarrow 0$ form a monotonic sequence $(5 \rightarrow 3 \rightarrow 1)$; the transitions are basic and so, as expected,^{10,11} we find that the angular correlations are identical.

The protons feeding the 8.96-MeV level are only partially in coincidence with γ rays, i.e., some of the decay is by proton emission. The ratio Γ_p/Γ_{γ} could be obtained by

(i) Measuring the ratio R_p of the number of protons feeding the 8.96-MeV level to the number of protons feeding the 6.44-MeV level. By using the particle spectrum of Fig. 1, we obtain

$$R_p = 1.11 \pm 0.09$$
.

As can be seen in this spectrum, the triplet of levels 8.91, 8.96, and 8.99 MeV, is not totally resolved. A fit of three Gaussian distributions plus a constant background was made in the region of channel numbers 240–260, in order to obtain an accurate value of the number of protons feeding the 8.96-MeV level.

(ii) Measuring the ratio R_{γ} of the number of 6.44-MeV γ rays in coincidence with protons feeding the

FIG. 5. Angular correlations for the reaction $C^{12}(\text{He}^3, \rho\gamma)N^{14}$ for the 8.96- and 6.44-MeV levels of N^{14} . The correlations are for a bombarding energy of 8.92 MeV; (A) is for the 8.96 \rightarrow 6.44 transition and (B) is for the (8.96) \rightarrow 6.44 \rightarrow 0 transition; (C) is for the 6.44 \rightarrow 3.95 transition (3⁺ \rightarrow 1⁺ E2 transition); (D) is for the 6.44-MeV ground state transition (3⁺ \rightarrow 1⁺ E2 transition). The lines are the correlations according to the coefficients given in Table I and in the text.

J. Weneser and D. R. Hamilton, Phys. Rev. 92, 321 (1953).
 S. Raboy and V. E. Krohn, Phys. Rev. 98, 24 (1955).

FIG. 6. Minimum χ^2 analysis of the correlation of the $8.96 \rightarrow 6.44$ transition of N¹⁴, trying values J = 1-5 for the spin of the 8.96-MeV level.

6.44-MeV level to the 6.44-MeV γ rays in coincidence with the protons feeding the 8.96-MeV level, corrected for the angular correlations. We found

$$R_{\gamma} = 4.59 \pm 0.23$$

By combining these two results we obtained

$$\Gamma_p/\Gamma_\gamma = (R_p \times R_\gamma) - 1 = 4.09 \pm 0.49.$$

For the 8.96-MeV level Detenbeck *et al.*,² using the $C^{13}(p,\gamma)N^{14}$ reaction, reported the following result:

$$\omega [\Gamma_p \times \Gamma_{\gamma} / (\Gamma_p + \Gamma_{\gamma})] = 3 \times 10^{-3} \,\mathrm{eV}, \quad \omega = 11/4.$$

This result, combined with the measured width ratio Γ_p/Γ_γ of the present experiment, leads to the following widths for the 8.96-MeV level:

$$\Gamma_{\gamma} = (1.36 \pm 0.21) \times 10^{-3} \text{ eV},$$

 $\Gamma_{p} = (5.56 \pm 0.87) \times 10^{-3} \text{ eV}.$

The strengths of the E2 or $M2 8.96 \rightarrow 6.44$ transition are (in Weisskopf units¹²)

E2 transition:
$$|M(E2)|^2 = 8.0 \pm 1.5$$
,

M2 transition:
$$|M(M2)|^2 = 153 \pm 24$$

 TABLE II. Résumé of results for the N¹⁴ 8.96-MeV and 8.49-MeV unbound levels.

Level (MeV)	Jπ	(10^{-3} eV)	(10^{-3} eV)	Transition (MeV)	$ M(E2) ^2$ (W.u.)
8.96 8.49	5+ 4 ^{-a}	5.56 ± 0.87 21.0 ± 9.8	1.36 ± 0.21 5.6 ± 2.0	$\begin{array}{c} 8.96 \rightarrow 6.44 \\ 8.49 \rightarrow 5.10 \end{array}$	$8.5 \pm 1.5 \\ 8 \pm 3$

* Reference 2.

An M2 transition being ruled out as unreasonably strong, we conclude that the $8.96 \rightarrow 6.44$ transition is a $5^+ \rightarrow 3^+ E2$ transition (see Table II).

The 8.49-MeV Level

A spectrum of γ rays in coincidence with protons to the 8.49-MeV level is shown in Fig. 8. Gamma rays of 5.10, 3.39, 2.79, and 2.31 MeV can be seen from the cascade through the 5.10-MeV level. In agreement with Carlson,³ we found that there is no evidence for any other mode of decay. The dashed line in Fig. 8 is the random-coincidence spectrum. Angular correlations for the 8.49-MeV level were obtained with the following results:

8.49
$$\rightarrow$$
 5.10 transition: $a_2 = +0.39 \pm 0.13$,
 $a_4 = -0.15 \pm 0.15$,
5.10 \rightarrow 0 transition: $a_2 = +0.13 \pm 0.10$,
 $a_4 = -0.07 \pm 0.11$.

We were not able to determine a unique value of J and spins J=1-4 for the 8.49-MeV level lead to acceptable fits. For the χ^2 analysis we have taken into account

FIG. 7. Simultaneous minimum χ^2 analysis of the 2.52- and 6.44-MeV transitions of the decay of the 8.96-MeV level of N¹⁴. The minimum χ^2 values have been calculated for the remaining possible spin assignments to the 8.96-MeV level, J=3 or 5 and varying the mixing ratio of the 2.52-MeV transition. The 6.44-MeV transition is an E2 transition.

¹² D. H. Wilkinson, in *Nuclear Spectroscopy*, edited by F. Ajzenberg-Selove (Academic Press Inc., New York, 1960), Part B, p. 852.

FIG. 8. Spectrum of γ rays from the C¹²(He³, $p\gamma$)N¹⁴ reaction in coincidence with protons to the 8.49-MeV level, obtained at an $(He^3)^{++}$ bombarding energy of 8.92 MeV. The γ -ray peaks, which are marked by their energies in MeV, are due to cascade through the 5.10 -MeV level. An estimation of the number of random coincidences is shown by the dashed line. A total charge of 1895 μ C was collected to obtain this spectrum.

the known E1, M2, E3 character of the $5.10 \rightarrow 0$ transition.¹ For each of these J values, we established the mixing ratio of the $8.49 \rightarrow 5.10$ transition. For J=4, which is the only value consistent with the experimental data of Detenbeck et al., we find

$$+0.18 \ge \delta \ge -0.19$$
 ($\delta = M3/E2$).

The width ratio for the 8.49-MeV level has been measured in a similar manner to that described in the analysis of the 8.96-MeV level, with the following result:

$$\Gamma_p/\Gamma_{\gamma}=3.7\pm1.1$$
.

For the 8.49-MeV level, Detenbeck et al. obtained

$$\omega [\Gamma_p \Gamma_{\gamma} / (\Gamma_p + \Gamma_{\gamma})] = 10^{-2} \text{ eV}, \quad \omega = 9/4.^{12a}$$

This last result, combined with the width ratio, leads to the following widths:

$$\Gamma_{\gamma} = (5.6 \pm 2.0) \times 10^{-3} \text{ eV},$$

 $\Gamma_{p} = (21.0 \pm 9.8) \times 10^{-3} \text{ eV}.$

With the assumption $\Gamma_p \gg \Gamma_{\gamma}$, Detenbeck *et al.* fixed the E2 character of the $8.49 \rightarrow 5.10$ transition and the negative parity of the 8.49-MeV level. Taking into account the width ratio measured in our experiment,

^{12a} Footnote added in proof. D. F. Hebbard has drawn our attention to a difficulty in the interpretation of the $C^{13}(p,\gamma)$ results for the 8.49-MeV state. In the event that $\omega \neq 9/4$, one obtains the following values for the γ width of the 8.49-MeV state

Assumed J of 8.49-MeV level	ω	Γ_{γ} in 10 ⁻³ eV
1	3/4	1.9 ± 0.7
2	5/4	3.1 ± 1.1
3	7/4	4.3 ± 1.6
		and the second

The values of δ for these different possible J values would be: $J=1 (1 \rightarrow 2)$ All values of δ possible

$$J = 2 \quad (2 \to 2) + 0.23 \ge \delta \ge -\infty \qquad (\delta = E2/M1)$$

$$I = 3 \quad (3 \to 2) - 0 \quad 75 \ge \delta \ge -0 \quad 27 \quad \text{or} \quad \delta \le -2 \quad 75 \quad (\delta = E2/M1).$$

this assignment remains true because Γ_{γ} varies only slightly with Γ_p . The γ width of the 8.49-MeV level corresponds to the following E2 transition strength of the $8.49 \rightarrow 5.10$ transition $(4 \rightarrow 2)$:

$$|M(E2)|^2 = 8 \pm 3$$
.

The M2 transition strength would be

$$|M(M2)|^2 = 142 \pm 52$$
.

To check the consistency of the width-ratio results, it had to be shown that, e.g., for the two bound levels of 6.44- and 5.10-MeV, the ratio R_{p}' of the intensities of the protons feeding the 6.44- and the 5.10-MeV levels is equal to the ratio R_{γ}' of the intensities of the 6.44and 5.10-MeV γ rays in coincidence with the corresponding proton groups feeding the levels considered. We found

$$R_p' = 2.6 \pm 0.3$$
 and $R_{\gamma}' = 2.7 \pm 0.15$.

The γ -ray intensities were corrected this time for photofractions, total efficiencies, and angular correlations.

The 9.17-MeV Level

Gamma rays of about 9 MeV were observed in the coincidence γ -ray spectra. They were attributed to the ground-state transition of the N¹⁴ 9.17-MeV level. A careful examination of the coincidence spectra, of the particle spectra at $E_{\rm He^3}$ = 8.92 MeV and at neighboring bombarding energies has shown that the N¹⁴ 9.13-MeV level is very weakly excited at $E_{\text{He}^3} = 8.92$ and so, does not contribute to the 9 MeV γ -ray transition. An anisotropy given by $a_2 = +0.70 \pm 0.20$ was measured for the 9.17-MeV ground-state transition. The error of about 30% for the a_2 coefficient is due to the low number of counts in the coincidence spectra. The angular correlation can only be fitted by spin values J=1 or 2 for the 9.17-MeV level. This state has been extensively studied,¹³⁻¹⁶ and a spin-parity assignment $J^{\pi} = 2^+$ has been attributed to this level. To determine the widths ratio Γ_p/Γ_γ of the 9.17-MeV level, the intensities of the particle groups corresponding to the 9.17- and 6.44-MeV levels were compared as were the intensities of the 9.17- and 6.44-MeV γ rays in the coincidence γ -ray spectra. The ratio, taking into account corrections for photofractions, total efficiencies, branching ratios, and angular correlations, was found to be $\Gamma_p/\Gamma_\gamma = 10 \pm 3$. Hanna and Meyer-Schutzmeister¹⁷ have measured the total level width $\Gamma = 77 \pm 12$ eV and the γ width $\Gamma_{\gamma} = 8.7 \pm 1.5$ eV, with a corresponding width ratio $\Gamma_p/\Gamma_{\gamma} = 8 \pm 2$, in reasonable agreement with the ratio measured in this experiment.

¹³ A. A. Strassenburg, R. E. Hubert, R. W. Krone, and F. W.

 ¹⁴ H. J. Rose, W. Trost, and F. Riess, Nucl. Phys. **12**, 510 (1959).
 ¹⁵ H. J. Rose, Nucl. Phys. **19**, 113 (1960).
 ¹⁶ H. J. Rose, F. Riess, and W. Trost, Nucl. Phys. **21**, 367 (1960).
 ¹⁷ S. S. Hanna and L. Meyer-Schützmeister, Phys. Rev. **115**, 986 (1950). (1959).

IV. DISCUSSION

Particle decay of the 8.49-MeV $(J^{\pi}=4^{-})$ and 8.96-MeV $(J^{\pi}=5^{+})$ levels requires l=4 and l=5 proton waves, respectively. The penetrability of such high-angular-momentum proton waves is sufficiently low to account, in a great part, for the very small proton widths of these levels, i.e., $\Gamma_{p}=(5.56\pm0.87)\times10^{-3}$ eV for the 8.96-MeV level and $\Gamma_{p}=(21.0\pm9.8)\times10^{-3}$ eV for the 8.49-MeV level. The following proton reduced widths have been obtained: $(4.08\pm0.64)\times10^{-3}$ eV $(\sim 1.3\times10^{-3}$ of the Wigner limit) for the 8.96-MeV level and $(2.6\pm1.2)\times10^{-3}$ eV $(\sim 8.5\times10^{-4}$ of the Wigner limit) for the 8.49-MeV level.

The 8.96-MeV Level

The spin-parity assignment $J^{\pi} = 5^+$ for the 8.96-MeV level suggests immediately that it is the $(d_{5/2})^2$, $J^{\pi} = 5^+$, T = 0 level predicted by True¹⁸ to lie at an excitation energy of 9.32 MeV. This level was first observed in the $C^{12}(\alpha,d)N^{14}$ reaction at an excitation energy of 9.0 ± 0.2 MeV.^{19,20} The 8.96-MeV level decays to the 6.44-MeV level by an E2 transition. We now compare the determined experimental γ width of this level with the prediction of the shell model. We adopt the common approximation of regarding C¹² as a closed subshell.

For the 8.96-MeV state $(J^{\pi}=5^+)$ we take the wave function of True:

$$\psi(5) = C_{5/2} \psi(d_{5/2})^2.$$

The 6.44-MeV level $(J^{\pi}=3^+)$ has a wave function of the form

$$\psi(3) = C_{1/2,5/2}^{3} \psi(s_{1/2}d_{5/2}) + C_{3/2,3/2}^{3} \psi(d_{3/2})^{2} + C_{3/2,5/2}^{3} \psi(d_{3/2}d_{5/2}) + C_{5/2,5/2}^{3} \psi(d_{5/2})^{2}.$$

We have calculated the strength of the *E*2 transition connecting these two levels with the following result:

$$\Lambda(E2) = 2 \left[C_{5/2,5/2} \left\{ C_{1/2,5/2} \right\} + 0.3536 C_{3/2,5/2} \right] + 0.5774 C_{5/2,5/2} \left\{ \gamma^{-2} (1+2\beta)^2 \right\} \right]$$

The relation between the transition strength $\Lambda(E2)$ and the radiative width $\Gamma(E2)$ is given by Warburton and Pinkston.²¹ The square of the radial integral $\langle r^2 \rangle^2$, appearing in the expression for $\Lambda(E2)$, has been calculated using harmonic oscillator radial wave functions which have a radial fall-off of the form, $\exp[-\frac{1}{2}\gamma r^2]$. Following Visscher and Ferrell,²² we take $\gamma^{-1/2} = 1.68$ F. The quantity β which appears in the expression for $\Lambda(E2)$ is the effective-charge parameter of the weak-coupling approximation such that proton and neutron have charge $(1+\beta)e$ and βe , respectively. The evidence from neighboring nuclei is that β is approximately 0.5. Numerical results for the E2 radiative width have been calculated for two different sets of wave functions. The first is extreme j-j coupling, for which we found

$$\Gamma(E2) = 0.52 \times 10^{-3} \, \text{eV}$$
.

The second set is that of True,¹⁸ for which we obtained

$$\Gamma(E2) = 0.60 \times 10^{-3} \,\mathrm{eV}$$
.

The maximum value of $\Gamma(E2)$ is obtained by using the wave function of True for the 6.44-MeV level with the magnitude of the $(d_{5/2})^2$ amplitude increased by a factor of 1.25. We found

$$\Gamma(E2) = 0.70 \times 10^{-3} \text{ eV}.$$

However, this last result remains a factor of 2 smaller than our experimental width i.e., $\Gamma(E2) = (1.36 \pm 0.21) \times 10^{-3}$ eV. An increase in β would bring the theoretical predictions into better agreement with experiment but a value $\beta = 0.9$ is needed for a complete accord. The discrepancy is almost certainly due to the inadequacies of our assumption of an inert $(p_{3/2})^8$ core.

The 8.49-MeV Level

Detenbeck *et al.*² assigned the dominant core-excited configuration $(p_{3/2})^{-1}(p_{1/2})^2(d_{5/2})$ to the 8.49-MeV level $(J^{\pi}=4^{-})$. Assuming this configuration and spin parity, we calculated the radiative width of the *E*2 transition connecting the 8.49-MeV level and the 5.10-MeV level [dominant configuration: $(p_{1/2})(d_{5/2})$]. The following result was obtained:

$$\Gamma(E2) = 1.91 \times 10^{-3} \text{ eV}$$

This value is to be compared to our experimental width, i.e.,

$$\Gamma(E2) = (5.6 \pm 2.0) \times 10^{-3} \text{ eV}$$

V. CONCLUSIONS

By particle- γ angular correlation measurements, we have studied the N¹⁴ 8.49-, 8.96-, and 9.17-MeV unbounds levels. A spin-parity assignment $J^{\pi} = 5^+$ has been established for the 8.96-MeV level. Very small total widths have been found for the 8.49- and 8.96-MeV unbound levels. The experimental γ widths of the E2 transitions from these levels are about a factor of 2 or 3 larger than simple shell-model predictions.

ACKNOWLEDGMENT

We should like to thank Dr. E. K. Warburton for useful comments on this manuscript.

¹⁸ W. W. True, Phys. Rev. 130, 1530 (1963).

¹⁹ B. G. Harvey, J. Cerny, R. H. Pehl, and E. Rivet, Nucl. Phys. **39**, 160 (1962).

 ²⁰ R. H. Pehl, E. Rivet, J. Cerny, and B. G. Harvey, Phys. Rev. 137, B114 (1964).
 ²¹ E. K. Warburton and W. T. Pinkston, Phys. Rev. 118, 733

^{(1960).} ²² W. M. Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957).