Study of Unbound Leve1s in $\frac{164. NU}{N^{14}}$ by 1 by the $C^{12}(\text{He}^3, p_{\Upsilon})N^{14}$ Reaction

A. GALLMANN, F. HAAS, AND B. HEUSCH

Institut de Recherches Nucléaires, Universite de Strasbourg, Strasbourg, France

(Received 29 May 1967)

The 8.49-, 8.96-, and 9.17-MeV unbound levels of $N¹⁴$ have been studied by particle- γ angular-correlation measurements for the C¹²(He³, $p\gamma$)N¹⁴ reaction at 8.92 MeV bombarding energy. These levels were found to γ decay in competition with proton decay with the width ratios $\Gamma_p/\Gamma_q = 3.7 \pm 1.1$, 4.09 ± 0.49 , and 10 ± 3 , respectively. The spin and parity of the N¹⁴ 8.96-MeV level have been definitively established as $J^* = 5^+$. The γ widths of the E2 transitions from the 8.96- and 8.49-MeV levels have been compared with shell-model predictions. In addition, an unusual result was obtained for the N¹⁴ 7.03-MeV level. While at $E_{\text{He}} = 5.11$ MeV, the $m=0$ substate of this level was predominantly populated, it was found that at $E_{\text{He}} = 8.92 \text{ MeV}$ the $|m| = 1$ substates were strongly populated. The latter has been interpreted as due to $s = 1$ transfer in a possible heavy-particle stripping reaction.

I. INTRODUCTION

N a previous paper, Gorodetzky et al.¹ studied the properties of the bound states of $N¹⁴$, excited in the reaction $C^{12}(\text{He}^3, p\gamma)N^{14}$, by particle- γ coincidence experiments at four bombarding energies: 4.62, 4.90, 5.11, and 5.46 MeV. Detenbeck, Armstrong, Figuera, and Marion,² by a careful investigation of the $C^{13}(p,\gamma)N^4$ reaction, observed three midget resonances corresponding to the N^{14} 8.49-, 8.96-, and 9.13-MeV unbound levels. Carlson' found that the 8.49- and 8.96-MeV levels, excited by the $B^{10}(Li^6, d)N^{14}$ reaction, γ decay in competition with proton decay. This last result was confirmed by Gallmann, Haas, and Balaux⁴ for the N^{14} 8.96-MeV level excited by the $C^{12}(He^3, p\gamma)N^{14}$ reaction at $E_{\text{He}} = 10 \text{ MeV}.$

The 5,5-MeV Van de Graaff accelerator at the Centre de Recherches Nucleaires at Strasbourg, has recently been equipped with a doubly ionized helium beam. With the beam energies now available, the highly excited N^{14} unbound levels were studied by particle- γ angular correlation measurements of the reaction $C^{12}(He^3, p\gamma)N^{14}$, where the particles were detected close to 180'.' Some further data were also obtained on the lower-lying levels of N^{14} .

II. EXPERIMENTAL PROCEDURE

In a preliminary study, particle spectra were recorded at $(He³)⁺⁺$ bombarding energies between 8.5 and 10.5 MeV. To obtain particle spectra with good resolution, a semiconductor counter (resistivity 2200Ω cm) was placed at 172', the mean angle of detection for the subsequently used annular counter, and thin selfsupporting carbon targets of 15 μ g/cm² thickness were used. Good yield was obtained at a bombarding energy

of 8.92 MeV; this energy was chosen for the present experiments. The corresponding particle spectrum is shown in Fig. 1 for a collected charge of 400 μ C. The proton groups feeding the bound and unbound states of N¹⁴ in the excitation region of 5 to 10 MeV are indicated. The excitation energies of the $N¹⁴$ levels are taken from Carlson.³ Other peaks observed in the spectrum correspond to the elastically scattered He³ beam and to particle groups from population of excited states in C¹¹ from the reaction $C^{12}(\overline{He}^3, \alpha) C^{11}$, and to the ground state of N^{13} from the reaction $C^{12}(\text{He}^3,d)N^{13}$. Particle groups with weak intensity, arising from the reactions O^{16} - $(He³, \alpha)$ O¹⁵, and O¹⁶(He³,He³)O¹⁶, due to oxygen impurity in the targets, are also evident. A careful energy calibration was made for this spectrum. A full width at half-maximum of \sim 3.5 channels corresponds to a resolution of \sim 25 keV.

Experimental details of the angular-correlation measurements have already been given in previou papers. We used the target chamber described in previous experiments^{4,6}; the particles were detected close to 180' in an annular silicon semiconductor counter (resistivity 1000 Ω cm), placed at 4 cm from the target. The γ rays were detected in a 5 \times 6-in. NaI crystal, whose front face was 28.5 cm from the target. For all the experiments, the intensity of the $(He³)⁺⁺$ beam was approximately $0.05 \mu A$. Good coincidence yield was obtained using self-supporting carbon targets of 70 μ g/cm² thickness. The resolution of the particle counter was \sim 90 keV. The particle- γ coincidences were registered in a multidimensional 20000-channel analyzer (200 channels for the γ ray spectra and 100 channels for the particle spectra). The coincidence spectra were measured twice at 5 angles: 0° , 30° , 45° , 60° , and 90° . At each angle a charge of 300 μ C was collected. These coincidence spectra were added together in order to have good statistics for determining the γ -ray decay schemes of the levels. The γ -ray spectra-shown in this paper were obtained by this means.

¹ S. Gorodetzky, R. M. Freeman, A. Gallmann, and F. Haas
Phys. Rev. 149, 801 (1966).
² R. W. Detenbeck, J. C. Armstrong, A. S. Figuera, and J. B.
Marion, Nucl. Phys. 72, 552 (1965).
³ R. R. Carlson, Phys. Rev. 148,

^{(1966).} [~] A. E. I.itherland and A. J. Ferguson, Can. J. Phys. ³⁹

^{(1961).}

^{, 788 &}lt;sup>6</sup> S. Gorodetzky, R. M. Freeman, A. Gallmann, F. Haas, and B. Heusch, Phys. Rev. 155, 1119 (1967).

Fig. 1. Particle spectrum for (He³)⁺⁺ incident on an C¹² target (15 μ g/cm² thickness) at a bombarding energy of 8.92 MeV. The semiconductor counter was placed at ~172°. The particle groups are labeled by the ex

III. EXPERIMENTAL RESUL'ZS

The angular correlations were fitted by a minimum- x^2 calculation with a series of Legendre polynomials of the form

$$
W(\theta) = a_0 \big[1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) \big].
$$

The coefficients a_2 and a_4 of the angular correlations for the N^{14} bound levels are listed in Table I, and have not been corrected for the 6nite size of the NaI crystal. The appropriate attenuation coefficients are $Q_2=0.97$ and $Q_4 = 0.91$.

The angular correlations depend on the mixing ratios of the de-excitation γ rays and also, for the C¹²(He³, $p\gamma$)-N'4 reaction presently studied, on a population parameter describing the relative population $P(0)/P(1)$ of the $m=1$ and 0 magnetic substates of the N¹⁴ levels.

The experimental angular correlations were analyzed using the minimum- X^2 computer program previously described.¹

TABLE I. Coefficients of the Legendre polynomials of the angular correlations for the $N¹⁴$ bound levels at 8.92-MeV beam energy.

Level (MeV)	γ -ray energy (MeV)	a ₂	a ₄
5.10	2.79	$+0.43 + 0.13$	$-0.88 + 0.17$
	5.10	$+0.02 + 0.05$	$-0.31 + 0.05$
5.69	3.38	$-0.18 + 0.07$	
	5.69	$+0.17 + 0.10$	
5.83	2.79	$+0.66 + 0.14$	$-0.42 + 0.16$
	5.83	$+0.79 + 0.09$	$+0.18 + 0.09$
6.21	3.90	$-0.05 + 0.05$	
	6.21	$-0.07 + 0.06$	
6.44	2.49	$+0.53 + 0.05$	$-0.39 + 0.06$
	6.44	$+0.59 \pm 0.04$	$-0.45 + 0.07$
7.03	7.03	$-0.66 + 0.03$	$-0.20 + 0.02$

From the $p-\gamma$ angular correlations of the bound levels of 5.10-, 5.69-, 5.83-, and 6.21-MeV, at the present bombarding energy of 8.92 MeV, no information can be added to our previous results¹ obtained at different, lower bombarding energies. The $p-\gamma$ angular correlations of the 6.44-MeV level will be considered in the study of the 8.96-MeV level.

At 8.92-MeV He' beam energy, the 7.03-MeV level was strongly excited. An accurate angular correlation for the ground-state transition [Fig. $2(a)$] has been measured, with the following results:

$$
a_2 = -0.66 \pm 0.03
$$
\n
$$
a_4 = -0.20 \pm 0.02
$$

The corresponding solutions for the mixing ratio $\delta = E2/M1$ of the 7.03-MeV γ rays are

$$
\delta = +0.7 \pm 0.1
$$
 or $\delta = +1.1 \pm 0.1$.

At $E_{\text{He}} = 5.11$ MeV, the angular correlation of the 7.03-MeV γ rays [Fig. 2(b)] leads to the following values of the Legendre-polynomial coefficients:

$$
a_2 = -1.02 \pm 0.03,
$$

$$
a_4 = +0.21 \pm 0.04.
$$

These last values are in agreement with our previous measurements.¹ The positive a_4 values obtained in our previous work' at the bombarding energies 4.62, 4.90, 5.1.1, and 5.46 MeV all led to a single solution for the mixing ratio, i.e., $\delta = +0.6 \pm 0.2$, in good agreement with the solution $\delta = +0.7 \pm 0.1$, which fits the angular correlation of the 7.03-MeV γ rays at E_{He} ³=8.92 MeV.

The coefficients a_2 and a_4 should lie near the segment AB of the triangle indicated in Fig. 3, where A, B, and

FIG. 2. Angular correlations for the ground-state transition from the 7.03-MeV level. The correlations (A) and (B) were obtaine
at beam energies of 8.92 and 5.11 MeV, respectively.

C correspond to 100% population of the $|m| = 0, 1$, and 2 magnetic substates, respectively, of the 7.03-MeV level. The vertices of the triangle were calculated assuming $\delta = +0.70$. The a_2 and a_4 values measured at beam energies of 5.11 and 8.92 MeV are plotted with their errors as rectangles in Fig. 3; these points lie near vertex A, $m=0$ substate strongly populated, and near vertex B, $|m|=1$ substates strongly populated, respectively.

At $E_{\text{He}} = 5.11$ MeV, the strong population of the $m=0$ substate of the N¹⁴ 7.03-MeV level is not surprising, because it has been found that for all the excited bound states of N^{14} with nonzero spin a strong preference exists for the $m=0$ substate.¹ Thus the result obtained at $E_{\text{He}} = 8.92$ MeV seems quite remarkable. At this bombarding energy 100% population of the $|m| = 1$ substates is needed to account for the measured angular correlation of the 7.03-MeV level, while for the other levels $P(0)/P(1)$ is less than 1. If the reaction mechanism contributing to the excitation of the N^{14} 7.03-MeV level is predominantly compound nuclear, it would not be expected that any one substate would be preferentially populated for all bombarding energies. The strong populations of the substate $m=0$ at E_{He^3} $=5.11$ MeV and of the substates $|m|=1$ at $E_{\text{He}}^3=8.92$ MeV indicate that at the two bombarding energies, direct interaction is contributing significantly to the formation of the 7.03-MeV level. The strong excitation of the 7.03-MeV level at $E_{\text{He}} = 8.92$ MeV argues in favor of a heavy-particle stripping process for two reasons. Firstly, the effect due to normal stripping should be small at 180° , while the effect due to heavyparticle stripping is near a maximum.⁷ Secondly, the 7.03-MeV level, which belongs to a core-excited con-6guration, could only be formed by normal stripping through the $p_{3/2}$ ⁶ $p_{1/2}$ ² minor component of the C¹² ground state.⁸ Indeed, if the C¹² ground state were a pure $p_{3/2}$ ¹

⁸ D. Kurath, Phys. Rev. 101, 216 (1956).

FIG. 3. Triangle bounding the region of a_2 and a_4 values theoretically possible for the correlation of the 7.03-MeV γ ray, spin $2 \rightarrow 1$ transition, assuming a mixing ratio $\delta = +0.70$. Each vertex corresponds to 100% population of $|m| = 0$, 1, and 2 substates in the order ABC. The experimental values for the correlations are shown as rectangles and lie near vertices A and B at beam energie
5.11 and 8.92 MeV, respectively.

configuration, the 7.03-MeV state could only be formed by a heavy-particle stripping process where the outgoing proton comes from the C^{12} core. If the mechanism is heavy-particle stripping, the strong population of the $|m| = 1$ substates seems to show $s = 1$ transfer,⁹ i.e., spin flip, between the intrinsic spins of the incident He³ particle and the outgoing proton from the $C¹²$ core. A further study of the reaction mechanism concerning the 7.03-MeV level between 4 and 11 MeV bombarding energies is planned.

The 8.96-Mev Level

A spectrum of γ rays in coincidence with protons to the triplet of levels at 8.91-, 8.96-, and 8.99-MeV is shown in Fig. 4, where the dashed line is the randomcoincidence spectrum. The triplet is unresolved in the annular counter; however, γ rays of 6.44, 2.52, 2.31, and 1.64 MeV seen in the spectrum can be attributed to a cascade through the 6.44-MeV level and there is no evidence for any other mode of decay. Only the 8.96- MeV member of the triplet, has such a decay scheme' and thus the γ rays from the triplet shown in Fig. 4 can be assigned to the 8.96-MeV level.

Two angular correlations have been measured for the 8.96-MeV level for the following transitions and γ ray energies:

(i)
$$
8.96 \rightarrow 6.44
$$
 transition:

$$
2.40\,\, {\rm MeV}\,{\leqslant}\, E_\gamma\,{\leqslant}\, 2.72\,\, {\rm MeV} \, ;
$$

(ii)
$$
6.44 \rightarrow 0
$$
 transition:

5.52 MeV $\leq E_{\gamma} \leq 6.76$ MeV.

The correlations, shown in Figs. $5(a)$ and $5(b)$, were fitted to Legendre polynomial expansions yielding

(i)
\n
$$
a_2 = +0.46 \pm 0.06,
$$
\n
$$
a_4 = -0.28 \pm 0.07;
$$
\n(ii)
\n
$$
a_2 = +0.45 \pm 0.05,
$$
\n
$$
a_4 = -0.29 \pm 0.07.
$$

⁹ L.J. B. Goldfarb, Nucl. Phys. 57, 4 (1964).

FIG. 4. Spectrum of γ rays from the C¹²(He³, $p\gamma$)N¹⁴ reaction in coincidence with protons to the triplet of levels 8.91, 8.96, and 8.99 MeV, obtained at an $(He^{3})^{++}$ bombarding energy of 8.92 MeV. The γ -ray peaks, which are marked by their energies in MeV, are due to a cascade through the 6.44-MeV level. An estimation of the number of random coincidences is shown by the dashed line. A total charge of $1895 \mu C$ was collected to obtain this spectrum.

For the angular correlation of the $8.96 \rightarrow 6.44$ transition, a contribution of the 2.49-MeV γ rays, due to the $6.44 \rightarrow 3.95$ transition, was subtracted. To obtain the correction at each angle, we measured the two $p-\gamma$ angular correlations for the 6.44-MeV level, $6.44 \rightarrow 3.95$ and $6.44 \rightarrow 0$. From these identical correlations of spin $3 \rightarrow 1$ E2 transitions, shown in Figs. 5(c) and 5(d), we knew at each angle the relative intensity of the 6.44 and 2.49-MeV transitions.

Minimum- χ^2 fits to the correlation of the 8.96 \rightarrow 6.44 transition are shown in Fig. 6 with spin assignments $J=3$ for the 6.44-MeV level and $J=1, 2, 3, 4$, and 5 for the 8.96-MeV level. The value $J=0$ can be excluded by the anisotropy of the angular correlation. Only spins $J=3$ and 5 for the 8.96-MeV level lead to good fits to the measured angular correlation. The $X²$ value obtained for $J=6$ and pure octupole radiation is 13, and thus $J=6$ is eliminated. A simultaneous fit to the correlations of the 2.52- and 6.44-MeV transitions, taking the latter to be pure E_2 , is shown in Fig. 7 with spin assignments $J=3$ and 5 for the 8.96-MeV level. The spin assignment for the N¹⁴ 8.96-MeV level is definitively $J=5$. From Fig. 6, the value of the mixing ratio for the $8.96 \rightarrow 6.44$ MeV transition is found to be $\delta = -0.01 \pm 0.06$, indicating that the 2.52-MeV γ -ray transition is a pure E2 or

 $M2$ transition. (The sign of δ corresponds to an $M3/E2$ mixture.) With the value $J=5$ for the 8.96-MeV level, the spins of the levels in the cascade $8.96 \rightarrow 6.44 \rightarrow 0$ the spins of the levels in the cascade $8.96 \rightarrow 6.44 \rightarrow 6$
form a monotonic sequence $(5 \rightarrow 3 \rightarrow 1)$; the transitions
are basic and so, as expected,^{10,11} we find that the are basic and so, as expected, $10,11$ we find that the angular correlations are identical.

The protons feeding the 8.96-MeV level are only partially in coincidence with γ rays, i.e., some of the decay is by proton emission. The ratio Γ_p/Γ_γ could be obtained by

(i) Measuring the ratio R_p of the number of protons feeding the 8.96-MeV level to the number of protons feeding the 6.44-MeV level. By using the particle spectrum of Fig. 1, we obtain

$$
R_p = 1.11 \pm 0.09.
$$

As can be seen in this spectrum, the triplet of levels 8.91, 8.96, and 8.99 MeV, is not totally resolved. A fit of three Gaussian distributions plus a constant background was made in. the region of channel numbers ²⁴⁰—260, in order to obtain an accurate value of the number of protons feeding the 8.96-MeV level.

(ii) Measuring the ratio R_{γ} of the number of 6.44-MeV γ rays in coincidence with protons feeding the

Fro. 5. Angular correlations for the reaction $C^{12}(\text{He}^3, p\gamma)\mathbb{N}^{14}$ for
the 8.96- and 6.44-MeV levels of \mathbb{N}^{14} . The correlations are for a
bombarding energy of 8.92 MeV; (A) is for the 8.96 \rightarrow 6.44 tran-
s lines are the correlations according to the coefficients given in Table I and in the text.

 10 J. Weneser and D. R. Hamilton, Phys. Rev. 92, 321 (1953). 11 S. Raboy and V. E. Krohn, Phys. Rev. 98, 24 (1955).

FIG. 6. Minimum χ^2 analysis of the correlation of the 8.96 \rightarrow 6.44 transition of $N¹⁴$, trying values $J=1-5$ for the spin of the 8.96-MeV level.

6.44-MeV level to the 6.44-MeV γ rays in coincidence with the protons feeding the 8.96-MeV level, corrected for the angular correlations. We found

$$
R_{\gamma} = 4.59 \pm 0.23
$$
.

By combining these two results we obtained

$$
\Gamma_p/\Gamma_\gamma = (R_p \times R_\gamma) - 1 = 4.09 \pm 0.49
$$
.

For the 8.96-MeV level Detenbeck et al.,² using the $C^{13}(\hat{p}, \gamma)N^{14}$ reaction, reported the following result:

$$
\omega \big[\Gamma_p \times \Gamma_\gamma / (\Gamma_p + \Gamma_\gamma) \big] = 3 \times 10^{-3} \text{ eV}, \quad \omega = 11/4.
$$

This result, combined with the measured width ratio Γ_p/Γ_γ of the present experiment, leads to the following widths for the 8.96-MeV level:

$$
\Gamma_{\gamma} = (1.36 \pm 0.21) \times 10^{-3} \text{ eV},
$$

\n
$$
\Gamma_{p} = (5.56 \pm 0.87) \times 10^{-3} \text{ eV}.
$$

The strengths of the E2 or M2 8.96 \rightarrow 6.44 transition are (in Weisskopf units")

E2 transition:
$$
|M(E2)|^2 = 8.0 \pm 1.5
$$
,

M2 transition:
$$
|M(M2)|^2 = 153 \pm 24
$$
.

TABLE II. Résumé of results for the N¹⁴ 8.96-MeV and 8.49-MeV unbound levels.

(10^{-3} eV) $\overline{I^{\pi}}$	(10^{-3} eV)	Transition (MeV)	$ M(E2) ^2$ (W.u.)
5+ $21.0 + 9.8$ 4^{-a}	$1.36 + 0.21$ $5.6 + 2.0$	$8.96 \rightarrow 6.44$ $8.49 \rightarrow 5.10$	$8.5 + 1.5$ $+3$
		5.56 ± 0.87	

An M2 transition being ruled out as unreasonably strong, we conclude that the $8.96 \rightarrow 6.44$ transition is a $5^+ \rightarrow 3^+$ E2 transition (see Table II).

The 8.49-MeV Level

A spectrum of γ rays in coincidence with protons to the 8.49-MeV level is shown in Fig. 8. Gamma rays of 5.10, 3.39, 2.79, and 2.31 MeV can be seen from the cascade through the 5.10-MeV level. In agreement with Carlson,³ we found that there is no evidence for any other mode of decay. The dashed line in Fig. 8 is the random-coincidence spectrum. Angular correlations for the 8.49-MeV level were obtained with the following results:

$$
8.49 \rightarrow 5.10 \text{ transition:} \quad a_2 = +0.39 \pm 0.13 \,,
$$
\n
$$
a_4 = -0.15 \pm 0.15 \,,
$$
\n
$$
5.10 \rightarrow 0 \text{ transition:} \quad a_2 = +0.13 \pm 0.10 \,,
$$
\n
$$
a_4 = -0.07 \pm 0.11 \,.
$$

We were not able to determine a unique value of J and spins $J=1-4$ for the 8.49-MeV level lead to acceptable fits. For the x^2 analysis we have taken into account

Fro. 7. Simultaneous minimum χ^2 analysis of the 2.52- and 6.44-MeV transitions of the decay of the 8.96-MeV level of N^{14} .
The minimum χ^2 values have been calculated for the remaining possible spin assignments

¹² D. H. Wilkinson, in Nuclear Spectroscopy, edited by F. Ajzenberg-Selove (Academic Press Inc., New York, 1960), Part 8, p. 852.

FrG. 8. Spectrum of γ rays from the C¹²(He³, $p\gamma$)N¹⁴ reaction in coincidence with protons to the 8.49-MeV level, obtained at an (He³)⁺⁺ bombarding energy of 8.92 MeV. The γ -ray peaks, which are marked by their energies in MeV, are due to cascade through the 5.10 -MeV level. An estimation of the number of random coincidences is shown by the dashed line. A total charge of 1895 μ C was collected to obtain this spectrum.

the known E1, M2, E3 character of the $5.10 \rightarrow 0$ transition.¹ For each of these J values, we established the mixing ratio of the 8.49 \rightarrow 5.10 transition. For $J=4$, which is the only value consistent with the experimental data of Detenbeck et al., we find

$$
+0.18\geqslant \delta\geqslant -0.19\quad (\delta\!=\!M3/E2)\,.
$$

The width ratio for the 8.49-MeV level has been measured in a similar manner to that described in the analysis of the 8.96-MeV level, with the following result:

$$
\Gamma_p/\Gamma_\gamma = 3.7 \pm 1.1.
$$

For the 8.49-MeV level, Detenbeck et al. obtained

$$
\omega \big[\Gamma_p \Gamma_\gamma / (\Gamma_p + \Gamma_\gamma) \big] = 10^{-2} \; \mathrm{eV} \; , \quad \omega = 9/4 \; .^{12a}
$$

This last result, combined with the width ratio, leads to the following widths:

$$
\Gamma_{\gamma} = (5.6 \pm 2.0) \times 10^{-3} \text{ eV},
$$

\n
$$
\Gamma_{p} = (21.0 \pm 9.8) \times 10^{-3} \text{ eV}.
$$

With the assumption $\Gamma_p \gg \Gamma_\gamma$, Detenbeck *et al.* fixed the E2 character of the $8.49 \rightarrow 5.10$ transition and the negative parity of the 8.49-MeV level. Taking into account the width ratio measured in our experiment,

12a Footnote added in proof. D. F. Hebbard has drawn our attention to a difficulty in the interpretation of the $C^{13}(p,\gamma)$ results for the 8.49-MeV state. In the event that $\omega \neq 9/4$, one obtains the following values for the γ width of the 8.49-MeV state
Assumed J of

The values of δ for these different possible J values would be:

$$
J=1 (1 \rightarrow 2)
$$
 All values of δ possible
\n
$$
J=2 (2 \rightarrow 2)+0.23 \ge \delta \ge -\infty
$$
 ($\delta = E2/M1$)
\n
$$
J=3 (3 \rightarrow 2)-0.75 \ge \delta \ge -0.27
$$
 or $\delta \le -2.75 (\delta = E2/M1).$

this assignment remains true because Γ_{γ} varies only slightly with Γ_p . The γ width of the 8.49-MeV level corresponds to the following E2 transition strength of the 8.49 \rightarrow 5.10 transition (4 \rightarrow 2):

$$
|M(E2)|^2 = 8 \pm 3.
$$

The M2 transition strength would be

$$
|M(M2)|^2 = 142 \pm 52.
$$

To check the consistency of the width-ratio results, it had to be shown that, e.g., for the two bound levels of 6.44- and 5.10-MeV, the ratio R_n' of the intensities of the protons feeding the 6.44- and the 5.10-MeV levels is equal to the ratio R_{γ} of the intensities of the 6.44and 5.10 -MeV γ rays in coincidence with the corresponding proton groups feeding the levels considered. We found

$$
R_p' = 2.6 \pm 0.3
$$
 and $R_{\gamma}' = 2.7 \pm 0.15$.

The γ -ray intensities were corrected this time for photofractions, total efficiencies, and angular correlations.

The 9.17-MeV Level

Gamma rays of about 9 MeV were observed in the coincidence γ -ray spectra. They were attributed to the ground-state transition of the N'4 9.17-MeV level. A careful examination of the coincidence spectra, of the particle spectra at $E_{\text{He}} = 8.92 \text{ MeV}$ and at neighboring bombarding energies has shown that the N'4 9.13-MeV level is very weakly excited at $E_{\text{He}} = 8.92$ and so, does not contribute to the 9 MeV γ -ray transition. An anisotropy given by $a_2 = +0.70 \pm 0.20$ was measured for the 9.17-MeV ground-state transition. The error of about 30% for the a_2 coefficient is due to the low number of counts in the coincidence spectra. The angular correlation can only be fitted by spin values $J=1$ or 2 for the 9.17-MeV level. This state has been $J=1$ or 2 for the 9.17-N
extensively studied,¹³⁻¹⁶ $J^{\pi}=2^{+}$ has been attributed to this level. To determine the widths ratio Γ_p/Γ_γ of the 9.17-MeV level, the intensities of the particle groups corresponding to the 9.17- and 6.44-MeV levels were compared as were the intensities of the 9.17- and 6.44-MeV γ rays in the coincidence γ -ray spectra. The ratio, taking into account corrections for photofractions, total efficiencies, branching ratios, and angular correlations, was found to be $\Gamma_p/\Gamma_\gamma = 10 \pm 3$. Hanna and Meyer-Schutzmeister¹⁷ have measured the total level width $\Gamma=77\pm12$ eV and the γ width $\Gamma_{\gamma}=8.7\pm1.5$ eV, with a corresponding width ratio $\Gamma_p/\Gamma_\gamma = 8 \pm 2$, in reasonable agreement with the ratio measured in this experiment.

¹³ A. A. Strassenburg, R. E. Hubert, R. W. Krone, and F. W.

Prosser, Bull. Am. Phys. Soc. 3, 372 (1958).
¹⁴ H. J. Rose, W. Trost, and F. Riess, Nucl. Phys. 12, 510 (1959).
¹⁵ H. J. Rose, Nucl. Phys. 19, 113 (1960).
¹⁵ H. J. Rose, F. Riess, and W. Trost, Nucl. Phys. 21, 367 (1

H.J.Rose, F.Riess, and W. Trost, Nucl. Phys. 21, ³⁶⁷ (1960). S.S. Hanna and ^I . Meyer-Schutzmeister, Phys. Rev. 115, ⁹⁸⁶ $(1959).$

IV. DISCUSSION

Particle decay of the 8.49-MeV $(J^{\pi}=4^-)$ and 8.96-MeV $(J^{\pi} = 5^{\circ})$ levels requires $l = 4$ and $l = 5$ proton waves, respectively. The penetrability of such highangular-momentum proton waves is sufficiently low to account, in a great part, for the very small proton widths of these levels, i.e., $\Gamma_p = (5.56 \pm 0.87) \times 10^{-3}$ eV for the 8.96-MeV level and $\Gamma_p = (21.0 \pm 9.8) \times 10^{-3}$ eV for the 8.49-MeV level. The following proton reduced widths have been obtained: $(4.08\pm0.64)\times10^{-3}$ eV $(\sim 1.3 \times 10^{-3}$ of the Wigner limit) for the 8.96-MeV level and $(2.6 \pm 1.2) \times 10^{-3}$ eV $(\sim 8.5 \times 10^{-4}$ of the Wigner limit) for the 8.49-MeV level.

The 8.96-MeV Level

The spin-parity assignment $J^* = 5^+$ for the 8.96-MeV level suggests immediately that it is the $(d_{5/2})^2$, $J^* = 5^+$, $T=0$ level predicted by True¹⁸ to lie at an excitation energy of 9.32 MeV. This level was hrst observed in the C¹²(α ,d)N¹⁴ reaction at an excitation energy of 9.0 \pm 0.2
MeV.^{19,20} The 8.96-MeV level decays to the 6.44-MeV MeV. The 8.96-MeV level decays to the 6.44-MeV level by an $E2$ transition. We now compare the determined experimental γ width of this level with the prediction of the shell model. We adopt the common approximation of regarding C^{12} as a closed subshell.

For the 8.96-MeV state $(J^* = 5^+)$ we take the wave function of True:

$$
\psi(5) = C_{5/2}{}^5 \psi(d_{5/2})^2
$$

The 6.44-MeV level $(J^* = 3^+)$ has a wave function of the form

$$
\psi(3) = C_{1/2,5/2} \psi(s_{1/2} d_{5/2}) + C_{3/2,3/2} \psi(d_{3/2})^2 + C_{3/2,5/2} \psi(d_{3/2} d_{5/2}) + C_{5/2,5/2} \psi(d_{5/2})^2.
$$

We have calculated the strength of the E2 transition connecting these two levels with the following result:

$$
\Lambda(E2) = 2\big[C_{5/2,5/2}{}^5 (C_{1/2,5/2}{}^3 + 0.3536 C_{3/2,5/2}{}^3 + 0.5774 C_{5/2,5/2}{}^3 \big]^{2} \times \gamma^{-2} (1+2\beta)^2.
$$

The relation between the transition strength $\Lambda(E2)$ and the radiative width $\Gamma(E2)$ is given by Warburton and Pinkston.²¹ The square of the radial integral $\langle r^2 \rangle^2$, appearing in the expression for $\Lambda(E2)$, has been calculated using harmonic oscillator radial wave functions which have a radial fall-off of the form, $\exp[-\frac{1}{2}\gamma r^2]$. Following Visscher and Ferrell,²² we take $\gamma^{-1/2} = 1.68$ F. The quantity β which appears in the expression for $\Lambda(E2)$ is

the effective-charge parameter of the weak-coupling approximation such that proton and neutron have charge $(1+\beta)e$ and βe , respectively. The evidence from neighboring nuclei is that β is approximately 0.5. Numerical results for the E2 radiative width have been calculated for two different sets of wave functions. The first is extreme j -j coupling, for which we found

$$
\Gamma(E2) = 0.52 \times 10^{-3} \text{ eV}.
$$

The second set is that of True,¹⁸ for which we obtaine

$$
\Gamma(E2) = 0.60 \times 10^{-3} \text{ eV}.
$$

The maximum value of $\Gamma(E2)$ is obtained by using the wave function of True for the 6.44-MeV level with the magnitude of the $(d_{5/2})^2$ amplitude increased by a factor of 1.25. We found

$$
\Gamma(E2) = 0.70 \times 10^{-3} \text{ eV}.
$$

However, this last result remains a factor of 2 smaller than our experimental width i.e., $\Gamma(E2) = (1.36 \pm 0.21)$ $\times 10^{-3}$ eV. An increase in β would bring the theoretical predictions into better agreement with experiment but a value $\beta = 0.9$ is needed for a complete accord. The discrepancy is almost certainly due to the inadequacies of our assumption of an inert $(p_{3/2})^8$ core.

The 8.49-MeV Level

Detenbeck et al.² assigned the dominant core-excited configuration $(p_{3/2})^{-1}(p_{1/2})^2(d_{5/2})$ to the 8.49-MeV level $(J^* = 4^-)$. Assuming this configuration and spin parity, we calculated the radiative width of the E2 transition connecting the 8.49-MeV level and the 5.10-MeV level [dominant configuration: $(p_{1/2})$ ($d_{5/2}$)]. The following result was obtained:

$$
\Gamma(E2) = 1.91 \times 10^{-3} \text{ eV}.
$$

This value is to be compared to our experimental width, i.e.,

$$
\Gamma(E2) = (5.6 \pm 2.0) \times 10^{-3} \text{ eV}.
$$

V. CONCLUSIONS

By particle- γ angular correlation measurements, we have studied the N^{14} 8.49-, 8.96-, and 9.17-MeV unbounds levels. A spin-parity assignment $J^* = 5^+$ has been established for the 8.96-MeV level. Very small total widths have been found for the 8.49- and 8.96-MeV unbound levels. The experimental γ widths of the E2 transitions from these levels are about a factor of 2 or 3 larger than simple shell-model predictions.

ACKNOWLEDGMENT

We should like to thank Dr. E. K. Warburton for useful comments on this manuscript.

¹⁸ W. W. True, Phys. Rev. 130, 1530 (1963).

¹⁹ B. G. Harvey, J. Cerny, R. H. Pehl, and E. Rivet, Nucl. Phys.

^{39, 160 (1962).&}lt;br>²⁰ R. H. Pehl, E. Rivet, J. Cerny, and B. G. Harvey, Phys. Rev.
137, B114 (1964). 12^{21} E. K. Warburton and W. T. Pinkston, Phys. Rev. 118, 733 (1960).

 22 W. M. Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957).