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A method is developed for obtaining a convergent solution for the three-body scattering amplitude in a
modified distorted-wave representation. An integral equation for the three-body scattering operator is
derived in a similar manner to that of Greider and Dodd. A new analytical form for the transition amplitude
of the stripping processes is obtained after some reasonable approximations. This form contains the Butler
cutoff and distorted-wave treatments as limiting cases. A curve is drawn to show the significance of this new
Born term together with the usual Butler cutoff model for the Si?8(d,p)Si? reaction.

I. INTRODUCTION

EARRANGEMENT collisions play a central role
in the field of nuclear reactions. In a rearrange-
ment process one is generally faced with three-particle
systems, and the problem of finding an exact expression
for the scattering or exchange scattering amplitude of
such systems. In computing the reaction amplitude one
has to deal with the solution of a three-body-model
problem,* in which the interaction between two of the
three particles is assumed to be responsible for the
transition. It is usually argued that the lowest term in
this interaction (Born term) is quite sufficient for the
description of the reaction amplitude. The plane-wave
Born approximation and the distorted-wave Born
approximation are typical examples which are com-
monly used. The validity of such approximations was
always based on some qualitative arguments, and on
the fits with the experimental data. However, the
distorted-wave treatment,? for example, contains so
many ambiguous parameters that it cannot be easily
known whether the fitting obtained is really significant.
Recently, the distorted-wave Born series for re-
arrangement scattering was investigated by Greider
and Dodd.? These authors have derived an integral
equation for the three-body scattering operator, in such
a way that the inhomogeneous part is just the distorted-
wave Born term. It was found that the iterative solution
to this integral equation diverges, because the kernel of
the equation obtained is not continuous.* Consequently,
the distorted-wave Born approximation may not be a
correct approximation to the exact amplitude.

In this work, an integral equation for the transition
operator of the three-body problem is derived in a
manner similar to that obtained by Greider and Dodd.?
The inhomogeneous part of this equation which re-
produces a correct modified distorted-wave Born
approximation, may be easily solved in terms of a two-
body amplitude with the aid of some reasonable
approximations. The case of stripping reactions will be
of particular interest, because it will be shown that, in

1'W. Tobocman, Theory of Direct Nuclear Reactions (Oxford
University Press, London, 1961).

2 C. A. Pearson and M. Coz, Nucl. Phys. 82, 533 (1961).

3K. R. Greider and L. R. Dodd Phys. Rev. 146, 671 (1966)

4 C. Lovelace, Phys. Rev. 135, B1225 (1964).
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the plane-wave approximation, one obtains the transi-
tion amplitude in a new form which contains the
original Butler cutoff result as a limiting case. Section II
contains general theoretical formulation; Sec. III in-
cludes the investigation of the stripping process in the
light of the new formalism. In Secs. IV and V numerical
calculations for the Si*®®(d,p)Si* reaction and a dis-
cussion of the results obtained are given.

II. THEORY

In this section, we are going to introduce a modified
distorted-wave representation for the transition ampli-
tude, which as will be shown is more accurate than the
usual representation. For this purpose, let us consider
the rearrangement process

(a+0)+¢c— b+ (a+0),

where the parentheses indicate bound states. To de-
scribe this process, we split the complete Hamiltonian H
of the system into two alternative ways:

H= Hz+ Vi= (H0+ Vab)+ (Vac+ Vbc)
=Hf+ sz (H0+ Vac)+ (Vab+ Vbc) 5
where H, is the kinetic energy operator for the relative
motion between the particles and V;; is the two body
interaction between the particles ¢ and j.

Let ¢; and ¢; be the wave functions describing the
initial and final noninteracting states with plane waves
representing the relative motion. They are solutions of

(E—H)$;=0 and (E—H)¢;=
The exact transition matrix element for rearrangement
collisions may be given by®

Tyi={s|Vsl¥i®), (1)
where ¢,V is the outgoing wave solution of the com-
plete Hamiltonian given by

YiP=¢;+(1/E—H+ie)Vipi=1+GHV)¢;.

Introducing now the distorting potentials U; and Uy in
the initial and final channels, respectively, one may
write the corresponding distorted waves (DW) in the

6 B. A. Lippmann, Phys. Rev. 102, 264 (1956).
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forms
X; P =y ————UX; D
E—H;+ie
1
= <l% “tli)¢i= 2D,
E—H;—U;+ie
1
X; O =¢;+ UgX; O
—Hy—ie

1
= (1+ - ‘11f>¢f= GO (2)
F— H,——ie

V¥; ) may be now written in terms of X;) as follows;

Yith= {1+ _ (V,-—m)lxw

E—H-+1e

=[1+G<+)(Vi“qli)jxi(+)- (3)

Using Eq. (3), the transition amplitude in the DW
representation may, then, be given by
TP =X V=gt [ D)
=X (V—u
+(V—UNGH(Vi—U) [ X D),

provided that the following condition holds?

©)

lin% 1€(X; T /d:)=0. (5)

This will be the case when we choose U, to be the
optical model potential in the final channel.

Thus, we see that in the DW treatment given above
the distorting potential, U; must be found from the
condition (5) while U; is completely arbitrary.

The matrix element (4), may be written alternatively
using Egs. (2) and (3) in the form

TPW={$;|Usi |},
Ui =0,ONV,—UNA+GHVS).
One may now write (after some manipulations) the
following integral equation for U,;:
Ui =Q,ONV —u N
+ U DGO (Vi— )

where

(6)

where

GH=—rr—
E—H;+ie

This integral equation was investigated by Greider
and Dodd,® and they have been able to show that
the kernel of this equation [ie., the quantity
G D (V;—U;)Q,; 9] is not a continuous one.

- The usual method of eliminating the divergence from
the kernel of Eq. (6) is to subtract explicitly the
dangerous part of that kernel. For this purpose, let us
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rewrite Eq. (6) in the following abstract form:
Uy =I4+U;HK, (7)
where
I=Q;OHV —u Q)
and

K =G (V;—U)Q:.

Let us now introduce an arbitrary operator K, and
rewrite Eq. (7) in the form

Up®=I+U ;D (K—K)+UPK,,
or

Up®=I(1—Ko) '+ U (K—Ko)(1—Ko)™*. (8)

The choice of K, is of course arbitrary except that it
must contain at least all the singularities contained in
the kernel K.

Now if (1—K,)™' is a bounded operator,” then its
product with a continuous operator (K—K,) will yield
another continuous operator (K— K,)(1—K,)~! and all
the troubles will be overcome. We define another oper-
ator g such that

QD0=g(Vi— U,

where (1—K)~'=1+4Q. Consequently, Eq. (7) will
take the form

U =TI+, OV —u N g(Vi— W)

+UPK—-(1-K)Q], )
and noting that
(1=-K)=(1—-GDV ),
one may write
Uy =T4+UpD[GC;H—(1—G Vel
X(Vi—u)u®, (10)

where
I=0, 9V —uM)+V—uMg(Vi—u)} 2.

This equation contains only the arbitrary operator g,
and one has to define it in such a way that the kernel in
this equation will be a Schmidt one. If we now put

1

S E—Ht Ve

where V is an arbitrary sum of two-body interactions,
we immediately obtain the results derived by Greider
and Dodd.® However, this form for g is not convenient
as V, is quite arbitrary and leads to a complicated form
for the transition amplitude, especially in the case of
stripping reactions.

Our aim is to remove from the new kernel of Eq. (10)
(which may be denoted by X&) all the dangerous terms
by the appropriate choice of g, and we proceed as
follows:

7 C. Lovelace, Lecture notes for the Edinburgh Summer School,
1963 (unpublished).
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Let us consider the quantity £=G;— (1—-G;®V,)g,
in terms of which ®= £(V;—,;)%™"). Remembering
that Vi=V,.+ V3., £ may be written down in the two
alternative ways

L= Gi(+)— (1 —_— Gi(+) Vbc)g_l.._G".(‘f‘) Vacg R
L= G’('f')._ (1 —_ G‘LH') Vac)g+G1(+) Vbcg.

(11a)
(11b)

The following two possible choices for g may be taken:
(). We set [using (11a)] GoP—(1—GoP V4,)g=0.
Hence g will take the form

1
g=gpe="—————" (12)
E—Hy—Vy+ie
and X is, then, given by
X=G:P(Var+Vae)goo(Vi—U)AUD . (13)

Fortunately U; is quite arbitrary. Choosing U; in the
form U;=V,, we find that the kernel in Eq. (12) is
continuous.* This result may be convenient for the
inelastic-scattering and knockout process in the
reaction

(a+08)+c— b+ (a+c)

(ii). We set [using (11b)] Ge™— (1— G,V ,.)g. Hence
g will take the form

1
§=gac=—————. (14)
E‘-‘ Ho— Vac+i6
Therefore one may write
=GP (Vart Vie)gac(Vi—UHLH) (15)

and choosing WU;= V., we find that & has no dangerous

terms. This result may be applied to the case of strip-

ping reactions in the process (a+8)+c — b+ (a+c).
III. STRIPPING REACTIONS

Let us consider the stripping reaction
(a+b)+T — b+ (a+T).

Using Eqgs. (14) and (15), the inhomogeneous term of
Eq. (9) will then take the form

I=Q, 9N (V—uM)+ (V= U gar(Vi— W) } 2,
(16)

provided that U;= V7. Therefore, the correct distorted-
wave Born amplitude (DWB) will have the form

Ty:PWB= (X, O (V,—Uu,f)

x|+

T VuT} [x:). (17)
E—Heo—Vartie

If we approximate U; by Ver (as is usually done) then
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our matrix element will take the form

Ty PWB= (X, | Vapi 14

VaT |xi(+)> .
E_'H()“ VaT+1:€
(18)

We now try to evaluate this matrix element, first in
the plane-wave approximation, and then in the
distorted-wave approximation.

Plane-Wave Approximation

In the plane-wave approximation (PWB) our matrix
element [Eq. (18)] takes the form

Ty PWB= (/| Vapi 14 VaT}I‘bi)y (19)

E—Hy—Var+ie
where we recall that ¢; and ¢, are defined by

(E—H)¢$i=0, (E—H;)¢;=0.

Neglecting spin complications one may write (see Fig. 1)

¢i=exp(ik;- 1) o1n(0) - Ar(r) A a(£a) A v(£s)
¢r=exp(iky 1s) - ®La(r) - Ar(€r)Aa(£a)As(Es),, (20)

where k;, k;are the wave numbers describing the relative
motion in the initial and final states, respectively, ¢in
and &1 are the wave functions describing the relative
motions in the bound states in the initial and final
channels, respectively, and 4,(¢;) is the internal wave
function of the particle . Let us now transform the
variables in the matrix element (2) to the new coordi-
nates r and r; according to

maM my
l‘+—l‘f ,
MmAMR mA

mr
o=—T—1Iy,
mRr

=

where M =m,+ms+mr, ma=ms+mp, mrp=m,+mr,
and m; is the mass of the particle 7. Further, let us make
use of the Fourier transformation

1
einlo)=—— | dK Gi(K)eiX-r.

(2m)?

Substituting the expressions (20) for ¢; and ¢y into the
matrix element (19) and using the above relations, one
may write

N 1
TﬁPWB=(2 /dK Glm(K)/dr,/dr ks s

)3

mr
X ‘I’LM*(I’) Va b(——l‘-— l‘/)
MR

1
X{H—

E—Ho—V.r+ie



Fi1c. 1. Schematic diagram

for the stripping process
(@+b0)T — b+ (a+T).
where
mr mo s
q=—K+ k; and Q=—Lk,—K.
MR mame mA

Rearranging terms in expression (21) one may find that

1
PWB —_______ 7(k—K) .1
T dK Gy(K) / dt, / dr ¢itk—K0 55
mr
X@ra*(r) Vab<-—r— rf>xl/q(“(r) , (22)
Y:
where
mp
= ——ki— kf )
ma
1
Y (r)= { 1+ —V ar(7) ]
(h2/2p'aT) (V72+ 92) - VaT(r) +7e ‘
X eiq~r ,

and u;; is the reduced mass of the particles ¢ and j.
Integrating over ry in (22) we get

T PWB=

Py / dK Gin(K) Van(k—K)

X (B p(x) | € nTImm) G=K) x| () )
provided that
Var(ki—K)= /d X iz &R (X).

(23)

To evaluate the integral (23) we adopt the following
approximation:

Let us consider the scattering solution ¢, (r) as a
function of the vectors K and k;, i.e. let us write

mry mILM
wq‘+’(r)E¢<+)<r, ——K+p> , P= k..

MR MAMER

Then
mr
YP ()= exp(——K : Vp)‘»b & (r,p)

Mg

mr
%exp(i-——K . r>1,b ®(r,p)

mr

mr
= exp(i————K . r>glxp @ (r). (24)

mER

T. H. RIHAN

164

[This approximation may be accepted insofar as the
main contribution to the transition amplitude may come
from outside the nuclear surface. Therefore, in our
approximation, we let the nabla operator V, act on the
plane-wave limit of ¢, (r).] Hence, using Eq. (24),
one may write

1
T, PWB= lﬁ/dK Gin(K) Van(k—K)

X(‘I’LM(T) | ei(mT/mR)kJI‘[/n("')(t)) . (25)

Note that the integration over K in Eq. (25) can be
easily evaluated using the Schrédinger equation for the
relative motion between the particles ¢ and b in the
bound state (a+5). Consequently

h2

TfiPWB = —

(B24+X%)G1nm(k)
2)‘-’~ab

X (®r(x) | nrImmer |y ) (p)) |

where X2= (2u.5/%%)¢; € is the binding energy of the
particles ¢ and & and p,; is their reduced mass.

If we approximate ¥, (r) by its plane-wave solution,
we obtain the usual Butler cutoff result.

(26)

Distorted-Wave Treatment

In our investigation of the stripping process, the
distorting potentials in the initial and final channels are
taken as U;=U;=V,pr. The corresponding distorted
waves [see Egs. (2) and (3)] are therefore solutions of
the following equations (with the appropriate boundary
conditions):

1
E—'Hi— VbT"‘"ie

X;H= [1+ VbT}d’i,

1
X = {1+_—*-‘—““—Vw]¢/o
E—H;—Vyr—ie
To obtain the wave function X, we transform to the
variables ¢ and i (see Fig. 1), and then express X; in
the following form?® (neglecting spin complication):

X;=¢:$ i)+ 2(om)

where & may involve only states orthogonal to ¢;.
Introducing this expression into the corresponding
equation for X; (expressed in the new variables g and )
and then multiplying by ¢;* and integrating over g, one
gets the following equation for ¢;(n):

2ubr
(Vq2+2i>‘ki' Vﬂ——hTVbT>§-i(n)

2uer
= 7 dQ ¢z*{ Vﬂ . Vn}q’(.ﬂm) ’ (27>

8 1. P. Grant, Proc. Phys. Soc. (London) 68A, 244 (1955).
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with
MalkbT
A=1—

Mum A

An approximation for X; may be obtained by neglecting
the right-hand side of this equation. This effect means
that we neglect the effect of dissociation of the projectile
in the field of the target nucleus. Such a procedure will
lead to the following expression for X;) (neglecting
spin complications)

X; P =¢8P (), (28)

where ¢; is the solution of Eq. (27) without the right-
hand side, and with outgoing boundary condition. It
should be noted that if we multiply ¢ (n) by
exp(iAk;-n) we obtain the wave function describing the
scattering of the particle (b) on the target (T) via Vir
with outgoing boundary condition. Similarly X, may
be written in the form

X =, () ,

where {;) satisfies the equation

(29)

N 2uer
<V,,2—-2¢>\ k/'V,,-‘—hTVbT Cs(m)=0,

and where
Moy
N=l—o—v—
me(myt+mr)
Now, making use of
§H ()= /dpl e 1a; 4 (py),
(2m)3
and
1 .
§rOMm)=——| dp: €772, (py),

(2m)?

and also of the Fourier transform of the bound state
wave function of the particles ¢ and b as in Eq. (21),
one may write

1
Xi(+)=(—2‘5; dK/dpl e"Q"‘fe“'"a,-(+)(p1)sz(K) R
T
with
mr maM Ma
qg=—K+ ki+—p1,
MR MAMR V(33
’ e
Q'=—k;— K+D1-
ma
Consequently,
- 1
TﬁDWB_—_(Z v dK dp1/dp2
T

XGlm(K)(lf(_)*(p2>di(+)(p1)/drj el’(Q’—kf-“pz)J/ffﬁ,
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where

T o= (5Pl B (1) | Vi

X1+ !
E—Ho— VaT+’i€

Vart e 7). (30)

Since the plane-wave approximation can describe the
essential features of this reaction, we assume that in the
matrix element 7, in Eq. (30), most of the contribution
will arise from components pi—o and ps—o; consequently
one may find that

T p iDWBg

3

/dK Gin(K)
X (@2au(0) | 00 @), (31

2T

where
V()= (™15 (ts) | Vap| €775 (xy)
In the plane-wave limit, we have {;®)={,) — 1 and
we obtain Eq. (27).
IV. NUMERICAL CALCULATIONS

In this section, the transition amplitude for the strip-
ping process in the plane-wave limit of the present model
will be considered. Let us consider Eq. (26) and rewrite
it in the form

h2

T ﬁPWBE —

(k2+ X2)Glm(k) <13‘[,]|4*(l')

r>Ro

X et (mT/mR)k.r¢p(+)(r)dr .

Mab
(32)

For simplicity the case of L=0 will be considered. The
calculations for other L values are straightforward.
Using the partial wave expansions for ¢, (r) and
exp(i(mr/mz)k-r) and noting that &= N1F(r), where
N, is a normalization constant, the matrix element (32)
takes the form

(4m)2N 112

T PWB~—

(B24-X2)G (k)
2)“41 b

ridr
TZR()

X 22 eV ym™*(5) Y ™' (§)
Um’

XE @) julgr e P (pyr), (33)

where

YD (r)=4r Z,Z,eiw v (V™ *(P)Y 1™ (B);

mr
q=——7xk.
mRr
A crude value for the integral in Eq. (33) may be now

obtained by taking the value of the integrand at radius
Ry near the nuclear surface. Hence, Eq. (23) becomes,
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Fic. 2. Angular distribution of the Si?(d,)Si?® reaction. Solid
line—present work; dashed line—Butler cutoff model.

after summing over the projections,
(47I')N 1R02F (Ro)

T‘ﬁPWBg.__ (k2+ x?)

2paver
XGim(k) 2 €2(21'+1) Pv(cos(p,q))
V=0
Xy P (PRo) jr(gR0),

where o is the wavenumber of the captured particle.

Now let us consider the reaction Si?¥(d,p)Si%.
Assuming the internal deuteron wave function to be of
the form ¢z=N2(e*"/r) and calculating the phase
shifts from a square-well potential U, which reproduces
the binding energy of the captured neutron in the
2S-state in Si%, we get

(47!‘).R02F(R0)N1N2h2

(34)

Ty=—

Zl; @'+

o

X CyPr(cos(p,q))jr(gRo), (35)

where
Cp=e'v COS&p[jzl(koRo) —_ tan5zli’ll'(koRo)] ,

and
2/-‘nT
ko*=p* Uo.
h2
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Now, in the usual Butler cutoff representation, the
matrix element of the above-mentioned reaction, using
the same approximations, will take the form

(4r)R?*F(Ro)N 1N o
Tyiposter— — jdPR),  (36)
a
where
mr
P = k,," "—k S
MR

Figure 2 shows the comparison between our results and
the experimental data taken from Ref. 9, where we have
used the following parameters

Uy=47.5 MeV with a range d=4.1 F
R0= 74 F

V. DISCUSSION

In the present work, an approach is suggested for
obtaining the three-body amplitude of stripping and
other direct reactions. It has been shown that in the
case of stripping reactions a new form is obtained for
the transition amplitude in the plane and distorted-wave
treatments. The usual Butler cutoff theory and
distorted-wave theory appear as limiting cases of the
present matrix element.

In the case of knockout and inelastic scattering
processes, one obtains the same results of Greider and
Dodd,® which reproduce the impulse approximation.

Numerical comparison between our results and the
Butler cutoff theory is presented in Fig. 2. From this
comparison it seems that the present theory shows some
improvement over the usual plane-wave Born approxi-
mations and gives good agreement with the experi-
mental data, especially at large angles. Moreover, the
order of magnitude of the differential cross section will
be larger than that obtained from the usual theory
[see Egs. (35) and (36)]; thus the extracted values of
the reduced widths will be greater, which is supported
by the shell model calculations.

It is hoped that the present results may help to clarify
some of the difficulties which are associated with the
three-body problems.
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