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We calculate analytically the charge form factor Fg(¢?) of the « particle (He?) with a modified Irving
wave function. The parameters of the wave function have been determined from a variational calculation
of the binding energy of He* using a central velocity-dependent potential. We find good agreement between
our values of Fg(¢® and those obtained from electron-helium elastic-scattering experiments. Also, the
agreement with calculations using hard-core potentials is satisfactory.

URING the past two years a number of groups of
workers have measured the charge form factor
Fg(g® of the « particle (*He) from electron-helium
scattering experiments.! In the present note we propose
to give an analytical calculation of this quantity.
The charge form factor of the a particle is related to
the bare form factor Fp(¢?) through the equation

Fp(¢)=Fp(¢)XFrs, eY)

Fps=Fppyt+Fpa (2

is the isoscalar form factor. The bare form factor Fz(g?)
is the Fourier transform of the squared a-particle wave
function |¥|2 Let r; denote the radius vector of one of
the protons in “He (we take nucleon 1 in *He to be a
proton) and R, the radius vector of the center-of-mass.
Then

where

Fp(g)= / |¥|? exp(iq-1)d*:, )
where r=r;—R.

Our calculation uses a four-parameter, modified Irv-
ing? wave function

¥=N{ CXp[—a(g‘ riAV2 ]+ A exp[— >\(§~ riP)Ve)/
A" 4,j=1,2,3and4 (4)

1<y

in which the normalizing constant is
105X 21—8n1/2
v o) /
m(8—4n)!
[a4n—9+ 2A { (a_l_ )\)/2}4n—9+A2)\4n—9]1/2 . (5)

[Actually the normalization constant shown in Eq. (5)
is for the transformed wave function obtained by using
the transformations given in Eq. (A1) of the Appendix. ]

1 G. R. Burleson and H. W. Kendall, Nucl. Phys. 19, 68 (1960) ;
J. P. Repellin, P. Lehman, J. Lefrancois, and D. B. Isabella, Phys.
Letters 16, 196 (1965); H. Frank, D. Hass, and H. Prange, ¢bid.
19, 341 (1965); R. F. Frosch, R. E. Rand, K. J. Van Qostrum, and
M. R. Yearian, sbid. 21, 598 (1966).

2 J, Irving, Phil. Mag. 42, 338 (1951).
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The parameters @, A, 4, and » have been determined
by a variational calculation of the binding energy of the
a particle with a two-body central velocity-dependent
potential.® Since the state represented by the wave
function ¢ is completely symmetric in the relative
spatial coordinates of the four nucleons in the « par-
ticle, the effective two-body central potential is the
average of potentials in 1S and 35 states. Therefore, in
the variational calculation of the binding energy of the
a particle we have used the potentials of Srivastava for
the case of the triton.*

Vest (7)) = — 3 (14 Xstatic) (Vo)staticexp (— 27;/8s)
FL(Vo)verdep./2M ][ s (7:5)+w, ("ij)Pz:]
+[Xvel(Vo)vel.dep./zM][Pzwt(7'ij)+wt(rij)p2:| )

where

(6)

w(r)=exp(—27/8), O

and subscripts s and ¢ denote the singlet and triplet
states, respectively. The values of the potential pa-

Tasire I. Calculation of the bare form factor F(¢? and charge
form factor Fz(q?) for ‘He using the wave function given by Egs.
4), (5), and (9). F(¢g?) is the Fourier transform of the squared
wave function and Eg(¢? is given by Eq. (1). Fgs(¢?) is calcu-
lated from Eq. (11).

P Eg(gd° Fr(@ 4
(F2) Fp(g®)® Fp(g®® Fgs(¢®) Theoret Exptl
0.5 0.8253 0.837 0.9533 0.7868 0.7959
1.0 0.6836 0.702 0.9101 0.6221 0.6258
1.5 0.5680 0.591 0.8698 0.4941 0.4937
2.0 0.4735 0.499 0.8323 0.3941 0.3910
3.0 0.3317 0.357 0.7645 0.2536 0.2548
4.0 0.2347 0.256 0.7050 0.1655 0.1583
5.0 0.1676 0.184 0.6524 0.1093 0.0964
6.0 0.1205 0.131 0.6058 0.0730 0.0594
7.0 0.0872 0.5643 0.0492 0.0324
8.0 0.0635 0.5270 0.0334 0.0184
9.0 0.0463 0.4935 0.0228 0.0089
10.0 0.0339 0.4632 0.0157 0.0062

s Present calculation.

b Calculation of Tang and Herndon using hard-core potentials and wave
functions, cf. Ref. 7.

¢ Present calculation.

d Experimental values of Frosch et al., cf. Ref. 1.

38S. C. Jain and B. K. Strivastava, in Proceedings of Nuclear
Physics and Solid State Physics Symposium, I.I.T. Kanpur, 1967
(Department of Atomic Energy, Government of India, India).
4B. K. Srivastava, Nucl. Phys. 67, 236 (1965).
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for the a particle plotted against mo-
mentum transfer squared, ¢% The
continuous curve shows our theoretical 0.5
Fg(g*) while the circles show the ex-
perimental Fz(g?) obtained by Frosch
et al., from Table I.
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rameters are

(VO)Stati(:: 100 MeV, (VO)Vel.dep, = 2 s
Xstatic= 184, Xye= 0.55 ,
1/8,=0.625F, 1/8/=14F7, 1/8/=1F". (8)

The 1S part of the effective potential fits p-p low and
high-energy scattering data, while the 3S parts fits the
binding energy of the deuteron and Breit’s 35 phase
shifts at Eyp,=147, 270, and 310 MeV.

For this potential and the trial wave function given
by Egs. (4) and (5), the variational calculation gives
the best values of the parameters to be

n=0, a=090F-, A=1.14F-1 and A=-—138. (9)

The corresponding value for the binding energy Ep
of the alpha particle? is 30.1 MeV, while® the experi-
mental value (Eexpy) is 28.29 MeV.

We calculate the bare form factor Fp(¢?) by evaluat-
ing the integral in Eq. (3) for the a-particle wave
function given by Egs. (4) and (5). (For the evaluation

5 Thus our calculation gives Ep>FEexpti. This is inconsistent
with the theory of variational calculation. However, we have not
included tensor forces in our two-body potential. The inclusion of
tensor forces is very likely to remove this inconsistency by re-
ducing the binding energy obtained with purely central forces.
For the effect of tensor forces on the binding energy of the alpha
particle, see Blatt and Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), Chap. V.

of the integral see the Appendix.) We get

Fu(g) = [ +24 N/ 2) =+ AT
XL/ @)+24 /(@ N)/2,8)+ 47 (L),

flog)=a"[14 (3¢*/64%) . (10)

Equation (10) together with the values of parameters
a, A, and 4 in Eq. (9) yields the bare form factor in
Table I.

We take the isoscalar electric form factor from
Dudelzak’s thesis®:

Frs=2[1.14/(1—t/m2)]—2[0.64/ (1—t/ms)],

where m,=783 MeV, mys=1020 MeV, and t=—g.
Expressing ¢, m4, and m,, in units of F~2 and substituting
= —¢? we obtain

Frs=2[1.14/(140.06345¢*)]
—2[0.64/(140.03739¢)].  (11)

These values of Fgg for different values of ¢* are tabu-
lated in column four of Table I. Finally, the values of
Fg(¢?) and Fgs(g?) are used in Eq. (1) to give the charge
form factor Fg(g?) of the a particle in the fifth
column of Table 1.

Figure 1 and Table I show that experimental and
theoretical values of Fz(g?) are in close agreement. Also

where

6 J. S. Levinger (private communication).



1228 S.

we find from Table I that our values of Fp(¢®) agree
reasonably well with those of Tang and Herndon,” who
have used a hard-core potential and wave function in
their variational calculation. These comparisons, there-
fore, lead us to conclude that our wave function for the
alpha particle given by Egs. (4), (5), and (9) and the
two-body velocity-dependent potentials given by Eqgs.
(6)-(8) are quite good. This is contrary to our con-
clusion in the case of the triton.® Perhaps our trial
wave function for the triton is not as satisfactory for
variational calculation as our modified Irving wave
function is for the a particle.

The authors are deeply indebted to Professor J. S.
Levinger for his valuable suggestions and for sending
his preprint. They thank the Department of Atomic
Energy, Government of India, for the award of a
grant, and the Indian Council of Scientific and Indus-
trial Research for the award of a Junior Research fellow-
ship to one of them (S.C.J.).

APPENDIX

Here we discuss the evaluation of integral in Eq. (3)
for the bare form factor.

We introduce the following transformations due to
Irving?

u=3[(rt+r)—(rtr)], v=(n—r)/V2,

w=(r3—rs)/V2, and R=%1(ri+rtrstrs).

Then, the integral in Eq. (3) reduces to the sum of
three integrals of the type

(A1)

/ expl— 4k (1) V7]
Xexp[iq- Gu+v/V2)JdPud*vd*w.

[We have taken #=0 in accordance with Eq. (9).]
In order to evaluate (A2), it is instructive to consider
a more general type of integral

(A2)

(89,53 a100,09) = f expl— (BP-yeh 591

Xexp[i(qi-ut gz v+ qs- w) Jd*udvd*w. (A3)

We define two nine-dimensional vectors ¢ and Q such
that

p4,5,6=7 (V24,2
p7,89=0(W)z,y,z

01,25=8(@ow.2» Qa.5.6=7(gD)s,0.25
Q7,89=072(¢3)z,4,2- (AS)
7Y. C. Tang and R. C. Herndon, Phys. Letters 18, 42 (1965).

87, S. Levinger and B. K. Srivastava, Phys. Rev. 137, B426
(1965).

p1,2,3=BWz,9,2
(A4)
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Then, on account of Egs. (A4) and (AS5), the integral
given by Eq. (A3) reduces to

I=(Byd)~* / exp(iQ-o—p)d%. (A6)

Next, we follow Sommerfeld® and introduce the fol-
lowing transformation equations between Cartesian
(%1,%2,- - *x;) and spherical polar (p,0,¢1- - -¢ig) CO-
ordinates in the nine-(7=9) dimensional space:

x1=p cosf,
Xo=p sinf cos¢; ,
x3=p sinf sing; coses,
.. (A7)
xs=p sinf sing; singy- - - singg cosey,
Z9=p sinf sing; sings- - - singbe singy.
Each of the «’s ranges from — « to + o in (A7).

For the whole space — o <#;<+ o to be covered,
the coordinates p, 6, ¢1,- - - ¢7 must have the limits

0<p< o, 0<¢;i<m, j=1,2--6, (A8)
0<o0<7, —w<r<-+r.
Then,
9
2 wp=p? (A9)
J=1

and the nine-dimensional volume element is given by
d%= p® sin"0 sine; sin’es - - - singedpdfde; - - -dy. (A10)

Let us choose the x; axis along the direction of vector
Q so that Q-p=Qp cosf and (A6) becomes

I=(8y8)3 / exp (#Qp cosf— p)p8 sin’@ sinep; sin’p,

X sings sin’p, sin’¢s singedpddpiddaddsdpsdpsddsdd; .

Integrations with respect to the ¢’s are simple and
give 37%. Using Sommerfeld’s expansion® of the plane
wave, exp(ZQp cosf), into products of Bessel functions
Jat772(Qp) and Gegenbauer polynomials P, (cosf/7) and
performing the 0 integration we get

I= (2m)*2(Byd)—*Q* / @¥/2T2(x) exp(—2/Q)dx,

where x=(Qp. Integration with respect to x finally
leads to
I=3n*X22(Bvy5)3(14+Q?)5, (A11)

where Q°= (q1/8)*+ (¢2/7)*+ (¢5/8)>. We use Egs. (A11)
and (A2) to obtain the expression (11) for the bare
form factor.

® A. Sommerfeld, Partial Differential Egquations in Physics
(Academic Press Inc., New York, 1949), pp. 227-235.



