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Charge Form Factor of the Alyha Particle
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We calculate analytically the charge form factor FB(q') of the ts particle (He') with a modifmd Irving
wave function. The parameters of the wave function have been determined from a variational calculation
of the binding energy of He4 using a central velocity-dependent potential. We 6nd good agreement between
our values of Fg(g2) and those obtained from electron-helium elastic-scattering experiments. Also, the
agreement with calculations using hard-core potentials is satisfactory.

&~URING the past two years a number of groups of
workers have measured the charge form factor

FB(q2) of the tr particle (4He) from electron-helium
scattering experiments. ' In the present note we propose
to give an analytical calculation of this quantity.

The charge form factor of the e particle is related to
the bare form factor FB(q2) through the equation

FB(q') =FB(q')XFffs, (1)
where

(2)

is the isoscalar form factor. The bare form factor FB(q')
is the Fourier transform of the squared O.-particle wave
function

~

tIr ~2. Let rf denote the radius vector of one of
the protons in 'He (we take nucleon 1 in 4He to be a
proton) and R, the radius vector of the center-of-mass.
Then

The parameters n, X, 2, and e have been determined
by a variational calculation of the binding energy of the
tr particle with a two-body central velocity-dependent
potential. ' Since the state represented by the wave
function tp is completely symmetric in the relative
spatial coordinates of the four nucleons in the 0. par-
ticle, the effective two-body central potential is the
average of potentials in '5 and 'S states. Therefore, in
the variational calculation of the binding energy of the
n particle we have used the potentials of Srivastava for
the case of the triton. 4

I eff(rjj) —
2 (1++static) (I 0)stnticexp( 2«ij/l3s)

+L(Vo)„,f d„/2M)LP'co, (r;;)+,(r,,)P'j
+)+ 1(I 0)vel.dep/2M)/P fo, (r s)+tot(r, j)P'), (6)

where
fo(r) = exp( —2«/p'),

FB(q2) =
~

fP~2 exp(ifl r)d'r, , (3) and subscripts s and t denote the singlet and triplet
states, respectively. The values of the potential pa-

where r= rf —R.
our calculation uses a four-parameter, modified Irv-

ing' wave function

lf = jV{m L
—~(E «"')"'j+~ emL —) (Z «", )"'j)/

TAnm I. Calculation of the bare form factor FB(q') and charge
form factor FB(q') for 'He using the wave function given by Kqs.
(4), (5), and (9). FB(q') is the Fourier transform of the squared
wave function and EB(qs) is given by Eq. (1). FBB(q') is calcu-
lated from Kq. (11).

(P r,j2)"; i,j =1, 2, 3and4 (4)

in which the normalizing constant is

-yPg y 2»—8~- &/2

E=
fr (8—4«t) t

$~4n 9+2+ ( (~+h)/2) 4n—9++—2) 4n—9jl/2 (5)

)Actually the normalization constant shown in Eq. (5)
is for the transformed wave function obtained by using
the transformations given in Eq. (A1) of the Appendix. f

' G. R. 3urleson and H. W. Kendall, Nucl. Phys. 19, 68 (1960);
J.P. Repellin, P. Lehman, J.Lefrancois, and D. S.Isabella, Phys.
Letters 16, 196 (1965); H. Frank, D. Hass, and H. Prange, ibid.
19,341 (1965)&

R. F. Frosch, R. E. Rand, K.J.Van Oostrum, and
M. R. Yearian, ibid. 21, 598 (1966).' J. Irving, Phil. Nag. 42, 338 (1951).
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FB(q') '
0.8253
0.6836
0.5680
0.4735
0.3317
0.2347
0.1676
0.1205
0.0872
0.0635
0.0463
0.0339

FB(qs) b

0.837
0.702
0.591
0.499
0.357
0.256
0.184
0.131

FBB(q')

0.9533
0.9101
0.8698
0.8323
0.7645
0.7050
0.6524
0.6058
0.5643
0.5270
0.4935
0.4632

EB(qs) s

Theoret

0.7868
0.6221
0.4941
0.3941
0.2536
0.1655
0.1093
0.0730
0.0492
0.0334
0.0228
0.0157

P@(~2) d

Exptl

0.7959
0.6258
0.4937
0.3910
0.2548
0.1583
0.0964
0.0594
0.0324
0.0184
0.0089
0.0062

a Present calculation.
b Calculation of Tang and Herndon using hard-core potentials and wave

functions, cf. Ref. 7.
o Present calculation.
~ Experimental values of Frosch et al. , cf. Ref. 1.
~ S. C. Jain and B. K. Strivastava, in Proceedings of nuclear

Physi cs and Sold State Physics Symposium, I.I.T. Eanpur, 1967
(Department of Atomic Energy, Government of India, India).' B. K. Srivastava, Nucl. Phys. 67, 236 (1965).
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Fro. 1. The charge form factor Ii~
for the 0. particle plotted against mo-
mentum transfer squared, q2. The
continuous curve shows our theoretical
Fs(q') while the circles show the ex-
perimental Fs (q') obtained by Frosch
et al. , from Table I.
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rameters are

(Vo)srsiic=100 MeV, (Vo)vei aeo. =2,
Xstatic= 1.84) Xvel= 0 ~5 7

1/P, =0.625F-' 1/P, '= 1.4F '1/P, '= 1F—-'. (8)

The 'S part of the effective potential fits p-p low and
high-energy scattering data, while the 'S parts 6ts the
binding energy of the deuteron and Breit's ~$ phase
shifts at E~,b= 147, 270, and 310 MeV.

For this potential and the trial wave function given

by Eqs. (4) and (5), the variational calculation gives
the best values of the parameters to be

ran=0, a=0.90F ', X=1.14F ', and A = —1.38. (9)

The corresponding value for the binding energy E&
of the alpha particle' is 30.1 MeV, while' the experi-
mental value (Z,„ori) is 28.29 MeV.

We calculate the bare forin factor F&(q') by evaluat-
ing the integral in Eq. (3) for the n-particle wave
function given by Eqs. (4) and (5). (For the evaluation

Thus our calculation gives E~&B, p~y. This is inconsistent
with the theory of variational calculation. However, we have not
included tensor forces in our two-body potential. The inclusion of
tensor forces is very likely to remove this inconsistency by re-
ducing the binding energy obtained with purely central forces.
For the effect of tensor forces on the binding energy of the alpha
particle, see Blatt and Keisskopf, Theoretical Nuclear Physics
(John %iley R Sons, Inc. , New York, 1952), Chap. V.

of the integral see the Appendix. ) We get

Fir(q')=Pn '+22{(n+h)/2) '+'A') 'j-'
X Lf(rr, q')+ 2&f((rr+ &)/2, q')+ &'fP,q') ],

(10)

Equation (10) together with the values of parameters
cr, )i, and A in Eq. (9) yields the bare forin factor in
Table I.

Ke take the isoscalar electric form factor from
Dudelzak's thesis':

F~s= 2L1.14/(1 —t/m„s) j—2L0.64/(1 —t/m ')j
where m„=783 MeV, m~=1020 MeV, and t= —q'.
Expressing t, m~, and m„ in units of F and substituting
t= —q', we obtain

FI', s= 2[1.14/(1+0 06345q') j
—250.64/(1+0.03739qs)j. (11)

These values of Ii J.q for different values of q~ are tabu-
lated in column four of Table I. Finally, the values of
Fir(q') and Fzs(q') are used, in Eq. (1) to give the charge
form factor F~(q') of the rr particle in the fifth
column of Table I.

Figure 1 and Table I show that experimental and
theoretical values of F~ (q') are in close agreement. Also

6 J. S. Levinger (private communication).
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we find from Table I that our values of Fn(qs) agree
reasonably well with those of Tang and Herndon, ~ who
have used a hard-core potential and wave function in
their variational calculation. These comparisons, there-
fore, lead us to conclude that our wave function for the
alpha particle given by Eqs. (4), (5), and. (9) and the
two-body velocity-dependent potentials given by Eqs.
(6)-(8) are quite good. This is contrary to our con-
clusion in the case of the triton. ' Perhaps our trial
wave function for the triton is not as satisfactory for
variational calculation as our modified Irving wave
function is for the n particle.

The authors are deeply indebted to Professor J. S.
Levinger for his valuable suggestions and for sending
his preprint. They thank the Department of Atomic
Energy, Government of India, for the award of a
grant, and the Indian Council of Scientific and Indus-
trial Research for the award of a Junior Research fellow-

ship to one of them (S.C.J.).

u=-2'L(ri+r2) —(rs+r4) j, v= (ri —r2)/&2,

w= (rs—r4)/v2, and a=s(ri+r2+rs+r4).
(A1)

Then, the integral in Eq. (3) reduces to the sum of
three integrals of the type

expL —4k (u'+e2+ ties) "2j

Xexp Liq (-,'u+ v/v2) fdsud'edsw. (A2)

APPENDIX

Here we discuss the evaluation of integral in Eq. (3)
for the bare form factor.

We introduce the following transformations due to
Irving'

Then, on account of Eqs. (A4) and (A5), the integral
given by Eq. (A3) reduces to

I= (PV~) ' em(iQ 8 p—)d'p (A6)

Then,

0&p&~, 0&y;&~, j=1, 2 6,
0&8(2r, —2r&gr&+2r.

9

g x,2=p'

(A8)

(A9)

and the nine-dimensional volume element is given by

d'p= p' sin 8 sin'pi sin'$2 sinpsdpd8d4ig ''(jlfl7. '(A10)

Let us choose the x~ axis along the direction of vector
Q so that Q 8=Qp cos8 and (A6) becomes

I= (py8) ' exp(iQp cos8—p)p' sin"8 sin'pi sin'$2

Next, we follow Sommerfeld' and introduce the fol-
lowing transformation equations between Cartesian
(xi,x2, .x;) and spherical polar (p,8,&, p; 2) co-
ordinates in the nine-(i= 9) dimensional space:

sy= p cos0 )

X2——p Sin8 COSgr,

xs ——p sin8 sin/i cosp2,
(A7)

xs ——p sin8 sin/i sin&2 sings cospr,

xs ——p sin8 sin&i sin&2 sings sin/2.

Each of the x's ranges from —0o to + eo in (A7).
For the whole space —~ (x;&+zo to be covered,

the coordinates p, 8, pr, pr must have the limits

/We have taken 22= 0 in accordance with Eq. (9).]
In order to evaluate (A2), it is instructive to consider

a more general type of integral

I(p 7 8 g g ps) exp' (p2u2+yss2+822o2)1/2$

I= (2 )"'(PyB) 'Q ' x'~'j (x) exp( x/Q)dx—,We define two nine-dimensional vectors 8 and Q such
that

where x=Qp. Integration with respect to x finally
leads top1,2, 2 p(u)z, y, zz P4527(e)», 2, zP

p7, s, 2=8(~)z, 2, z (A4) j'=32r4X2»(Py8) 2(1+Q2) 2 (A11)

where Q'= (qi/P)'+ (qs/p)2+ (gs/8)'. We use Eqs. (A11)
(A5) and (A2) to obtain the expression (11) for the bare

form factor.

e,..=~'(~)..., e .=7-(~)...,
Q&, 2.2 =~ (A)z.s, z

X»n'$2 sins/4 sinsgs sinrtsdpd8dpidpsdpsdp4dy, dgd@, .
Integrations with respect to the p's are simple and

give 3+4. Using Sommerfeld's expansion' of the p1.ane
wave, exp(iQp cos8), into products of Bessel functions
J~&~2(ep) and Gegenbauer polynomials I'„(cos8/7) and
performing the 0 integration we get

Xexpt j(q, u+qs. v+qs w))d'ud'nd'u. (A3)

2 Y. C. Tang and R. C. Herndon, Phys. Letters 18, 42 (1965).
8 J. S. Levinger and S. K. Srivastava, Phys. Rev. 137, B426

(~~6S).
9 A. Sommerfejd, Partial Differential Eglations in Physics

(Academic Press Incz) New York, 1949)) pp. 227-235.


