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A theory of inelastic processes of electron-hydrogen and electron-ion collisions is formulated along the Gell-
Mann-Goldberger approach describing all electrons by the eigenstates of the same Harniltonian and satisfying
the Pauli principle. It is found that this approach is satisfactory conceptually in that orthogonality between
the initial and the final states is preserved, the boundary condition is met, the completeness relation for
the unperturbed wave functions exists, and the unitarity of the scattering matrix is preserved. The con-
ventional formalisms are also discussed with respect to these matters, Two consequences of the formulation-
a finite-threshold law for excitations and the linear-threshold law, in energy, for ionization —are derived.
It is shown that also obtaining are an Ochkur-like relation for excitation and the Peterkop relation for ioni-
zation. Furthermore, the theory is extended to cases of many-electron atoms and ions for which the same
threshold laws are obtained. Finally, a theorem which is an essential assumption in the impulse approxi-
mation is proved, and the validity of the present formalism is noted.

I. INTRODUCTION

~ 'HE problem of the theoretical treatment of the
excltRtlon Rnd lonlzatlon of atomic hydI'ogen by

electron impact is R fundamental problem dealing with
the simplest kind of charged, three-body system. For
this reason it attracts theoretical interest. It also at-
tracts interest because of the potential usefulness of
quantitative predictions which can come out of the
study. There are in such astrophysical studies as those
of auroras, corona, and gaseous nebulas numerous
problems arising for which one needs to have quantita-
tive information on the cross sections associated with
excitation and ionization of atoms and ions by electron
impact. In recent years, the development of techniques
for obtaining better elastic, as well as inelastic cross
sections has led to added interest in the theoretical side
of the proble.

Because, as is well known, an exact quantum-mechan-
ical determination of the inelastic cross sections is not
possible, various approximations have been introduced.
Among the well-known approximations are the Born,
Born-Oppenheimer, Coulomb-Born, Born-exchange,
close-coupling, and effective-charge approximations.

It shouM be noted that in most theoretical studies
the wave-function approximation method is employed.
In this method, one approximates the total wave func-

tion of the system, utilizing all available properties of
exact wave functions of single particles. Then one ex-
tracts the scattering amplitudes from its asymptotic
behavior in the region far away from the scattering
Ieglon.

On the other hand, it is known' that the time-

dependent scattering theory is equivalent to the time-
independent theory when the stationary states are
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involved. One can use this equivalence to formulate a
scattering theory by use of the definition of the scatter-
ing matrix and of the time-independent "in"- and
"out"-state wave functions. This formulation, in fact,
was used by %atson' in 1952 in discussing the final
interaction in reactions. Subsequently, Gell-Mann and
Goldberger' in 1953, took this approach to discuss
scattering from two potentials as an example of their
formal scattering theory. Again in 1960, Bassel and
Gerjuoy took the same approach in discussing electron
capture processes from atomic hydrogen.

For the excitation and the ionization of atoms and
ions by electron impact, one deals with a system of
electrons. Consequently, one has to take the Pauli
principle into account in the theory. This was done by
Kang and Sucher' in 1966 for the excitation process of
hydrogenlike atoms by electron impact.

In this paper, the scattering matrix approach is taken
to study the inelastic processes of electron-atom and
electron-ion collisions. All electrons are treated on the
same footing —i.e., subject to the same Hamiltonian.

As we shall see below, this formalism is advantageous
in that (1) in the lowest-order perturbation, the direct
and exchange amplitudes are treated to the same ac-
curacy; (2) the resulting expressions for the scattering
matrix elements exhibit symmetry among electrons; (3)
the eBect of the core potential is fully taken into ac-
count, and the mutual interactions of electrons are the
only perturbations. The fact that this last point obtains
assures us that the theory can be easily extended to the
case of many-electron atoms and ions.

In Sec. II, a formulation of the theory for hydrogen
atoms is presented. In Sec, III, various conventional
formalisms are compared with the present formalism.
Next, in Sec. IV the immediate consequences of this

' K. Watson, Phys. Rev, 88, 1163 {1952).
'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398

(1953).
4 R. H. Bassel and E. Gerjuoy, Phys. Rev. 117, 749 (1960).
~ I. J. Kang and J. Sucher, Phys. Letters 20, 22 (1966).

122



THEORY OF ELECTRON I M PACT EXCITATION 123

theory are discussed and compared with the experi-
mental results. Finally in Sec. V, the theory is extended
to treat the excitation and the ionization of many-
electron atoms and ions.

The Coulomb units are used throughout. The atomic
nucleus is assumed to be infinitely heavy and at the
origin of the reference frame.

From Eqs. (2) through (5), the scattering matrix can
be rewritten as

SI, br, ———2rrib(Er —E,) (Mg)&M g),
+ for spin singlet state (6)—for spin triplet states

with
MD= (Cr, ,& H), '4'. ..+&)),

II. FORMULATION OF THE THEORY

We now proceed to a general formulation for the de-
sired matrix elements. The assumptions used in the
customary treatment of the problem are compared and
contrasted with the ones adopted here. After getting
the expressions for the matrix elements, we prove the
mathematical equality of the results of the two treat-
ments of excitation provided the exact wave function is
used for the "in" state. The changes necessary for
obtaining the matrix elements for ionization are noted;
and lastly, we note the problem involved in obtaining
higher orders of approximation in our formalism.

Consider the system consisting of an electron and a
hydrogen atom. Neglecting the spin-dependent inter-
action, one has for the total Hamiltonian H

H=It.+V.+I&,b+ Vb+ V.b,

It A. (ki) = ski'e. (ki)

(Itb+ Vb)~b(~) = —
l
e. lgb(m).

(10)

Carrying out these operations one obtains the ex-
pressions for the direct and exchange M-matrix ele-
ments in the conventional formalism

ME= (Cr., b& )Hb'4', .&+)). (g)

In the conventional formalism for the excitation of
hydrogen atoms the unperturbed final-state function
CJ.,( ' is taken as

Cr..& ' ——&&„(ki)rfb(n),

where p, (ki) and rfb(rb) refer, respectively, to a plane
wave of the a electron with momentum k~ and to a
hydrogenic wave function of the b electron with a set
of quantum numbers rb(= (N, l,m}).

M.=(q.(k,)»(n)
~
V.+V.b~C. &+)),

and
M, =(9),(k,)&.(~)

~
V,+V., ~C.&+)). (12)

Let us now consider the present approach. We denote
the continuum-state wave functions of the a atomic
electron with momentum k by x, (k);

(E,+V,)x (k) = -', k'x, (k) . (13)

Expressing Cb' '(k) in terms of Xb& '(k) via the
equation'

1
+bob= (C e++b)

v2

+ for spin singlet state

—for spin triplet states.
(2) x,&-)(k) =q, &-)(k)

where E, denotes the kinetic-energy operator of the a
electron, Vb the potential energy of the b electron in the
field of the atomic nucleus, and V b the mutual inter-
action energy of the two electrons. By the assumption,
the spin-dependent interaction is absent, and the total
spin is a good quantum number with which one can
classify the states of the system.

Denoting the total, spatial wave function in which
the u electron is in the continuum state by 0'„, one
finds for the symmetrized, total wave function:

One can denote the quantum-number set for the
total system by i and write 0;. instead of 0,. The
4;., satisfies the Schrodinger equation

+ lim Lk'/2 —(Kb+ Vb) —ie] 'Vbyb& ) (k), (1&)

we can rewrite Ms in Eq. (12) as

(II—E„)C...=0. M~= (xb&
—) (ki)rf. (rb)

~
V.b~)fr. ..&+)) (15)

If there exists 4, such that

(H'p —E,)C'...=0 with H =H p, +H, ', (3)

then the "in"-state (+) and "out"-state (—) wave
functions%';. ~+} are given by the Lippmann-Schwinger
equation';

as was shown explicitly by Day et al. '
By recognizing that V, commutes with Kb+ Vb and

by following a procedure similar to one which leads to
Eq. (15) for Ms, one finds for Mr) in Eq. (11)

(&t'. ' ' (kr)r)b() I
V.

I
~.'+' (kp)»(«) )

+(x,&
—)(k,)r)b(rb) i

V bi%'...&+)). (16)
4 ...&+) =C ...&+)+ lim H.'4', .&+'. (4—)—

'+ F.;—IIp,Hie

If one now proceeds according to the formal scattering
theory, the scattering matrix is defined as

&
—) @,&+)) (5)

6 While Eq. (14) is written here symbolically as in a paper by
T. B. Day, L. S. Rodberg, G. A. Snow, and J. Sucher [Phys. Rev.
123, 1051 (1961)), actual evaluation of the right-hand side of the
equation requires special care as was emphasized in the works of
R. A. Mapleton fJ. Math. Phys. 2, 482 (1961);3, 297 {1962)],
and of S. Okuko and D. Feldman [Phys. Rev. 117, 292 i1960)].
For the case of time-dependent theory, see J. D. Dollard, J. Math.
Phys. 5, 729 (1964).
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In obtaining Eq. (16) we have used for 4';, (+)

+;,.(+)=x.(+& (kp))&b(no)

with

C(+)= limLE; —(K +V,+Kb+Vb)+i p] '

+ lim LE,—(K,+V,+Kb+ Vb)+i p]

X V.b+;,.&+). (17)

Now the first term in Eq. (16) can be written as

(4),( & (ki)rtb(n)
~
V.

~
X.(+&(kp))&b(no))

=&f'(f) (&t—E')(&t.' '(ki)
I
X.'+'(ko)).

V(e see that this term contributes nothing to the scat-
tering matrix due to the presence of the Dirac delta
function 5(Et E;) i—n Eq. (6). Therefore, one can ex-
press Mn in Eq. (16) as

M =(x.(-)(k,)g, (n)
~
V.b~e;,.+ ). (18)

It is remarked that the expressions in Eqs. (15) and

(18) could be obtained equally well if one chose to ex-
press +f,,( ' as

%t,.(—) =X,&
—)(k,))&b(n)

+lim t Et—(K.+Vo+Kb+ Vb) ip]-'—
a~0+

&& V.b+t ' (19)

for then, from comparison of Eq. (4) with Eqs. (17)
and (19), one notes that Ct...b( & and EI', b in Eqs. (7)
and (8) are identified a,s

Cf...b& '=X.,b(—&(ki))&b,.(n), (20)

a.'= a,'= v.,
Thus it is proved that the conventional expressions for
the matrix elements in Eqs. (11) and (12) are m(bthe

mctica/ly equal to those of the present formalism in
Eqs. (15) and (18) as long as the exact "in"-state wave
functions 0'...(+~ are used.

For the case of ionization of the hydrogen atom it is
evident that the expressions for M~ and 3fg become
in the conventional formalism

M&)= (&t).(ki)xb(-) (kp) i
V.+ V. ib@;,, +())(21)

M/= ((&bb(k, )Xo( ) (ko)
~

Vb+. Vob ~)1;,(+)); (22)

and in the present formalism

and, in principle, one knows how to obtain the exact
wave function 0;.,(+&. In practice it is impossible to
obtain the exact "in"-state wave function of the system

+; therefore it becomes necessary to approximate
4;,'+& in some reasonable way so that the scattering
matrix elements can be expressed as integrals of known
functions.

III. COMPARISONS OF FORMALISMS

There are a number of aspects in which the theory
being presented here has formal advantages over
previous ones. We now consider some of the ways in
which other theories fail to meet fundamental require-
ments of scattering theory; we point out, of course,
that the current one meets these requirements. Three
such fundamental requirements are: the two electrons
are equivalent (in accordance with the Pauli principle);
the transition probability is zero for a constant po-
tential; and the scattering matrix is unitary.

A final item in this section considers a limiting be-
havior of the Coulomb wave.

A. The Born-Oppenheimer Approximation

In Eqs. (11) and (12) one should approximate )I'...&+&

in such a way that the formalism is self-consistent. The
lowest-order approximation (in the sense of perturba-
tion) for 4;,,(+) may be identified as the first term of
the Lippmann-Schwinger equation in Eq. (4); that is

(+)', .(t (=k())g. b (np) . (26)

It should be remarked that the Kronecker delta in Eq.
(6) was due to the orthonormality of the initial and
final unperturbed wave functions. Thus from Eqs. (11)
and (12) one obtains in the Born-Oppenheimer' ap-
proximation the familiar expressions for M~ and Mg

Mn-'(BO) = (y. (ki)~b(n) I
V +V b le.(ko)~b(np)), (27)

Ms-'(Bo) = (A(ki)n. (n) ~
vb+ v.b~ 4.(ko)gb(no)). (28)

and
Mi)=(X.'—&(ki)Xb'—)(kp)

~
V.b~e, ,.(+)), (23)

M&p
——(Xb& &(ki)X.&-&(k,) ~

.V~+b;, .+().)(24)
Similarly, one finds for the ionization of hydrogen

atoms, though use of Eq. (21), that to the lowest order
of the perturbation

It is herein emphasized that the final state of a particle
in the continuum state can be described either by a
plane wave interacting with the nucleus and the other
electron or by a Coulomb wave interacting with the
other electron.

By iteration, 0"...(+) in Eq (17) can b. e expressed as

(+) —(1+G(+)V +G(+)V bG(+) V' b+. . .)
&&X,(+) (ko))&b(no) (25)

ion (BO)
= (q)o(ki)Xb (ko)

~
Vo+ Vob

~
go(ko))&b(no)), (29)

and

Mg""(BO)
=(Pb('ki)Xo( «(ko)

~
Vb+Vobtil) (ko))&b(no)) (3O)

7 M. Born, Z. Physik 37, 863 (1926); 38, 803 (1926); J. R.
Oppenheimer, Phys. Rev. 32, 361 (1928).
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In this formalism the matrix elements for the direct
scattering, Mt&ex'(BO) and M»""(BO), satisfy the
boundary condition that any constant potential (i.e.,
no interacting force) should lead to no transition. How-

ever, the matrix elements for the exchange scattering,
Ms' '(BO) and Mg""(BO), do not satisfy this boundary
condition, simply because the initial and the 6nal
states are not orthogonal. The root of this discrepancy
can be found in the fact that the indistinguishable elec-
trons are described by the eigenstates of two different
Hamiltonians. This discrepancy and the "post and
prior" discrepancy have been known for some time, and
many authorss tried to remedy the situation without
much success.

A further fault exists in this approximation: in the
sense of perturbations the direct scattering is treated
to the accuracy of (V,+V, (,)/(E +It(,+V(), whereas
the exchange scattering is treated to the different ac-
curacy of (V(,+V,()/(E,+E (,+ V ), as was pointed out
earlier. '

B. The Coulomb Wave Ayyroximation:
Present Theory

By now lt ls obvlolls how one should apploxlITlate
+;,,(+) in Eqs. (15), (18), (23), and (24) in order to
have a self-consistent theory. The choice is clearly the
erst term of the I.ippmann-Schwinger equation given in

@,.,(+)~X,(+) (ko)&)~(tto) (31)

(this is the unperturbed wave function). With this
choice one obtains for the excitation processes

M~(o'-'= &X ' '(k&)»(&) I
V"

I
X '+'(ko&»(tto&) (32)

Mz(')'*'= &X~( ) (k&)n. (~) I
V.~l X.")(ko)»(«) & (33)

and for the ionization processes

Mt&(')" = (X ( ) (k&)X&,( &(k2) I Vo(, IX,(+) (ko)&)(, (no)& (34)

= &X~' '(k~)X. ' '(k2)
I
V.~IX.(+'(ko)»(~o)) (35)

Thus, by describing the two identical, indistinguishable
electrons as eigenstates of the same Hamiltonian, one
recovers the orthogonality between the initial and final
states. Now, we see that no constant potential can lead
to a transition, and in this regard the formalism satishes
the boundary condition. Both the direct and exchange
scatterings are dealt with to the same accuracy: V &,/

8 See for the l8ck 0f orthogonahty& L I Schlg, QNC+~N8$
Mechmucs (MCGraw-Hill Book Company, Inc. , New York, 1955),
2nd ed. , p. 239, and for a remedial attempt, see Ref. 6 and K. L.
Bell and B. L. Moiseiwitsch, Proc. Roy. Soc. (London) A276,
346 (1963).'T. Y. Wu ar&d T. Ohmura, Qmonttt»& Tt&oory oj Scottorilg
(Prentice-Hall, Inc., Englewood Cliffs, Near Jersey, 1962), Sec.
L) p. 192.

Assuming the completeness relation for the 4's, one can
expand lim~„+«~, ;&+) in terms of unperturbed states
with the 5-matrix elements as expansion coefIicients

lim%', (+&=Q 4„( &S„,.

When one carries out the calculation for both sides of
Eq. (36) using Eq. (37) and

c „(+)=—LX,(+) (k,)&)b(N,)+X&,(+) (k,)&t,(»)j,
+ for spin-singlet state

—for spin-triplet states,

one obtains the unitarity of the scattering matrix. On
the other hand the Born-Oppenheimer (BO) approxi-
mation uses for the unperturbed wave function

C (+&(BO)
+ singlet=—L4-(ko)»(») +n.(»)A(ko) j,

v2 —triplet

and due to the lack of orthogonality mentioned. earlier
the set of C '+) (BO) 's does not satisfy the completeness
relation. In consequence, an expansion. in the form of
Eq. (37) is not possible. If the expansion of Eq. (37)
is assumed, the equation corresponding to that of
unitarity of the 5 matrix becomes, in matrix form,

I+A =S&S+S&AS,
with (38)

The matrix A is neither I nor 0. In order for Eq. (38)

'0 Although a dBkrent approach is used, Borowitz and Friedman
in 1953 obtained matrix elements identical to those in Eqs. (32)
through (35) from their so-called "symmetric perturbation"
scheme. Later Borowitz and Klein in 1956 calculated the first
Born amplitudes for 2s- and 2P-excitations of hydrogen atoms by
electron impact. For details, see S. Borowitz and B. Friedman,
Phys. Rev. 89, 441 (1953); S. Borowitz and M. M. Klein, ibid.
103, 612 (1956).

(E +Et,+Vo+V(,). The expressions for the matrix
elements exhibit symmetry over the two electron co-
ordinates as they should. '0

Another important point which should also be noted
is that in the present formalism the unitarity of the
scattering matrix is preserved to the lowest order of
the perturbation, whereas such is not the case for the
Born-Oppenheimer approximation. Let us recall that
the "in"-state, total wave function in the remote past
was an unperturbed, initial, total wave function and
that hermiticity of the Hamiltonian of the system
implies conservation of probability. Therefore, the inner
product of two quasistationary (time-dependent) sta-
tionary solutions is independent of time, and

lim&% ... ,(+%,.„;(+)
&
= lim &e„,;(+%„,„;(+))



to be consistent with the unitarity of the 5 matrix, one
must have SA =A5, which is not true unless A is either
I or 0. Thus the choice for 4';, ,'+& in Eq. (31) is the
only cholcc which has Rll thc required plopcrtlcs.

At this point it may be worthwhile to point out that
Geltman's work" of 1956 employed the same formalism
as we use in Eqs. (23) and (24) but approximated
+;; '+' by P, (ko)qq(eo). Thus his work suifers incon-
sistency of the theory and nonorthogonality between.
the initial and the 6nal states with consequent violation
of the boundary condition and of the requirement of
unitarity of the scattering matrix. Note, however, that
prediction of linear ionization threshold law is the same
RS OUI'S.

C. Other Ayyroximations

The so-called Born-exchange approximation'~ is often
used to determine the ionization cross sections. This
approximation is defined by

Rnd ls not ln Rccordancc with thc PRUll pl-1Qclplc. %e
note that it does maintain the proper orthogonality
between initial and final states.

Next let us discuss the eRective-charge approximation
which was introduced by Vainshtein e$ al. ,

"in 1964 and
studied subsequently by Crothers and McCarrolV' and
more recently by Omidvar. "This formalism lacks self-

consistency, in the sense of the perturbation theory, and
orthogonality, not only for the direct scattering but
Rlso foI' the cxchangc scattcrlng. Therefore this foI'-

malism leads to nonvanishing transition amplitudes
even when there is no interacting force (viz. , a nonzero,
constant potential).

Finally let us discuss the Coulomb-Horn-Oppen-
heimer approximation. '6 This formalism was outlined

by Seaton" in 1962 for the case of collisions of electrons
with positive ions. According to his article, the plane
waves in the Born-Oppenheimer approximation are

simply replaced by the attractive Coulomb wave with

a strength of Z —1 (Z=atomic number}. No other
chRDgcs al e made. Obvlouslyq oDc CRnnot just tI RnsfolIQ

"S.Geltman, Phys. Rev. 102, 171 (1956).
"M. R. H. Rudge and M. J. Seaton, Proc. Roy. Soc, (London)

A283, 262 (1965); M. R. H. Rudge and S. B. Schwartz, iNL
88, 563 (1966)."L.Vainshtein, L. Presnyakov, and I. Sobelman, Zh. Eksperim.
i Teor Fix. 45, 2015 (1963) t English transl. : Soviet Phys.—JEYP
18, 1383 i1964lg.

"D. Crothers and R. McCarroll, Proc. Phys. Soc. (London)
86, 753 (1965).

1' K. Omidvar, Phys. Rev. Letters 18, 153 (1967).
'60. Bely, J. Jully, H. Van Regemorter, Ann. Phys. (N.V.)

8, 303 (1963);A. Burgess, Mem. Soc. Roy. Sci, Liege 4, 299 (1961).
'7 M. J. Seaton, in AIomic and Moleellar Processes, edited by

D. R. Bates (Academic Press Inc. , New cwork, 1962), Sec. 2.9,
p. 388.

the state vector and ignore accounting for the result-
ing eRects of the transformation on the interaction
Hamiltonian.

IQ summary~ lt ls remarked that oDc CRD find nu-
merous faults with the conventional formalisms which
are all associated with the wave-function approximation
method. Kc are accustomed to describing an incoming
particle in the region far from the scattering region.
Often we are apt to forget that this incoming, plane
wave interacts with a certain 6cld whose potential falls
OR at large distances. %hat is proven in the present
formalism is that (using the prior form instead of the
post form) the incoming plane wave being attracted by
the nucleus and at the same time being repulsed by the
lcslduRl atomic clcctI'on ls equivalent to Rn RttI'Rctlvc

incoming Coulomb wave heing repulsed by the other
electron. In order to bc COQslstcnt —R requirement Ilotcd
particularly in the case of ionization processes —one
must avoid discriminating between electrons, as is done,
for example, by saying that one outgoing electron
should bc dcscrlbcd by R CouloIDb wave whllc the
sccoDd elcctroQ —which ls indistinguishable froIQ

first—should be described by a plane wave. The be-
havior of the Coulomb wave in the high-energy limit
is that of the plane wave. Therefore the Coulomb wave
approximation has a region of validity which includes
that of the Born approximation, In the threshoM re-

gions of lnclastlc coHlslons thc lntultlvc argument for
the validity of the Coulomb-wave, perturbation theory
may be given as follows: when the total energy of the
system of colliding electron and target, Eq,~[= &&0'

—-', (1/eo')], , approaches zero, a consequence of the
Coulomb repulsion between the two electrons is that
the time average of their. spatial. separation can not be
of the order of the Bohr radius but must be much larger
than this ) then thc RvclRgc of thc pcrturbatlon 1Dtcl'-

action, say (1/r, ~) is quite small compared to the total
energy of the system.

Both the higher-order contribution to the transition
pI'obRblllty RQd the convcrgcncc of the pcI'tUI'batlon

series are for this formalism subjects for future study. "
IV. THRESHOLD LAWS

Evaluations of the matrix elements of Eqs. (32)—(35)
CRD only bc done RpploxlIQRtcly. Thc approximations
are straightforward and relatively simple for threshoM

processes. For these one can get predictions. To com-

pare these predictions with experiment is not easy:
The experimentalists have riot agreed on the extrapola-
tion to threshold for the closs sections. %e now

consider thcsc IIlRt tel's.

A. Exutation Processes of Hydrogen Atoms

It is well-known that the Born-Oppenheimer approxi-
mation predicts thc threshold law that the cross section

'g An approach which might be taken is the one by A. C,
Zemach and A. Klein, Nuovo Cimento 10, 1078 (1958).
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alld

x, & &*(ki)=Ei*e '"'"F(i/kr, l, iktr, +ik, r.),
(39)

is linear in the momentum of the outgoing electron k~.

This prediction was supposedly veri&ed experimentally
for H(1s) ~H(2p) by Fite et al. ,

" in 1959. However
their data did not include values close enough to the
threshold to please the theorist. Furthermore, in the
same year Lichten and Schultz" reported for H(1s) -+
H(2s) measurements which did not agree with those of
the k' power law. More recently, Chamberlain et al. ,

"
reported finite cross sections for threshold for H(1s) —+

H(2p), a finding in support of our prediction.
There have been a few theoretical predictions"" of

nonzero cross sections at threshold —all developed
through use of the close-coupling approximations for
1s —+ 2s and 1s—& 2p excitation processes of hydrogen
atoms. These predictions of the finite threshold law
were attributed to the degeneracy of hydrogen atoms
in the orbital angular momentum /.23 The explanation
is not at all clear. %hat is agreed on between the two
formalisms, which give the same finite threshold law,
is that the incoming wave is not a simple plane wave
but a distorted wave.

We now proceed to approximate the values of 3II~&0' '
and Mzt'i'"' in Kqs. (32) and. (33). The "in"- and
"out"-state, attractive, Coulomb wave functions'4 are

X,&+&(kp)=¹e'"'"F(i/kp, i, iksr, —ikp r,)

we can rewrite the Mo"'x' in Eq. (32) as

e
—ik r

M «): =r,~V,* G(q+k)—
2rr'(k+ q)'

y F (ks, r)F"(ks, r) O'Ird'r. (43',

The "peaking approximation" is the approximation

e
—ik r

G (q+ k) — -d'k=G (q)
(k+q)'

e
—ik r

d9~
(k+ q)'

2K' .=G(q) e'&'. (44)

q= ks —ki,

2n= g,

n+p=ko q,

py —n5
x= ——

v(~+ p)

p=k, q;

6+p=kskt+ks ki.,

(46)

The remaining integral over d'r was evaluated by
Nordsieck" in 1953 in connection with the bremsstrah-
lung problem. Thus one finds for M~")' ' that

G(q) ~ i/so ~ )&/i)i

!
{0)exc 2&+ g 8 e

—. x/kp

(q'/2) ~ +P~

&&F(i/ks, i/ki, 1; X) (45)

I&'I'=2 /L&'l'(1 —(s ""')3 (4o)

for a box normalization. As k~ approaches zero, the
Coulomb wave function with momentum k~ becomes
independent of

I
kt I, apart from the normalization con-

stant in Eq. (40).
In order to show the convergence of the integrals and

to obtain the functional forms for M~, ~&')' ' in the
present formalism, we employ the so-called "peaking
approximation. '"'

By de6nlng

R=-', (r.+r,),
e= s (r.—rs),

(47)

and denoting the momentum representation of the
hydrogenic, bound-state wave function. by p„(q),

y„(q) =— — r/(n r)e'&'d'r
(2~)'

(48)

F(u,e,w; a) in Kq. (45) denotes the hypergeometric
series.

Now let us evaluate Mg("'"', changing variables
according to

G(k) = r/s*(n, t,rn)r/s(n, ,7s,rn, )e'"'d'r (41)
The Ms&'&'"' in. Eq. (33) can be rewritten as

and using the identity

Tab 27/

eik. (r~—~f)

d'k, (42)

1
Mais&' '=4¹Ni* —

d „*(st)d„,(s+ q+si)
P

i{R—p) s —ip ~ (2s1+q,—kp—k&) i(tl+kp —k) RXe e e

"%.L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys.
Rev. 116, 356 (1959).' W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959).

'1 G. E. Chamberlain, S. J. Smith, and D. %. O. Heddle, Phys.
Rev. Letters 12, 647 (1964)."R.Dambnrg and M. Gaiiitis, Proc. Phys. Soc. (London) 82,
1068 (1963)."P. G. Burke, S. Ormonde, and W. Khitaker, Phys. Rev.
Letters 17, 800 (1966).

'4 G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954); H. A.
Bethe, F. Low, and L. C. Maximon, ibid. 91, 417 (1953)."See Ref. 14 for details.

XF*(kt, R—g)F(ko, R+y)d'Rd'pd'std's.

Then with the additional approximations'~

d (s+q+ sr)e"i"-&'d's=-y (q+ st) (2rr) '5'(R —y),

"A. Nordsieck, Phys. Rev. 93, 785 (1.953).
"Similar approximations were employed by Crothers and

McCarroll in Ref. 14.
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one gains

G(q)
4 *(s )4.o(q+s )d's =- (49)

(20r) 0

4R
e""0RF*(i&I 0)F(1&0,2R)doer.%II&')'"'= 4Ã0A/IeG (q)

E

F(u, s,x) above denotes the confluent. hypergeometric
series.

Comparison of Mg~p)' 'with 3f~(p)'"'yields a relation

qR ~ e/sa (~+8) i/sg

(0)exa —~&(0)exa

kos e

F[1 i/ko 1 —2i(kokl lro l—tl)/ko'kl)X,(51)
F(i/ko, i/kI, 1;x)

which in the high-energy limit approaches

~&(0)exa —klI& (0)axe~2/k 0 (52)

This last relationship was derived by Ochkur28 in j.964.
From Eq (51) one obtains MII'0~'xa=MI)(0)exa ai:
threshold. Originally Qchkur derived the relation in
Eq. (52) III 'tllc Bolll-OppcnllelIIlcl approx1matlon fol'

helium excitation processes. He obtained the relation
through the high-energy expansions of the scattering
amplitudes. Since in our derivation, wc have not used
any energy-limiting procedures, the relation in Eq. (51)
is valid for all energy regions.

The approximations which were employed in evaluat-
ing the ML g()e"' should be studied further for im-
provement. However, the ratio of Mg( )'"' to 3f~&'&'"'

in Eq. (51) would seem to give promise of canceling
this crudeness and appears to give a correct relation.
This relation appears to be universal, independent of
the species of atoms involved.

It should be remarked that in the reference kame
where ko ——ko„we have G(q) behaving as kl)"—"0) as
kl -+ 0, as has been, shown by one of us (I.J.K.) so This
factor, G(q), is present in the direct scattering amplitude
in the Born approximation. Thc abovcmcntioned
threshold behavior of the G(q) may be traced to the

"V. I. Ochkur, Zh. Eksperim. i Teor. Fiz. 45, 'g4 (1963)
I EIIglish trsnsL: Soviet Phys. —JETP 18, 503 {1964)g.

2' I. J. Kang, Phys. Rev. 144, 29 (1966).

The integral over d'E. can be evaluated with Nordsicck's
foDTlula& Rnd onc obtains foI' thc cxchRngc scRttcI'lng

G(q)
u~«&- =2~@,X,*-

(ko'/2)

2i(kokl —ko itl)
so

kp'kg

spherical harmonics, Vz("a ")(8„p,) which arise from
the coupling of two spherical harmonics of the initial
and 6nal hydrogenic, bound-state wave functions.

In order to get the cross section, one squares the
scattering matrix element Sf;, then divides by the
in.cident 6ux hko/tnV and by the duration of the
transition, T=2s8(0) to form a transition rate, and
6nally sums over 6nal states Vdsklk'/(2ark)s in the
observed interval of phase space. For a cross section
for a process, 1&0, (no, lo) —+kt(n, l), with unpolarized
electrons, one should sum over final electron spin and
m states and average over initial electron spin and mp

states. Thus one Ands for the cross section of the process
ito, (no, lo) —+ 1&I, (n, l),

~

~
QtT —a certain function of ko only, (53)

SP 1n,f00

which cross section exhibits k~ to the zeroth power;
this is the threshold law. The diGerence between the k~'

power law of the Born-Oppenheimer approximation and
the present law is due to the way in which the 6nal-
state, positive-energy electron is described.

It is significant that the functional form of the M-
matrix, and not the absolute magnitude, is used. Be-
cause of this generality the nonzero value of the cross
section at threshold is assuredly correct.

B. The Ioniza, tion Process for Hydrogen Atoms

By examination of Eqs. (23) and (24), one 6nds
exactly the Peterkop relation" between the direct- and
exchange-scattering matrices

Ms""(itl, its)=M'I)""(l&I~ ks),

without nccding to Dlakc Rny complicated phRsc
asslgIlII1Cnt.

We proceed to the evaluation of MI)(0)" of Eq (34)
by using the peaking approximation —not because this
approximation gives correct values but because it gives
after manageable mathematical labor functional forms
for the amplitudes.

Using the identity in Eq. (42), with a quantity
G(no, l&s, k) wlllcll ls dc6ncd as

G(no, i&, i&) = r/(n, )x(-)*(k )e'"'d',

one can rewrite the 3fr/(0) &a" in Eq. (34) as

d'kd'r
M (o) PÃ. — e '"'G(no, ir, ir+q)

2s' (ll+ q)'

&&F(1 „r)F*(k,,r). (56)

"R.K. Peterkop, Proc. Phys. Soc, (London) 77, 1220 (1961).
3'P. G. Burke and A. J. Taylor, Proc. Roy. Soc. (London)

A287, 105 (1965).
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Using the corresponding peaking approximation,

g
—ik t tk ~ I'

G(np, ks, k+q) d'k —G(np, ks, q)
— d'k

(k+e)' {k+q)'
{57)

and the Nordsicck's 6rst integral formula, "one obtains

conclude in the region near threshoM that

Mi)(P) "s(kt,ks) =f(kp)Eras. (62)

I ollowing a procedure similar to the one described
Rbovc to obtain thc dlEerentlal lonlzatlon closs section]
ODC gCtS

e-wisp ~) ilsp

Mn(p)(m(kt ks) = 2pr g X G(mp ks kp —ki)

~
i/st

X~ ~ P{i/kp, 1/ki, i,X) (58)
En+P&

d20 $01L

dQ dQ

2~8(Z,-Z,)
{xp(Mg)(P)+M)p(P) [s

()))kp/r)s V)

Vmk j'kg~dkgdkphe
(p) M (p) ~s}ip

2 ~A'

with(r, P, y, 8, q, and X the quantities def(ned in Eq. (46).
The quantity G(wp, k„kp—k,) in Eq. (58) can be

calculated by use of the integral representation of the
conQuent hypergeometric function.

For H(1s) ionization, using the definition of G in
Eq. (55), one 6nds that

G(1s,ks, kp —kr)

8 1 Ps+A'
= —~pr-

8h P+X' Ps+ks+2ks. y —2iVs
h

For a general case of H(ep, lp, p)pp) ionization, using the
differential operator method, " one finds for G{N,l, tN;

ks, kp —ki) that

G(n, l,i)s; ks, kp —ki) =—4sS„,(,„L„,((Vs,~)~"~P( !„!(kp,)
ps+ ks —i/sr

x—— (6o)
B, Ps+k' P'+)(s+2ks P—2P'Vs

(
2ys (n—I—1)! '" 2~'

& 2 L{+1)!g'
-2&+1 (1—/~ /

}!-i&a
&-Inst

4~ (1+)m()!

(rs!)spi
L-,(= Z (—1)~'

(n —1—j)!(j+1)!j!I ( s(„)pgp),

and P(
~ ~

(kg,) is a polynomial differential operator ob-
tained by substituting (8/8ikp, )'{8/8(—)())' ("( ' for
g' in (d/Ch)~"~P((p(), in which I'r(x) denotes the Le-
gcndre polynomial.

The magnitude of the fourth argument X of the
hypergeometric series is less than 1, and the series
conveI gcs. Fur therIIlore) as I(l I appI'oRclms zero~ thc
hypergeometric series becomes a conQuent hypergeo-
Inctllc series depeIldlng only on ko. Thtcrcfore one CRD

@ gee, for 8.n example, Ref, 29,

From Eqs. (62) and (63), one now finds that

op, p
——(some function of kp only) XEp.&, (64)

@which equation exhibits the linear threshold law. Gelt-
man~ in 1956 and Rudgc and Seaton" in 1965 obtained
the same llncRr threshold 1Rw by descrlblng the OUt-

going electrons as Coulomb @&aves and the incoming
electron as a plane @rave. The slope of the curve of the
cross section versus total energy for the Z{ls)-ionization
case as obtained ln 1960 by Peterlmp33 from the s™vravc
contribution in Geltman's work is reported as 0.022prap'/

CV, and has been misquoted in the recent literature. '5

The corresponding slope by Rudge and Seaton" is
0.136m.ups/eV. The experimental values reported are:
0.078 by Fite and Brackman'i 0.06'7 by Boksenburg».
and. 0.064 (in the region of energy 0.3 eV, and above,
beyond the threshold estimated to agree with the
experiment) by McGowan and Fineman'p (all units are
preps/eV). The preliminary study shows that the "peak-
ing approximation glvcs too lRlgc a value fol the slope;
the reason for this has been traced to approximating an
oscillatory factor c's' by 1 for all k and r. A better
approximation for MD")"" has been carried out by
numerical calculation for comparison with observations.
The slope turns out to be 0.024iraps/eV. This study will
be reported later.

V. MANY- (N&1) ELECTRON ATOMS AND IONS

Some of the work for the case of hydrogen can be
cxtcndcd 1D R fallly gcnclal %'ay. Let Us turn to the case
of the many-electron atom to see vvhat is possible. As
long as one takes a product of hydrogenic wave func-
tions for the unperturbed atomic @rave functions, the
perturbation interaction Hamiltonian is

N+3

Z ~*i.~

a&~1

pp R. K. Peterkop, Isv. Akad. Nauk, SSSR 24, 94)' (1960).
pi W. L.Fite and R.T.Brackmann, Phys. Rev. 112, &&41 (19&S).
&& h.. 3oksenbgrg, thesis, University COHege, London, ~9+ (&n-

pubhshed).
~6 J. %. Mcoowan and M. A. Fineman, in Proceedings of the

Fourth International Conference on Atomic Collisions, Quebec,
Canada, 1965 (unpublished).
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Because of the nature of the two-body potential as-
sumed and the orthogonality of the wave functions, one
finds the following theorem:

To the lowest order of the mutual ilteractiol of electrons,
oee Ascomieg electron excites or ioeises owe reszdlol elec-

ffOS 'LS GN 01081 8$ a $2tM.

It is remarked that the content of this theorem stated
above is the first of the three assumptions on which the
impulse approximation'~ 38 is founded. The use of the
impulse approximation has been rather extensive in
inelastic, high-energy, nucleon-nuclei scattering since
1950.The second assumption of the impulse approxima-
tion is that the amplitude of the incident wave falling
on each of the constituent nucleons is the same as if
that constituent were alone. (We read electrons in-

stead. of "nucleons, " of course. ) The appropriateness of
this second assumption is understandable in the light
of this work, as one sees upon recalling the nature of the
superposition principle of classical electrodynamics.

To complete our remarks on the foundation of the
impulse approximation, it can be pointed out that the
third assumption. (that the binding forces between the
constituents of the system are negligible during the
decisive phase of the collision, the time during which
the incident particle interacts strongly with the system)
has been justified'~ for the inelastic, high-energy,
nucleon-nuclei scattering and is characteristic of the
short-range and the nonelectromatnetic nature of nu-

clear forces.
At this point, it shouM be pointed out that the present

formalism is closely related to the impulse approxima-
tion. The validity of the latter approximation has been
studied. Following the criterion of Mott and Massey"
that

aEp/he«1 (66)

(where a is a scattering length or the range of inter-
action; Eo is the bound-state energy, and n is the speed
of the incident incident electron), one finds that the
present formalism can be valid even at the threshold by
taking a to be unity in Coulomb units.

Returning to the problem of the electron-atom or
ion, collisions, one finds that it follows from the theorem

"G. F. Chem, Phys. Rev. 80, 196 (1950).
'8 G. F. Chem and G. C. Wick, Phys. Rev. SS, 636 (1952);

Ashkin and G. C. Wick, ibid. SS, 686 (1952};G. F. Chem and
M. L. Goldberger, ibid. 87, 778 (1952).

~ON. F. Mott and H. S. W. Massey, The Theory of Atomic
ColHsiorls (The Clarendon Press, Oxford, England, 1965), 3rd
ed. , p. 338

Then the present formalism gives the M matrix, from
which one finds the scattering matrix by using linear
combinations of these elements, as follows:

%+1 q (u ) Ny1
(0)exe ion g (—) Q p

x;(k,)

that the electron-impact excitation cross section for any
process, hp

(diplo)

~ kg (u l), is 6nite at the threshold
regardless of the atomic species, whereas the linear
threshold ionization law is true for all electron-atom
ionization processes.

These threshold laws encompass the existing experi-
mental results mentioned earlier in this section. Yet
their far greater generality should be tested in the
future. It is obvious by now that these threshold laws
and the Ochkur-like relation, as well as the Peterkop
relation, hold true for electron impact excitation and
lonizatloIl respectively of posltlvc aIld ncgatlvc lons.
According to Burgess, 40 who used the so-called Coulomb-
Born-Oppenheimer approximation, the linear threshold
law for ionization is valid for scattering of electrons
from positive ions. Recently Bely4' found for the
scattering of electrons from positive, Hthium-like ions a
threshold cross section for excitation which was finite.
It might well be, therefore, that an actual search for
these effects might show that they have been overlooked
all along.

VI. SUMMARY

The present formalism is, in summary and to the
lowest order of the perturbation, satisfactory in that:

(1) No "post-prior" discrepancy exists.
(2) Orthogonality between the symmetrized initial

and 6nal state wave functions is preserved.
(3) Consequently, the boundary condition that any

constant potential (no interacting force) should lead to
no tI'ansltlon ls met.

(4) Furthermore, the unitarity of the scattering
matI'lx ls preserved.

(5) The direct and, exchange scattering are dealt to
the same accuracy.

(6) The formalism can be applied easily to the cases
of electron scattering from positive ions and from nega-
tive ions.

One inevitable difhculty with this approximation is the
mathematical one. Because of the conQuent hypergeo-
metric series in the Coulomb wave functions, tediousness
increases considerably. However we are hopeful that
this may be overcome soon.

The argument given in Sec. III about the choice of
the unperturbed wave function can be applied to the
case of scattering of a particle by an identical particle
in a bound state.
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