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The nucleon-nucleon interaction in relative angular momentum states 2>1 is described over the energy
range 25-350 MeV by a potential used in conjunction with the Schrédinger equation. The potential is a
superposition of pole terms obtained from single exchanges of w, p, 7,1, 0o, and 1 mesons and, rather than tak-
ing the usual static limit, all terms of order 2%/M? are retained. Because of these momentum-dependent
terms, no cutoff is necessary in />1 states. The meson coupling constants and the masses of the scalar
mesons (o and o1) are the parameters which are adjusted to fit the experimentally determined phase para-
meters. A comparison with the data is given, showing a quantitative fit (X?/datum=1.6) when the model
is augmented with reasonable values of the S-wave parameters.

I. INTRODUCTION

HIS is one of a series of papers treating the S ma-
trix for the 0- to 350-MeV nucleon-nucleon inter-
action in terms of w, p, T, oo, and o1 poles in the cross
channel, suitably unitarized by calling the sum a poten-
tial, inserting the Fourier transform thereof into the
Schrodinger equation, and solving for the phase shifts.
These phase shifts are compared with the experimental
phase shifts found by Arndt and MacGregor, partial
wave by partial wave, and the pole parameters are ad-
justed until a best fit is obtained. A comparison with the
_scattering data is also made. The pole parameters which
we adjust are the nucleon-antinucleon meson coupling
constants go, fu, £,y f» (Where g and f signify Dirac and
Pauli coupling, respectively), g.% g% g4.%, and g,,%. The ag
and ¢; have quantum numbers T, JP=0, 0+ and 1,0*.
These are unfounded experimentally, at least at present,
but their presence is crucial to the pole fits. The masses
mq, and m,, are searched along with the coupling
constants.
In an earlier paper, which we shall call Paper I,! a set

* Much of this work was done at the University of Southern
California with the partial support of the U. S. Atomic Energy

Commission.
LR. A. Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964).
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of pole parameters was found which fit the experimental
phase shifts reasonably well for states of orbital angular
momentum /> 1. It was found, however, that the poten-
tial had to be cut off at short distances to eliminate an
r—3 divergence. This problem was treated by setting
the potential equal to zero everywhere within 0.6 F. In
that same work one term of order $? was neglected in
the potential, for convenience in numerical solution.
This term occurred in the central (non-spin-dependent)
part of the scalar and vector one-boson potentials, and
was expected to be compensated for by a slight change
in the coupling constants. In the present work we in-
cluded the p? term and arrived at a good fit to the data
with about the same pole parameters, so apparently the
neglect of the p? term in Paper I was indeed not too criti-
cal. However, we found in the present work that by in-
cluding the p? term, cutoff was no longer required; the
$? term is positive (repulsive) in both V-V isotopic spin
The equations for R, Riz, and Rps given in Sec. II of that paper
are incorrect. They should read, in the notation of that paper,
Re(f/g)=1+u1+3u3)71(//2),
Rua(f/9)=[14+2/)(f/0) 1%
Ruis(f/g)=1+(8/3u)(f/2),

where u=my/M. Fortunately, the numerical error is slight and
our conclusions remain valid. These remarks apply also to R. A.
Bryan, C. R. Dismukes, and W. Ramsay, Ref. 5.

1215

Copyright © 1967 by The American Physical Society.



1216

states and reduces the degree of singularity in the poten-
tial enough for the Schrodinger equation to be solved.

Extensive reference to other pole models in the litera-
ture has been given in Paper I and, more recently, in a
review article by one of us (R.A.B.).2 Particular refer-
ence to dispersion-theory treatments may also be found
in articles by Arndt, MacGregor, and Bryan.® For the
most part we have not attempted to include higher-sym-
metry schemes in this list because of the tentative na-
ture of these proposals. However, one such scheme seems
appropriate to mention, because it is so closely related
to all pole models. This is the five-vector model of Green
and co-workers,* wherein the w and ¢ mesonic fields
are considered components of a single field with five
elements. It couples to the nucleon as follows; £t
~gdywi, v=1, 2, 3, 4, 5, with ws=ay. The interesting
point here is that with this Lagrangian the leading term
in the w and ¢ pole-term contributions automatically
cancel; in all lower symmetry models the oo has to be
introduced explicitly to bring about this cancellation.
In practice, Green finds that he must split the w and oo
masses to fit the data, in agreement with our own
findings.

II. CALCULATIONS

A. One-Boson-Exchange Potentials (OBEP)

The one-boson-exchange potentials used in our cal-
culations are defined such that the potential, for a given
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meson exchange, is taken to be equal, in momentum
space, to the exact relativistic one-meson-exchange con-
tribution to the .S matrix in field theory. To determine
the potential in coordinate space, one takes the Fourier
transform of the momentum-space expression. The
above definition has been given explicitly in Ref. 5 and
elsewhere.® A somewhat different definition of the poten-
tial is given by Wong.” We list below the OBEP for
scalar, vector, and pseudoscalar meson exchange, and
the interaction Lagrangians which define them. Note
that a definition of f different from that of Ref. 1is used
here.

These potentials are actually given here only through
order k2/M?2, where k is the magnitude of the 3-momen-
tum of any nucleon. However, the error incurred by
dropping terms of order k%/M* and higher is small in
most cases, of the order of a few percent. The only cases
where the error is higher are those of the familiar one-
pion-exchange potential (error may reach 15%, at 300
MeV) and the f? term of the one-p meson-exchange
potential. The expressions given below agree with the
(corrected) OBEP listed by Hoshizaki, Lin, and
Machida$ to order k2/M2. (Note that the tensor and
spin-orbit potentials have no terms of order lower than
% in momentum space.)

1. Vector Meson
= (4m) W gy, O (f/4M)om (0, P — 3,8, V) I

—mr 2

f (g2+gf)2

—mnr —mr

—mr 1

V(V)=g2
M? 7 2M*? 7 7

v
§ f4M2(5

mr  mir?
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(4m)2g T TS |

2 —mr
oo of (- 2y

amr ¢ oM
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2R. A. Bryan, in Proceedings of the International Conference on
Nuclear Physics Gaitlinburg, Tennessee, 1966 (Academic Press Inc.,
New York, 1967).

3R, A. Bryan and R. A. Arndt, Phys. Rev. 150, 1299 (1966);
see also R. A. Arndt, R.-A. Bryan and M. H. MacGregor bid.
152, 1490 (1966); Phys Letters 21, 314 (1966).

“A.S. Green, T. Sawada, and R. D. Sharma, ITosbaric Spin in

£int=

1 1 \e™
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—(g2+gf) 5‘3’(r) (g+f)76‘3’(r)01 0.

Nuclear Physics (Academic Press Inc., New York, 1966); A. E. S.
Green and R. D. Sharma, Phys. Rev. "Letters 14, 380 (1965), and
references therein.

5R. A. Bryan, C. R. Dismukes, and W. Ramsay, Nucl. Phys.
45, 353 (1963).

6 N. Hoshizake, I. Lin, and S. Machida, Progr. Theoret. Phys.
(Kyoto) 26, 680 (1961).

7D. Y. Wong, Nucl. Phys. 55, 212 (1964). Wong’s definition of
the potential requires that the first Born approximation for the
scattering amplitude be equal to the field-theoretic single-particle-
exchange result, while the definition used here and previously
(Refs. 1, 5, and 6) equates the Born approximation for the S
matrix of the potential to the field-theory result. The difference
between the two is a purely kinematical factor of M /E. We prefer
the definition used in our paper, because we do not believe that
this purely kinematical factor should participate in the complex
unitarization performed by the Schrodinger equation. However,
our own calculations show that the differences in the coupling con-
stants occasioned by the two definitions are small, perhaps sur-
prisingly so.
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3. Pseudoscalar Meson
Lint= (47)1/2g 5T P

m? e ™" m2 / 1 1 1
V(P)=g2[ 01 0o f + )
12M2 r aM 2\m272 mr 3

emr 4
X Sm— 5(3)(1')01'0'2] .
12M

7 2

In these equations, m is the mass of the meson in
question. Other symbols are defined as in I. As is usual
we have set z=1=c.

B. Schridinger-Equation Solution

One sums the OBEP due to the several mesons and
inserts this into the Schrédinger equation. Thus

V=XV, 2.1)

V=P, Wy, T, 1, 0oy 01,

and

—(/M)VH+ VY= (/M.

To eliminate the V2 derivative in the potential one may
conveniently use a transformation on the wave function
suggested by Green.® Set

V(r)=Vo(r)—(1/M)[V?¢(r)+¢(r) V2],

where Vo contains all the terms except the momentum-
dependent term; ¢ can be determined by comparison
with the potentials. First we shall consider only the
uncoupled states. Let

y= f.lulsj(r) (ylw'(f)o') )
where Yi,; is the generalized spherical harmonic for
spin, orbital, and total angular momentum s, /, and 7,
respectively. Then the radial wave function satisfies the
equation
(142¢)u/"+ 20'u/+[k2—MV,,
—(4+2¢)I0+1)r*+¢" Ju=0,
where the j and s indices have been suppressed for
simplicity.
V.1 stands for Vo properly evaluated for the angular-
momentum state in question. Now if we set
wy=(1+42¢)/2,,
then v; obeys an ordinary radial equation

vl”—l(l-l- 1)7’"22Jz+k21}l= MWﬂ)z N
Vou ¢ \?21 2¢ k2
Wl= '_‘< ) Jr .
14+2¢ 14+2¢/ M 142¢ M

Furthermore, one may use v; directly to obtain the scat-
tering phase shift, since this is deduced by matching the

(2.2)
where

8 A. M. Green, Nucl. Phys. 33, 218 (1963).
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wave function to the free particle solution at some dis-
tance well beyond the range of forces, and at that radius
v;=1, since ¢ approaches zero asymptotically.

The coupled partial differential equations can be
handled through a straightforward generalization of the
foregoing. Thus, for total angular momentum j, Egs.
(2.2) and (2.3) generalize to

& (j—1)f

@ (G-1j e 0

1 |dr? 72 <v,-_.1)

2 y y .

M 0 d (]+1)(]+2)+k2 Vj+1
dr? 72
3 1 <V., i1 Vor )(vi—l)
142¢6\Ver Vo, j+1/ \vjp1

(L)
1420 0 \14+2¢/ MN\vjpr/’
where V,r is entirely given by the Si2 contributions of

the potential. The spin and total angular momentum
symbols s and 7 have been suppressed for simplicity.

III. EMPIRICAL FIT TO THE 25- TO
350-MeV N-N DATA

We adjusted the masses of the proposed scalar mesons
and all meson-nucleon coupling constants until we found
a best fit to the experimental P- and D-wave phase
shifts. We did not attempt to fit the 1S and 35, phase
shifts, nor e, because these parameters depend strongly
on the nature of the potential at distances of less than
1 F, and we thought that the one-boson-exchange
model could not reasonably be extended to such short
distances without introducing additional phenomeno-
logical parameters.

Phase shifts were calculated by solving the Schrod-
inger equation for each set of pole parameters and
matching to the experimental phase shifts at three en-
ergies (50, 142, and 310 MeV). A Minneapolis-Honey-
well 800 medium-speed computer was used for the cal-
culations. Because the Schrodinger-equation solutions
were time-consuming, we did not attempt to fit F and
higher wave phase shifts. However, it had been our ex-
perience that any pole model which fit the P and D
waves and had a reasonable value for g,2, fit the F and
higher waves as well. This turned out to be true.

A momentum cutoff was not needed, because the p?-
dependent term in the potential reduced the singularities
in the equivalent potentials, W; [Eq. (2.2)], to order 2
at the origin, and in those ! states where the singularities
were negative (attractive), they did not exceed the
centrifugal barrier in magnitude.

The pole parameters were searched for by minimiz-
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TABLE I. Meson-nucleon coupling constants and meson masses
which yield the fit to experimental phase shifts graphed in Fig. 1,
and the fit to the experimental scattering measurements graphed
in Fig. 2. The quantities contained within parentheses were not
searched for, but rather fixed beforehand.

Meson T,Jr Mass (MeV) g? f/g
T 1,0~ (138.7) 12.5
7 0,0~ (548.7) 10.6
o1 1,0+ 770 5.8
a0 0,0+ 590 9.9 ‘.-
o 1,1~ (763) 1.36 3.82
%) 0,1~ (782.8) 19.1 0.0

ing the quantity
[52_ 61 (expt)]Z

[Aai(expt)]2 ’

where the §; are theoretical phase shifts, the §;©xPt) ex-
perimental phase shifts, and the Ad;©*PY errors quoted
for the experimental phase shifts; 7 indexes both the
type of phase shift and the energy. For the experimental
values we took the phase-shift solutions of Arndt and
MacGregor? at 50, 142, and 310 MeV, for /=1 and 2
states. Arndt and MacGregor also supply solutions at
25, 95, and 210 MeV, but these were not included in the
search because of lack of machine time.

The pole parameters were varied two at a time. After
a large number of trials we arrived at the set listed in
Table I. These yield a pretty good fit to the phase shifts,
as may be seen from Fig. 1. In this figure the theoretical
phase shifts are plotted as solid lines. The experimental
phase shifts are plotted as error bars. The predicted F
phase shifts (not shown) also agree well with the Arndt-
MacGregor phase shifts. These and the P- and D-state
phase shifts are listed in Table II.

BRYAN AND B. L.
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Of course, fitting experimental phase shifts is not the
same thing as fitting the experimental scattering ob-
servables, since, in the former case, contributions to X2
arising from correlations between the phase shifts are
neglected. We were therefore interested in testing the
theoretical phase shifts against the data. To this end we
used a code (MIDPOP) available at Livermore which com-
putes the scattering observables, o, P, D, 4, R, etc.,
from phase shifts and then computes X? through com-
parison with data. If 6; and ;@) are the theoretical
and experimental observables, and Af;¢*P¥ are the ex-
perimental errors, then

[0,__0,(expt)]2
xX2=3" =22 - . (3.1)
i [Aej(expt)]z

The index j refers to both energy and angle.

Since 8(1S0), 8(351), and & were not provided by the
potential model, these were searched for. (The code also
provides this facility.) In addition, the normalization
X of the observables at each energy was treated as a
datum with an experimentally determined error. The
code then supplied the values of x, 6(*Sq), 8(3S1), and
€1, which minimizes X2 These values of x are given on the
graphs of Fig. 2. All the higher partial wave phase shifts
were computed theoretically. P- through F-phase shifts
were computed from the potential model. The /=4 and
higher phase shifts were determined from the relativistic
one-pion-exchange term alone (g,?=13). For experiment
we used the 704 data selected by Arndt and MacGregor®
in the energy intervals near 25, 50, 95, 142, 210, and
330 MeV. The calculated X for the model was 1150, or
1.6 per datum. A representative sampling of the fits
to the data is given in Fig. 2.

TaBLE II. Nuclear bar phase shifts predicted by the one-boson-exchange-potential

model using the meson parameters listed in Table I, in degrees.

Qah (MeV) 25 50 95 142 210 310
Phase shift
5(1Py) —6.31 —9.96 —14.89 —19.46 —25.62 —33.95
5(3Py) 8.07 11.30 10.25 6.06 —1.25 —11.92
8(3Py) —4.78 —8.30 —13.07 —17.27 —22.79 —30.25
3(3P2) 2.25 5.52 10.55 13.79 15.63 15.00
€ —0.72 —1.62 —2.63 —3.07 —-3.07 —2.49
8(1Dy) 0.57 1.36 2.89 4.52 6.64 8.62
8(3Dy) —2.61 —6.27 —11.51 —15.42 —19.28 —22.57
8(3D3) 3.32 8.01 15.16 20.28 24.38 26.07
5(3Ds) —0.01 0.06 0.50 1.07 1.63 1.53
& 0.50 1.51 3.08 4.35 5.58 6.55
8(1F3) —0.38 —1.03 —1.99 -2.71 —3.51 —4.63
8(3F2) 0.09 0.29 0.64 0.90 1.01 0.49
3(3Fs) —-0.20 —0.62 —1.40 —2.12 -3.06 —4.42
S8(3Fy) 0.01 0.08 0.31 0.67 1.32 2.36
€4 —0.04 —0.17 —0.46 —0.75 —1.12 —1.54
3(3Gs) —0.05 —0.22 -0.79 —1.53 —2.65 —4.20
3(3Hy) 0.01 0.02 0.08 0.17 0.30 0.46

9 R. A. Arndt and M. H. MacGregor (private communication).
R. A. Arndt and M. H. MacGregor, Phys. Rev. 141, 873 (1966).

For a somewhat more recent version of these phase-shift solutions, see
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TAaBLE IIT. The 8(1So), 8(3S1), and ¢ nuclear bar phase parameters which, when used with the potential model phase shifts of Table [T,
and OPEC(g,2=13) for all higher partial waves, minimize x? for the 704 p-p and #-p data selected by Arndt and MacGregor.?

Tap (MeV) 25 50 95 142 210 310
Phase shift
(Degrees)\
3(1So) 49.13 38.10 28.42 18.92 6.26 —9.96
8(351) 76.32 64.43 46.06 29.06 16.82 —35.37
€ 4.68 11.77 —2.93 1.98 4.81 25.12
a See Ref. 9.

The X2 fit to the data is better than we had expected
from just fitting phase shifts. It is more representative of
what one might have expected from adjusting the con-
stants to fit the data. The plots of the fits to the data
look quite acceptable over the full-energy range, 25-350
MeV.

The values of §(1Sy), 8(3S1), and e obtained by the
MIDPOP search that were used in making these predic-
tions of the data are plotted as line segments in Fig. 1
and tabulated in Table III. Line segments are shown
since the phase shifts were assumed to have energy
derivatives the same as those in the Arndt-MacGregor
analysis in each of the six energy bands. Note that the
phase shifts are in good agreement with the Arndt-
MacGregor phase shifts, i.e., the phases obtained by
the miprop search did not take on unphysical values
to effect a good fit to the data.

IV. ONE-BOSON-EXCHANGE
POTENTIAL MODEL

The coupling constants and masses of the present one-
boson-exchange potential are not very different from
those of our earlier model, Paper I, in which the p? term
in the central potential was neglected and all potentials
were cut off within 0.6 F.These procedures were believed
to be wrong by some, who expected that inclusion of the
p? term would require substantial changes in the model.
This turned out not to be the case. However, inclusion
of the p? terms did have the favorable effect of making
the nonrelativistic approximation uniform to order p*
and eliminating the need for cutoff in />1 states.

The parameters which differ most, percentagewise,
are g,2 (up from 0.68 to 1.36) and g,? (up from 7.0 to
10.6). The other constants agree within 15%. The
change in g,2 is not too significant, because the » Born
term is weak compared to the scalar and vector meson
Born terms.

The values of most of the coupling constants seem
reasonable. g,2 at 12.5 is somewhat below the expected
value of ~14, but this is in part due to the use of a non-
relativistic approximation to the pion-pole term;
g-2(M?/E?) has been replaced by (g.%)nr=(M?/ E?)
X (g=2)rei~12-14 over the 0-320 MeV range. (In this
connection one should note that although we are keeping
all terms of order k2/M? in the potentials, for the pion
the leading term is already of this order.)

The search gave g,2=0.4 and f,/g,=3.8. The latter
ratio agrees well with the value expected from the
nucleon electromagnetic form-factor data, which is
fo/8,=4=41. However, g,2 seems a little large. Sakurai'®
has recently reported on eight different ways in which
g,? may be determined with the resulting values lying
in the range 0.5-0.7. In this range, neither g, nor f,/g,
is so well determined by the N-V data as the combina-
tion (f,+g,)? (the constant which weights the tensor
potential and the spin-spin potential). If one takes
fo/8,=5.5 while holding (f,+g,)? constant, then one
would obtain g,2=0.7, in much better agreement with
Sakurai’s work.

The value for g.? obtained from the search, viz., 19,
seems unusually large. This constitutes one reason for
not believing literally the one-boson-exchange potential
prescription for unitarizing the pole terms. We do not
doubt that in the OBEP framework such a large vector
meson coupling constant is needed to fit the data—it is
required to match the phenomenological spin-orbit po-
tentials’'—but 19 is rather large compared with SU(3)
predictions. Assuming pure F-type coupling of the vec-
tor meson octet to the baryon octet, SU(3) predicts
2%(ws) = 3g,2, where ws signifies the isotopic singlet mem-
ber of the unmixed octet. Thus g?(ws) is predicted to be
3(1.36)~4. Of course, the physical w is a mixture of wg
and wo (unitary singlet) vector mesons, but even so,
2.2~19 seems rather large. Recently, another estimate
of the g,?/g,? ratio has been suggested based on the
nonet scheme. In this work, Sugawara and Von Hippel*2
find that the ¢ can be decoupled from the nucleon and
if one assumes mainly F-type coupling to the vector
octet, then g,?=9g,?~12. This number, while much
closer to our value than the SU(3) prediction, is still
substantially below the value obtained from the search,
19.

The Pauli-Dirac coupling constant ratio f./g. is quite
in accord with experiment. Its value as given by the
search was very close to zero, and was finally set iden-

10 J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966); P. Signell
and J. W. Durso, sb:d. 18, 185 (1967).

11 This is studied extensively in Paper I. We do not believe that
our large value for g.? is due to numerical error. R. S. McKean
[Phys. Rev. 125, 1399 (1962)] arrives at g,?>~25 in fitting phe-
nomenological spin-orbit potentials.

( 12 P§ Sugawara and Frank von Hippel, Phys. Rev. 145, 1331
1966).
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tically to zero; it is to be compared with the nucleon
electromagnetic form-factor prediction f,/g.~040.2.

The n-coupling constant given by the search was 11.
This does not agree with the SU(3) prediction, g,2=2,
assuming an F/D ratio of 3. However, the large value for
g,2 may be traced to the fact that g.? was found to be 19.
A large value for g,? is then required in order that the
net isoscalar tensor potential be zero, as required by ex-
periment. This is explained in more detail in Paper I.
Thus, the fact that g,® violates the SU(3) prediction
may be because of the over-large value for g%

Little can be said about the scalar meson coupling
constants, since there is no strong evidence that either
the o or o7 really exists. Possibly these are only empiri-
cal approximations to 27 and 5= S-wave contributions
to N-N scattering, respectively. On the other hand,
there is some evidence!® for a resonance with the gy
quantum numbers near 700 MeV, and more recently,**
near 1100 MeV, so that the idea of a 7’=0, J=0" reso-
nance is perhaps not so strange. Also, in the most recent
tabulation of mesons,'® a listing can be found at 1003
MeV with 7'=1, J=0%, quantum numbers appropriate
for the o1. However, the status of this entry is unclear
at the present time. If the oo belongs to an SU(3) octet,
then a oy follows automatically as the 77=1 member of
the octet. Of course, the oo might only be a unitary
singlet.

It is important to know just how well determined are
the values of the parameters which have been considered

13 M. Feldman, W. Frati, J. Halpern, A. Kanofsky, M. Nuss-
baum, S. Richert, and P. Yamin, Phys. Rev. Letters 14, 869
(1965); V. Hagopian, W. Selove, J. Alitti, J. P. Baton, M. Neveu-
Rene, R. Gessaroli, and A. Romano, ¢bid. 14, 1077 (1965).

14]. J. Crennell, G. R. Kalbfleisch, K. W. Lai, J. M. Scarr, T.
G. Schumann, I. O. Skillicorn, and M. S. Webster, Phys. Rev.
Letters 16, 1025 (1966).

15 A, H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967).
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above. This is a rather difficult question to answer pre-
cisely, mainly because of the sometimes strong correla-
tion between various parameters. [It has already been
mentioned that (f,+g,)? is more well determined than
is either g, or f,. ] Another difficulty is that an increase
in a parameter may cause a much larger change in the
X2 than the corresponding decrease. This is a reflection
of the fact that the X2 surface is a quite complicated
function of the parameters, which may make extrapola-
tions dangerous. It is possible, however, to obtain some
qualitative feeling for the sensitivity of X2 to the various
parameters. For this purpose we have estimated the
change in the values of the parameters of Table I
necessary to increase the X2 by 109%,. These changes were
estimated to be Ag,:=0.1, Ag,?*=0.2, Ag,?=03,
Ag?=04, Ag2=20, Ag,2=0.5, Af,/g,=0.8, and
Afu/ go=0.006.

It is much more difficult to determine the precision of
the determination of the oo and o; masses because of the
very great amount of computer time which a thorough
analysis would entail. Our search on the masses does
indicate that reasonably good fits to the phase param-
eters could be found with the oo mass between 550 and
610 MeV and the o, mass between 700 and 800 MeV.
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